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Existing viral-marketing network models commonly assume a preliminary phase in which a marketer ac- 

tively infects a subset of social network’s users, represented by nodes, followed by a passive viral process, 

in which nodes infect other nodes without external intervention. However, in real-world commercial sce- 

narios, substantial efforts are often invested by companies to promote their products, suggesting that the 

adoption of products is rarely the consequence of a viral spread alone. 

Under this observation, this paper proposes a new diffusion model, named Active Viral Marketing, which 

better fits real-world marketing scenarios, where adoption of products relies on continuous active pro- 

motion efforts by the marketer. In the proposed model, the success of a marketing attempt to infect a 

potential customer (uninfected node), depends on the number of adopting friends (infected neighbors) 

of this user, assuming a user is more likely to adopt a product if more of his/her friends have already 

adopted it, while taking into account that social influence diminishes over time due to a memory-loss 

effect. 

The paper further proposes a set of heuristics to schedule the marketing attempts. The main idea be- 

hind these heuristics is to utilize the information on the dynamic adoption-states of neighbor nodes, in 

addition to the static social network topology, when choosing the next node to seed. An extensive exper- 

imentation demonstrates how the proposed seeding heuristics improve the adoption rate of products by 

30%–75% in comparison to existing state-of-the-art methods that mainly rely on the network topology. 

© 2018 Elsevier Ltd. All rights reserved. 
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. Introduction 

Online social networks offer a powerful tool for information

haring with friends, family and colleagues. In this aspect, they en-

ble individuals to spread their messages passively through a vi-

al process that might resemble the spread of a virus. Clearly, this

roperty of online social networks also has a financial implication,

ince it can be utilized by companies and individuals that seek to

dvertise their products (we are using the terms products and ser-

ices, interchangeably) to reach a large number of potential cus-

omers. 

The importance of social influence in information spread pro-

esses was demonstrated in many studies (e.g., Asch, 1951; Cen-

ola & Macy, 2007 ). One of the traditional models for describing

iffusion of information in networks is the Linear Threshold model
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 Granovetter, 1978 ). In this model, a message spreads from one

ode to another if a fixed number of neighbors of the latter have

lready adopted it. The spreader of the message, who is interested

o reach a large number of adopting nodes, has to wisely select a

ubset of network nodes, and actively infect (seed) them. Then, the

ssumption is that a passive viral process begins, in which nodes

nfect other nodes without any external intervention. Such a pas-

ive viral process can happen for example, if a Facebook user posts

n exciting message or photo on his wall, which is then repeatedly

hared by other Facebook users. 

As shown by both analytical and simulative studies

 Barthélemy, Barrat, Pastor-Satorras, & Vespignani, 2004; Khelil,

ecker, Tian, & Rothermel, 2002; Vespignani, 2012; Zhou, Liu, &

i, 2007 ), messages that propagate according to models similar

o the Linear Threshold model, are expected to propagate into

 substantial portion of the network. However, in recent years,

everal works (e.g., Goel, Watts, & Goldstein, 2012; Leskovec,

ackstrom, & Kleinberg, 2009; Leskovec & Horvitz, 2008; Leskovec,

cGlohon, Faloutsos, Glance, & Hurst, 2007 ) have shown, based
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on real information cascades datasets, that the frequency of large

information cascades in networks, are significantly lower than

what was previously believed. In fact, it was shown that the vast

majority of messages never spread beyond a few nodes. 

Since large information cascades are rare in reality, it is unlikely

that a product or service will be spread only through a passive vi-

ral process. Indeed, in most real-world marketing scenarios, sub-

stantial additional efforts are invested in order to promote prod-

ucts. Companies cannot simply post Facebook messages on their

products and expect them to spread passively, and therefore so

many sales and marketing personnel are hired to actively promote

these commercial products and services. 

In this work, we propose a new information diffusion model,

named Active Viral Marketing (AVM), which better reflects the

need of commercial companies to invest continuous marketing ef-

forts to promote their products. More specifically, nodes in our

model cannot get infected by themselves through a passive viral

process. Instead, they can get infected only through an active seed-

ing attempt made by the spreader. The importance of social influ-

ence comes into play where the success of a seeding attempt de-

pends both on the number of infected neighbors the node has and

on the time frame in which they got infected. 

As a motivating example, consider a tourism company that aims

to promote a summer vacation through social networks advertis-

ing. The company can pop-up the advertisement to several social

network’s users that fit in age and social class and are considered

to be influential (commonly estimated based on the network topol-

ogy). These advertisements have a defined cost, which is paid to

the social network company (and sometimes to the influencers as

well). It is likely that a user that already clicked on the ad (and

potentially booked a vacation), will discuss it with his social net-

work’s friends. However, in most cases it is unlikely that following

such a discussion, these friends will initiate a call to the tourism

company (as in the passive viral spread) in order to book a va-

cation. Rather it is more likely that the discussion with friends

that already booked a vacation will have some positive impact on

them. Now, consider a user that had several such discussions with

his friends. If the company chooses to pop-up an ad to this user

now, the likelihood of him clicking on the ad will be probably

higher than in the case without previous discussions. Moreover, if

the ad is presented to the user, long after the discussions with his

friends, it is less likely that he will click on the ad, since the im-

pact of these interactions weakens over time (for simplicity of ex-

position, we will term this phenomenon as “forgetting effect” or

as “memory loss”). Therefore, in order for the tourism company

to efficiently use its marketing budget (e.g., to maximize the click-

through rate), it needs to schedule its advertisements in a way that

balances the number of accumulated friends’ clicks and memory

loss (both grow over time and have an inverse effect). 

Following the suggested AVM model and the observation above,

this work develops a set of Scheduled Seeding Heuristics (SSH).

The main idea behind SSH is to utilize the information on the

dynamic states of nodes, in addition to the static network topol-

ogy (that is commonly used by existing seeding heuristics), when

choosing the next node to seed. This added information allows SSH

to utilize better the social effect, by balancing between the number

of infected neighbors of a node and its memory loss. 

In order to evaluate the SSH heuristics, we conducted an exten-

sive set of experiments, to compare them to other state-of-the-art

seeding heuristics that rely on selecting central nodes (based on

the network topology) prior to the seeding stage. The results of

our experiments show that the SSH heuristics obtain an average

adoption rate which is 30%–75% higher than the other benchmark

heuristics, and that the superiority of SSH is consistent over a wide

range of parameters’ values selection. 
L  
The contribution of this work can be summarized along two

xes: 

• We propose a new diffusion model which, to our belief, better

fits real-world scenarios of products adoption, where the spread

of products relies on continuous active effort s of the sales or

marketing departments. 
• We demonstrate the importance and the high potential of a

scheduled seeding heuristic, for the spread of trendy products,

under a wide range of settings, and also point out the cases

where such a heuristic is less effective. 

he rest of this paper is structured as follows. Section 2 reviews

he existing literature and provides the necessary background on

nformation diffusion in networks. Sections 3 and 4 describe the

roposed Active Viral Marketing model and Scheduled Seeding

euristics, respectively. Section 5 details our evaluation methodol-

gy and the obtained results. Section 6 summarizes the paper, and

resents directions for future research. 

. Background and related work 

In this section, we provide the relevant background to the fields

f contagion models and viral marketing. We start by present-

ng the basic theoretical models of viral diseases, followed by two

ell-known models, which capture the important aspects of vi-

al marketing. These theoretical models are then inspected through

he lens of real-world data evidences. 

.1. Contagion models 

Mathematical contagion models of diseases were historically

eveloped by Epidemiology researchers as a tool to study the

echanisms by which diseases spread, to predict the future course

f an outbreak and to evaluate strategies to control an epidemic

 Anderson, May, & Anderson, 1992 ). Due to their success in the

eld of disease modeling, such models implied their wide usage

n other fields as well, such as information diffusion and product

doption. 

Existing contagion models can be broadly classified into two

ategories: (1) compartmental models and (2) individual-based

odels. 

Compartmental models assume a fully interconnected popula-

ion, in which the interactions and infections can occur between

ny pair of available individuals. This implies a homogeneous pop-

lation in terms of their connectivity and chances of interaction.

hese models allow to observe different phenomena at the com-

artment level, such as the size of the compartment and the infec-

ion pace at different time periods of the contagion process. One of

he most well-studied compartmental contagion models is the SIR

odel ( Anderson et al., 1992 ). This model splits the population in-

ividuals into three compartments: S - susceptible, I - Infected and

 - Recovered. The transitions between the states in this model are

rivial - susceptible individuals have a probability β to become in-

ected as a result of an interaction with infected individuals. Sim-

larly, infected individuals recover (and therefore reassigned into

he recovered compartment) with a constant pace γ . 

Individual-based models assume the existence of a network

tructure that describe the potential interactions (network edges)

etween individuals (network nodes). In contrast to compartmen-

al models, individuals cannot become infected from any member

f the infected compartment, but only from their network neigh-

ors. 

One of the fundamental individual-based models, commonly

sed to describe information diffusion in social networks is the

inear Threshold model ( Granovetter, 1978; Kempe, Kleinberg, &
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s  
ardos, 2003 ). The model assumes that the behavior of individ-

als greatly depends on the number of their network neighbors

hat are already engaged in that behavior. More formally, we de-

ote the binary state of a node v (1 if active and 0 otherwise) at

ime t as X v ( t ) and the set of neighbors of node v as N ( v ). A node

 is influenced by each neighbor w ∈ N ( v ) according to their edge

eights b v, w 

which are set such that 
∑ 

w ∈ N(v ) b v ,w 

= 1 . Each node

 is assigned a threshold θ v ∈ [0, 1], representing the fraction of

 ’s neighbors that are required to be active in order for v to be-

ome active in the next time step. If the accumulated effect (sum

f weights of active neighbors) on time step t on v is at least θ v ,

 will become active at the next time step t + 1 and therefore will

lso begin to influence its own neighbors. 

Another well-studied individual-based information diffusion 

odel is the Independent Cascade model ( Goldenberg, Libai, &

uller, 20 01a; 20 01b ). In this model, a node v that was activated

t time step t has a single chance to activate each of its currently

nactive neighbors w ∈ N ( v ). At the next time step, t + 1 , v will not

ave any further influence on its neighbors. Similarly, if w becomes

ctivated at time step t + 1 , it will have one single chance to acti-

ate its inactive neighbors in time step t + 2 . 

A particularly interesting individual-based model, Bass- SIR , was

ecently suggested by Fibich (2016) . This model proposes a new

ontagion process which combines properties of SIR and Bass

 Mahajan, Muller, & Bass, 1991 ) models, and applies them at the

icro-level by utilizing a network structure. More specifically, as

n the basic Bass model, if a node v did not adopt the product by

ime step t , it has a positive probability to adopt the product in the

earest future (t , t + �t ) : 

 (v adopts in (t , t + �t )) = 

(
p + q 

I v (t) 

k v 

)
�t + o(�t) 

here p and q are bass coefficients of innovation and imitation

ccordingly, I v ( t ) is the number of infective neighbors of v at time

tep t, k v is a normalization factor (usually k v = | N(v ) | ) and �t → 0.

nlike the basic Bass model, Bass- SIR does not assume that an in-

ected node will stay infective forever, and therefore the probability

f an infective node to become recovered is: 

 (v recovers in (t , t + �t )) = r�t + o(�t) 

here �t → 0, and r is the recovery pace. 

The Linear Threshold and Independent Cascade models served

s a basic setup to a wide range of works, and over the years

any extensions were suggested to fit these models to special

ases. In their seminal work, Kempe et al. (2003) proposed two

odels which aimed at generalizing many of the extensions into

 unified framework. The introduction of these two general mod-

ls served several goals. First, they present a unified framework for

ny arbitrary activation function that is consistent with the mono-

onicity condition. Second, they prove that these two models are

quivalent, and provide a method to covert between them. Third,

hen limiting the discussion to sub-modular activation functions,

empe et al. provide an approximation to the Influence Maximiza-

ion problem, covered later in Section 2.2 . 

.2. Influence maximization 

An important field in the study of information diffusion through

ocial networks is the identification of influential nodes with the

oal of maximizing the adoption of products or ideas in the net-

ork. More formally, given a model of information diffusion (e.g.,

inear Threshold, Independent Cascade, etc.) over a network G , the

nfluence maximization problem deals with selecting a subset of

he network nodes, whose intentional activation (often referred to

s seeding) will ignite a viral contagion process that will impact
 significantly large set of nodes. Often these models aim at op-

imizing a given target function related to the network adoption.

he target function can have several forms, such as maximizing the

umber of adopters in a certain time period or budget (number of

eeding actions), or minimizing the number of seeding actions re-

uired to reach a certain number of adopters. 

For example, modern marketing effort s use social networks

or market analysis and for defining promotion strategies. Un-

ike classical mass-marketing methods that address a wide mar-

et segment, social networks’ promotion is often characterized

y micro-segmentation, attempting to utilize detailed information

bout each of the involved individuals ( Goldfarb & Tucker, 2011 ).

he main motivation behind such an approach, is that influenc-

ng the opinion of only a few individuals may shape the opinion of

he majority, by following a viral contagion process ( Katz & Lazars-

eld, 1955 ). 

The task of identifying influential nodes is still widely investi-

ated, but the identification of influential nodes is not always easy.

n many cases, nodes are referred to as “influential” when past ev-

dence show that their involvement in the contagion process con-

ributes significantly to the spread. Nonetheless, such detailed in-

ormation is often absent, and most of the data available to the

arketers is the topological structure of the social network and

ast adoption history. 

.2.1. Initial seeding strategies for influence maximization 

Identifying influential nodes, given only the network structure,

an be addressed via graph-based metrics, such as the centrality

easures ( Borgatti, 2005 ). 

One way to measure a node’s centrality is by counting the num-

er of its connections (known as the node degree). While calculat-

ng the degree of a node is a relatively trivial task, such an ap-

roach is limited since it takes into account only the first-order

ffect, without considering higher-order effects. Other frequently

sed centrality measures that take into account high-order effects

nclude the PageRank ( Page, Brin, Motwani, & Winograd, 1999 ), the

etweenness centrality ( Brandes, 2001 ) and the Eigenvector cen-

rality ( Bonacich, 2007 ). Each of these measures has its own at-

ributes and represents a different type of importance that char-

cterizes a node. For a good source on centrality measures, the

eader is referred to Borgatti (2005) and Newman (2010) . 

With respect to influence maximization, several works inves-

igated the efficiency of seeding central nodes. The work by

inz, Skiera, Barrot, and Becker (2011) , for example, investi-

ated four seeding strategies: Hubs (Degree/EigenVector Central-

ty), Bridges (Betweenness Centrality), Fringes (Edge Nodes) and

andom. The authors conducted three experimental studies of

doption using a small controlled network; a real social network

f selected students; and a large-scale cellular network. The study

ound that targeting Hubs is the most effective strategy in terms

f influence maximization, with the Bridges strategy right after-

ards, both with a big gap above the Random strategy (150–200%)

nd a huge gap above the Fringes strategy. Similar results were

btained by Banerjee, Chandrasekhar, Duflo, and Jackson (2013) ,

here the authors investigated empirically the spread of financial

oan systems within a social network of Indian villagers. The au-

hors found that villagers with high Eigenvector centrality scores

re more likely to influence others in their surroundings, in com-

arison to the other measures of centrality. 

The performance of seeding strategies depends not only on

he properties of the network topology and its nodes, but also

n the information diffusion dynamics themselves. For example,

empe et al. (2003) study the influence maximization problem

nder the linear threshold and independent cascade settings and

heir generalizations. The authors prove that finding the optimal

olution to the problem is NP-hard in both settings and present a
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greedy algorithm which obtains a (1 − 1 /e ) approximation of the

optimal solution. While the greedy algorithm ensures a reasonably

good result in terms of coverage, it is still very expensive in terms

of runtime when executed on large-scale datasets. 

The complexity of the problem and the non-scalability of the

greedy approximation algorithm opened the chase after high per-

forming and scalable seed selection heuristics. While many such

heuristics were suggested in the literature, we focus on two well-

studied groups of such heuristics. 

One notable group of such heuristics are the CELF

( Leskovec, Krause et al., 2007 ) and CELF++ ( Goyal, Lu, & Lak-

shmanan, 2011 ) algorithms, which are based on a ”lazy-forward”

optimization scheme for selecting the seeds. Their underlying

idea is based on bounding the marginal contribution of a node

in a future iteration, with its marginal contribution in a previous

iteration due to monotonicity and sub-modularity properties of

the influence maximization problem. These heuristics provide

an efficient variation of the greedy approximation algorithm by

improving the order of evaluating nodes to be added to the “seed

set”. Empirical evaluation showed that the proposed heuristics

outperform (in terms of influence maximization) and run faster

than the greedy algorithm, while still guaranteeing a constant

factor approximation of the optimal solution. 

Another notable group of heuristics was suggested by Chen

at al. ( Chen, Wang, & Wang, 2010; Chen, Wang, & Yang,

2009; Chen, Yuan, & Zhang, 2010; Jung, Heo, & Chen, 2012 ).

Chen et al. (2009) presented an improved greedy algorithm for

seeding outcome evaluation by reducing the search space per each

evaluation, and showed a 700-times faster performance on the in-

dependent cascade model. Chen, Wang and Wang (2010) suggested

the Maximum Influence Path (PMIA) algorithm. Using this method

under the independent cascade model, the authors suggested to

locate the nodes whose seeding will result in a long chain of cas-

cades with the highest probability. Jung et al. (2012) proposed the

Influence Rank Influence Estimation (IRIE) algorithm, which per-

forms an estimation of the influence function for any given seed

set, using precomputed influence estimated values for iterative

seed set ranking. Empirical simulations have shown that the IRIE

heuristic performance is similar to that of the Greedy, PMIA and

Pagerank influence heuristics, while its memory consumption pro-

vides a significant improvement over that of the other heuristics. 

While a large number of works in this field focused on the

problem of maximizing influence with a given seeding budget,

Long and Wong (2011) investigated the problem of minimizing the

number of seeding actions to obtain a certain number of influ-

enced nodes. The authors proved that the problem is NP-hard, and

developed a greedy heuristic that provides error guarantees. They

also studied the “Full-Coverage” setting, where the goal is to in-

fect the entire network, and designed efficient algorithms for this

purpose. 

With the same spirit, Goyal, Bonchi, Lakshmanan, and Venkata-

subramanian (2013) identified three orthogonal dimensions in the

influence maximization problem: (1) the number of seed nodes

activated at the beginning, (2) the expected number of activated

nodes at the end of the propagation, and (3) the time taken for the

propagation, claiming that it is possible to constrain either one or

two of these dimensions and try to optimize the third. The authors

then studied two of these variations and suggested approximated

algorithms to solve them efficiently. 

2.2.2. Adaptive seeding strategies for influence maximization 

The majority of existing works that dealt with the influence

maximization problem, focused on selecting a subset of network

nodes, that if seeded simultaneously at the beginning of the pro-

cess, would maximize the adoption rate at the end of the process.

Recently, numerous works presented a new adaptive approach,
hich spreads the seeding actions over time, and therefore allows

o reassess the contribution of the seeds’ selection in each time

tep, in order to improve the overall adoption rate. 

For example, Seeman and Singer (2013) present a two-stage

ramework for influence maximization. The underlying assumption

f this model is that besides of the “non-active” (susceptible) and

active” (infective) states there is an intermediate state referred to

s “available”: a node v is considered available for seeding only if

ne of its neighbors w ∈ N ( v ) is active. Given an initial set of avail-

ble nodes X ⊆V , the goal of the first stage is to select a seeding

et S ⊆X in order to extend the set of available nodes, so that the

eeding actions in the second stage will maximize the expected

nfluence. The idea behind it relies on the known fact that select-

ng a neighbor of a random node v is likely to have a higher de-

ree than v itself and thus one would like to include those higher-

egree nodes in the set of available nodes for seeding. 

In another study, Tong, Wu, Tang, and Du (2017) suggest an

daptive seeding strategy for a variant of the Independent Cascade

odel. In this variant, referred to as “Dynamic Independent Cas-

ade” model, the authors assume that the activation of a node v

y seeding occurs with a probability p v . Therefore, in contrast to

he models surveyed above, a seeding action may fail, keeping the

ode in a non-active state. Under this setting, the authors suggest

n adaptive seeding approach, in which the selection of nodes to

e seeded at each time step, is performed while taking into ac-

ount the realization of the previous seeding attempts. 

Jankowski, Bródka, Kazienko et al. (2017) and

ankowski, Bródka, Michalski, and Kazienko (2017) suggest an

daptive seeding approach to the influence maximization problem

nder the Independent Cascade model. The authors show that,

egardless of the chosen strategy for selecting influential nodes,

preading the seeding actions along different time-steps of the

iffusion process can improve the overall adoption rate. Moreover,

hey present an inherent trade-off between the obtained adoption

ate and the duration of the diffusion process. 

Chierichetti, Kleinberg, and Panconesi (2014) introduce a dif-

erent diffusion model in which there are two competing ideas,

ach aiming at maximizing its spread over a social network. More

pecifically, consider a marketer which addresses each one of the

ndividuals in the network sequentially (the marketer has the abil-

ty to determine this sequence) and offers them a cause. The cause

an either be accepted ( Y ) or denied ( N ) by each of the individuals,

ccording to the following rule: the individual v accepts the offer

f | m Y | − | m N | ≥ c, deny it if | m N | − | m Y | ≥ c and chooses randomly

etween Y and N otherwise. m Y and m N represent the size of the

roup of v ’s neighbors who already decided to accept or deny the

ause ( Y or N ), and c is a positive integer that serves as a decision

hreshold. The goal of the marketer in this setting is to determine

he best order to address the individuals in order to maximize the

mount of Y decisions. The authors also provide an efficient greedy

lgorithm that ensures the best achievable solution to the problem.

Lin, Hu, Wang, and Philip (2014) suggest the “Push-Driven Cas-

ade” model in which the probability that a node will become ac-

ive after a seeding action is determined by the activation state of

ts neighbors. More specifically, the probability of an individual v

o become activated is: 

p v (t) = d v + 

∑ 

w ∈ N(v ) 

b v ,w 

∗ X w 

(t − 1) 

here X w 

(t − 1) is the binary state of node w (1 if active and 0

therwise) at time t − 1 , the node v is influenced by each active

eighbor w ∈ N ( v ) according to their edge weights b v, w 

and d v is

 ’s own bias towards adoption. The role of the marketer in this

etting is to choose a single node to seed at each time step in order

o maximize the overall adoption in the network. 



A. Sela et al. / Expert Systems With Applications 107 (2018) 45–60 49 

 

n  

o  

t  

t  

s  

i

2

 

d  

m  

g  

a  

a  

i  

d  

i

 

a  

A  

a  

n  

G  

w  

r  

t  

a  

l  

f  

f  

i  

l  

v  

a

 

i  

C  

T  

M  

m  

a  

i  

e  

A  

t  

n  

f  

o  

t  

l  

i  

t  

f  

i  

m

 

a  

d  

p  

t  

s  

a  

fl  

t  

Fig. 1. Infection states of nodes in the AVM model. 
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It is important to emphasize that in the two latter models, each

ode has an accumulated influence in favor of the product, but

nly the seeding act itself is considered to be the trigger for ac-

ivation, where the viral spread serves only as a positive effect on

he activation probability. This is in contradiction to classical diffu-

ion models where nodes could become active as a result of a viral

nfection without any external intervening operation. 

.3. Information diffusion in real world settings 

As seen in the previous section, the dynamics of information

iffusion in Social Networks were widely studied and many mathe-

atical models which aim at describing these dynamics were sug-

ested. In recent years, due to the increased availability of data,

nd the emergence of tools to store and process data at large-scale,

 growing body of works have started to analyze the dynamics of

nformation diffusion in real-world scenarios, and obtain better un-

erstanding of where existing models succeed and fail in describ-

ng these dynamics. 

One of the principles behind many of these models is that of

ccumulated social effect. Already in 1951, the social psychologist

sch presented an experiment, in which he showed that the prob-

bility of a subject to change his opinion is proportional to the

umber of peers who are convincing him to do so ( Asch, 1951 ).

ranovetter (1978) in turn, presented a threshold behavior, in

hich an accumulated social effect is turned into an activation by

eaching a personal threshold of the individual. Hence, since the

hreshold values are distributed randomly, the probability of an

ctivation is proportional to the number of social influencers, simi-

arly to Asch’s findings. Later on, Centola and Macy (2007) had per-

ormed a large-scale empirical study of online social networks. He

ound that in contradiction to “Simple Contagion” in which a single

nteraction with an infected individual may lead to activation (e.g.,

ike in the spread of infectious diseases), the activation of an indi-

idual often requires reinforcement from multiple infected sources,

 phenomenon named by the author as “Complex Contagion”. 

A recent work by Goyal, Bonchi, and Lakshmanan (2010) stud-

ed the time effect of propagation of social influence in networks.

onsequently, the authors suggested an extension to the General

hreshold model by adding a diminishing time-dependency factor.

ore specifically, they considered three types of time-dependent

odels which reflect a lower ability of a node to spread the

dopted idea as time passes: (1) A Static Model the influence of an

nfective node does not diminish over time; (2) A Discrete Model

ach activated node has a period of time in which it is infective.

fter that period, the node stops from being infective; and (3) Con-

inuous Model the influence of an infective node v on a neighbor

ode w diminishes over time with an exponential rate. The authors

ound that the best fit to the data was obtained by the continu-

us (exponential decay) model. One explanation that was given to

his diminishing influence effect in the scientific literature is the

imited attention effect. According to this effect, a person which

s exposed to multiple ideas during a single time period, is able

o concentrate only on a few of them resulting in a forgetting ef-

ect ( Weng, Flammini, Vespignani, & Menczer, 2012 ). These find-

ngs, strengthen the usage of the recovery effect in several of the

odels mentioned above, such as SIR and Independent Cascade. 

In another paper by Leskovec, McGlohon et al. (2007) , the

uthors investigate the cascading behavior of online information

iffusion, by analyzing 45,0 0 0 blogs and about 2.2 million blog

osts. The authors identified several cascade shapes that rule

he majority of cascades, pointing out two specific shapes: star-

haped, reflecting the spread of information in different directions,

nd chain-shaped, presenting a chained sequence of information

ow. Further investigating the degree-distribution of the cascades,

hey found that in-degree and out-degree distribution of bag-of-
ascades follow power-law exponents of −2 . 2 and −1 . 92 respec-

ively. Finally, by examining the distribution of cascade sizes for

ach shape of cascade, they found that all cascades follow a heavy-

ailed distribution, and the probability of observing a cascade of n

odes follows a Zipf distribution. These findings emphasize that in

eal-world scenarios, highly viral information cascades rarely exist.

Another support for the above findings can be found in

oel et al. (2012) , where the authors analyze information cascades

n seven different online domains. The authors observed that the

ast majority of cascades are small, and that they usually termi-

ate within one circle of neighbors of the initial adopting node. 

. The proposed active viral marketing model 

In this section, we propose a novel information diffusion model,

amed the Active Viral Marketing model, which better reflects the

eed of commercial companies to invest continuous marketing ef-

orts to promote their products or services. According to the pro-

osed model, at any given time-step t , a node v can only be at one

f the following X v ( t ) states: 

• X v (t) = 0 : Non-Infected 

• X v (t) = 1 : Infected and Infectious 
• X v (t) = 2 : Infected but not Infectious 
• X v (t) = 3 : Seeding Failed 

The possible transitions of a node v between these states are

escribed in Fig. 1 : 

More specifically, if the spreader attempts to seed a non-

nfected node v at time-step t , the attempt may succeed with a

robability P v ( t ). If the seeding attempt succeeds, then the node’s

tate changes from X v (t) = 0 to X v (t) = 1 . The probability of a suc-

essful seeding attempt is affected by v ’s individual preferences

nd the activation rate of v ’s neighbors (described in more details

elow). 

If the seeding attempt fails, subsequent attempts to seed v are

ot allowed (since in a typical marketing scenario, subsequent

eeding attempts may only annoy the potential customer and may

ead to a negative attitude towards the spreader), and v is transi-

ioned into a “Seeding Failed state ( X v (t) = 3 ). On the other hand,

f the seeding attempt succeeds, v is transitioned into a “Infected

nd Infectious” state, and will influence its neighbors only for the

ext t inf periods. After t inf periods have ended, v ’s state changes to

Infected but not Infectious” ( X v (t) = 2 ). 

The probability that an attempt to seed a node v at time-step t

ill succeed is given in Eq. (1) : 

 v (t) = P ind 
v + P soc 

v · min 

(
1 , 

| N 

1 
v (t) | 
θv 

)
(1)
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Fig. 2. Social effect in Asch’s conformity experiment (left) and its representation in the AVM model (right). 
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This probability is composed of two factors: (1) the individual

preferences of v , denoted by P ind 
v and (2) the social influence ex-

erted on v by its infectious neighbors at time-step t , denoted by

P soc 
v · min (1 , 

| N 1 v (t) | 
θv 

) . 

The social factor is calculated as the product of P soc 
v and

min (1 , 
| N 1 v (t) | 

θv 
) . The maximal social effect that can be achieved is

represented by P soc 
v , (note that P ind 

v + P soc 
v ≤ 1 ). min (1 , 

| N 1 v (t) | 
θv 

) rep-

resents the relative social effect, which increases proportionally

with | N 

1 
v (t) | , denoting the number of infectious (state 1) neigh-

bors of v , up to a certain level determined by the threshold θ v .

The min function assures that even if the number of active neigh-

bors exceeds the threshold θ v , the probability function would not

exceed the value of 1, and therefore, the total social effect would

not exceed P soc 
v . 

The formulation of the social factor described above was in-

spired by the empirical results of Asch’s conformity experiments

( Asch, 1951 ). In his experiments, Asch inspected how the size of

a group influences the probability of conforming to the opinion of

the majority. He observed that as the size of the group grows, the

conforming probability grows almost linearly until reaching a cer-

tain size, and after reaching that size, the probability doesn’t grow

further. We model these two properties by using the threshold θ v 

and the maximum probability P soc 
v . A comparison of Asch’s origi-

nal findings and our simplified model (for the case of p soc 
v = 0 . 6 ,

p ind 
v = 0 . 1 and θv = 4 ) are depicted in Fig. 2 . 

Given the Active Viral Marketing diffusion model and a seeding

budget of size B , the goal is to find an ordered set of B nodes, de-

noted by S = (v 1 , v 2 , .., v B ) , such that seeding the node v 1 at time-

step t = 1 , the node v 2 at time-step t = 2 , ..., the node v B at time-

step t = B, would maximize the total number of successful seeding

attempts. 

4. The scheduled seeding heuristics 

The influence maximization problem that was defined above

for the Active Viral Marketing diffusion model is NP-hard and is

not sub-modular (see Appendix A ). Accordingly, in this section,

we propose a set of seeding heuristics, named Scheduled Seed-

ing Heuristics (SSH), that recommend which node to seed at each

time-step. Similar to existing seeding heuristics, our heuristics uti-

lize the static network topology when choosing the nodes to be

seeded. However, in contrast to existing heuristics, our heuristics

also take into account the information on the dynamic states of

nodes at each time-step. 

More specifically, at each time-step, our heuristics assign a util-

ity score for each one of the non-infected (state 0) network nodes,

with the idea that seeding a node with a higher utility score is

worthier. The utility score is based on the expected value for each
otentially seeded node, and is calculated as the probability of a

uccessful seeding of the node itself, multiplied by the value of

uch an event. 

Given the vector of states of all network nodes at time-step t ,

enoted by �
 X (t) , the probability of a successful seeding of v at

ime-step t is denoted as: 

 ( � X 

v (t + 1)) 

Where �
 X v (t + 1) is identical to �

 X (t) with the additional as-

umption that node v changed its state to X v (t) = 1 at time-step

 + 1 . 

The value of a successful seeding event of node v can be seen

s the influence of v on future seeding attempts of its non-infected

eighbors, formulated as: ∑ 

 ∈ N 0 v (t+1) 

U(w, t + 1 , � X 

v (t + 1)) 

Where w ∈ N 

0 
v (t + 1) is a non-infected neighbor of node v at

ime-step t + 1 , and U(w, t + 1 , � X v (t)) is the utility score of seed-

ng w at time-step t + 1 , given that v was already seeded success-

ully at time-step t . 
Finally, the utility score of a node v is calculated as the proba-

ility of a successful seeding of v , multiplied by the value of such
n event: 

(v , t, � X (t)) = P ( � X v (t + 1)) ·
[ 

1 + 

∑ 

w ∈ N 0 v (t+1) 

U(w, t + 1 , � X v (t + 1)) 

] 

Note that the formulation of U(v , t, � X (t)) is recursive, and may

nvolve successive iterations to evaluate the value of future seeding

vents beyond t + 1 . For practicality reasons, we limit the recur-

ion to a depth of k ∈ {0, 1, 2} iterations, as we found empirically

hat increasing the complexity of the algorithm by using higher k

alues has a diminishing return effect. The recursive computation

f the score, for a depth of k iterations ( k is provided as an input

arameter), is shown in detailed in Algorithm 1 . 

To illustrate how Algorithm 1 works, consider the five-nodes

etwork depicted in Fig. 3 . 

Assume that node v 1 was activated at the previous time-step

 t − 1 ) and the following parameters: P ind 
v = 0 , P soc 

v = 1 and θv = 0 ,

or all network nodes. 

For a recursion depth of k = 0 , we get the following utility

cores for nodes v 2 , v 3 , v 4 and v 5 respectively: 

SH(t, � X (t) , v 2 , 0) = P v 2 (t) = 0 + 1 · 1 

2 

= 0 . 5 

SH(t, � X (t) , v 3 , 0) = P v 3 (t) = 0 + 1 · 1 

2 

= 0 . 5 

SH(t, � X (t) , v 4 , 0) = P v 4 (t) = 0 + 1 · 0 = 0 
2 
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Algorithm 1 The SSH Scoring Algorithm 

Input: 

t - time-step 

�
 X (t) - states of nodes in time-step t 

v - node 

k - recursion depth 

Output: 

Score of v 
1: P v (t) ← P ind 

v + P soc 
v · min (1 , 

| N 1 v (t) | 
θv 

) 

2: if k = 0 then 

3: Score ← P v (t) 

4: else 

5: Score ← 1 

6: for u in N 

0 
v (t) do 

7: Score ← Score + SSH ( t + 1 , � X v (t + 1) , u, k − 1 ) 

8: end for 

9: Score ← P v (t) · Score 

10: end if 

11: return Score 

Fig. 3. An illustration of a network with five nodes. 
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SH(t, � X (t) , v 5 , 0) = P v 5 (t) = 0 + 1 · 0 

2 

= 0 

ince both nodes v 2 and v 3 obtained the highest utility score, we

ill choose to seed either one of them at time-step t . 

Alternatively, for a recursion depth of k = 1 we get the follow-

ng utility scores for nodes v 2 , v 3 , v 4 and v 5 respectively: 

SH(t, � X (t) , v 2 , 1) = P v 2 (t) · (1 + SSH(t + 1 , � X (t) , v 3 , 0)) 

= 0 . 5 · (1 + 1) = 1 

SH(t, � X (t) , v 3 , 1) = P v 3 (t) · (1 + SSH(t + 1 , � X (t) , v 2 , 0) 

+ SSH(t + 1 , � X (t) , v 4 , 0) 

+ SSH(t + 1 , � X (t) , v 5 , 0)) 

= 0 . 5 · (1 + 1 + 0 . 5 + 0 . 5) = 1 . 5 

SH(t, � X (t) , v 4 , 1) = P v 4 (t) · (1 + SSH(t + 1 , � X (t) , v 3 , 0) 

+ SSH(t + 1 , � X (t) , v 5 , 0)) = 0 
SH(t, � X (t) , v 5 , 1) = P v 4 (t) · (1 + SSH(t + 1 , � X (t) , v 3 , 0) 

+ SSH(t + 1 , � X (t) , v 4 , 0)) = 0 

ince node v 3 obtained the highest utility score, we will choose to

eed it at time-step t . 

Runtime Complexity Analysis: The higher time-consuming op-

rations of Algorithm 1 are performed in steps 1 and 6–8. In step

, the algorithm determines the number of infected neighbors of

ode v , and in steps 6–8, the algorithm determines the utility score

f each one of the non-infected neighbors of node v , given that v

as already seeded successfully. Line 7, in particular, includes a re-

ursive call which reduces the recursion depth ( k ) by 1. Therefore,

f we denote the maximum degree of a node by d , the runtime

omplexity of Algorithm 1 in the worst case is O (d k +1 ) . It is im-

ortant to note that Algorithm 1 is executed for each one of the

on-infected nodes in the network, every time a seeding decision

as to be made. Therefore, denoting the number of nodes in the

etwork as | V | and the seeding budget as B , the total time spent

n Algorithm 1 is O (| V | · B · d k +1 ) . 

. Evaluation 

In this section, we present an extensive set of empirical ex-

eriments that compare the performance of the proposed SSH ap-

roach (that is state-based) with that of existing seeding heuristics

hat rely on the network topology without taking into considera-

ion the states of the nodes. 

.1. Experimental setting 

All the experiments were implemented in Python 2.7 and exe-

uted on a Linux machine running Centos 7.1, with 128GB of RAM

nd a single Intel 2.7 GHz CPU. 

Each of the simulations was preceded with selecting a random

et of nodes, served as an initially infected population of size F . The

nfection time-steps of the nodes in this initial population were

rawn uniformly from the interval [ −t in f , −1] . Then, at each time-

tep of the simulation, a single node was seeded, where the selec-

ion of the seeded node was based on different heuristics (the set

f examined seeding heuristics is described below). Each seeding

ttempt either succeeded or failed in accordance with Eq. (1) . The

ransitions in states of nodes were re-calculated at each discrete

ime-step. 

The simulation ended when the entire budget of seeding at-

empts, B , was used. At this point, the final seeding success rate

as calculated for each of the heuristics. 

.1.1. Parameters’ space 

In the experiments, we examined a variety of values for the dif-

erent parameters. In each set of simulations that are reported be-

ow, all parameters except one were set to their default value (fixed

n most cases to the median of their examined range of values),

hile a single remaining parameter was examined over a varying

ange of values. The parameters’ space used in our experiments is

etailed in Table 1 . Each combination of parameters values was ex-

mined by executing 400 simulation runs, for each one of the com-

ared heuristics. 

In most of our experiments, we assumed that the values of the

arameters θ v and P soc 
v are known. In another dedicated experi-

ent, we assumed that the distributions of these parameters’ val-

es are normal, and we only know their mean and standard devia-

ion. These means are denoted by μθ and μP Soc , while the standard

eviations are denoted by σ θ and σ
P Soc , respectively. The actual

v 
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Table 1 

Simulation parameter space. 

Parameter Values 

Network Topology Sampled Citation network , 

(see Table 2 ) Slashdot network, 

Sampled EuEmail network, 

WikiVote network, 

Epinions network, 

Enron network 

Network size 50 0 0, 10 0 0 0, 50 0 0 0, 10 0 0 0 0 , 

(# of sampled nodes) 50 0 0 0 0, 10 0 0 0 0 0 

Initially infected 50, 100, 200 , 500, 1000 

population size ( F ) 

Budget ( B ) 50, 100, 200 , 500, 1000 

Threshold ( θ v ) 3, 4, 5 , 6, 7 

Maximal Social Effect ( P soc 
v ) 0.1, 0.3, 0.5 , 0.7, 0.9 

Infection Time ( t inf ) 10, 20, 50 , 100, 200 

Individual Effect ( P ind 
v ) 0 , 0.1, 0.2, 0.3, 0.4, 0.5 

∗ The default value of each parameter is marked in bold . 

Table 2 

Networks used in simulation. 

Network Number of Nodes Average Degree Average Clustering Sampled? 

Citations 10 0 0 0 0 0 2.83 0.04 Yes 

Citations 50 0 0 0 0 4.06 0.06 Yes 

Citations 10 0 0 0 0 7.60 0.14 Yes 

Citations 50 0 0 0 8.20 0.16 Yes 

Citations 10 0 0 0 6.81 0.20 Yes 

Enron 36692 10.02 0.50 No 

WikiVote 7115 28.32 0.14 No 

Slashdot 82168 14.18 0.06 No 

EuEmail 10 0 0 0 0 1.57 0.03 Yes 

Epinions 75879 10.70 0.14 No 
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values of these parameters for each node, were randomly gener-

ated prior to each simulation run, and were not used in any way

by the SSH heuristics. 

5.1.2. Network topologies 

The simulations were executed on different network topologies,

as detailed in Table 2 . These topologies represent snapshots of real-

world social networks, with some adaptations to our experimental

framework, such as converting the networks to undirected, or sam-

pling a subset of nodes. The original social network datasets are

publicly available at Leskovec and Krevl (2014) . 

5.1.3. Seeding heuristics 

We compared three variations of the proposed SSH approach

(SSH-0, SSH-1 and SSH-2, where the levels of recursion were k = 0 ,

k = 1 and k = 2 respectively) with four benchmark approaches as

we proceed to describe. These benchmark approaches included

both a state-of-the-art network-centrality-based approach (GEC),

and a simple random selection of nodes (Random). Furthermore,

for each of these two benchmark approaches we added a varia-

tion which considered as optional seeding candidates, only nodes

that have a non-zero probability to become infected (i.e., nodes

that have at least one infected neighbor). These additional varia-

tions were named Picky-GEC and Picky-Random. 

The seven heuristics mentioned above are described in further

details below: 

Random Randomly seeds one uninfected node at each time-

step. 

GEC Chooses the uninfected node with the highest Eigenvector

Centrality measure at each time-step. 

Picky-Random Randomly chooses an uninfected node from the

nodes that have a non-zero probability to become infected. 
Picky-GEC Chooses the uninfected node with the highest Eigen-

vector Centrality from the nodes that have a non-zero prob-

ability to become infected. 

SSH-0 - Chooses the uninfected node with the highest value of

P v ( t ) at each time-step (i.e., Algorithm 1 with k = 0). 

SSH-1 - Chooses the uninfected node with the highest value of

P v ( t ) at each time-step (i.e., Algorithm 1 with k = 1). 

SSH-2 - Chooses the uninfected node with the highest value of

P v ( t ) at each time-step (i.e., Algorithm 1 with k = 2). 

.2. Results 

.2.1. Overall comparison of SSH with the other benchmark methods 

Fig. 4 presents an overall comparison of the SSH approach to

he other benchmark methods. Fig. 4 (top) presents this compar-

son for different network topologies whereas Fig. 4 (bottom) fo-

uses on different sample sizes of the Citation network topology.

n these experiment, all other parameters that are mentioned in

able 1 except for the network topology and size were set to their

efault values. 

As can be seen in the figure, the three SSH heuristics (blue

ars) significantly outperform the other benchmark methods. More

pecifically, comparing SSH-0 (the worst out of the three SSH

euristics) to Picky-GEC (the best out of the other benchmark

ethods), the improvement ranges from 30% to 75%. 

With regard to the different SSH heuristics, it seems that in

ost cases SSH-2 achieves the best performance, followed by SSH-

 and then SSH-0. This is in accordance with the amount of in-

ormation that each of those heuristics uses to evaluate the scores

f potential nodes to seed. However, it is worth mentioning that

he differences in performance between these three heuristics are

elatively low in comparison to the other benchmark methods. 

As expected, the worst performing heuristic (by far) is the Ran-

om heuristic, which does not utilize any information about the

etwork topology nor the states of the nodes. The GEC heuristic,

erforms slightly better than Random heuristic, since it utilizes in-

ormation about the network topology. 

Two interesting heuristics are Picky-Random and Picky-GEC

hat utilize partial information about the states of the nodes (i.e.,

hich nodes have non-zero probability to be seeded successfully).

s can be seen in the figure, these two heuristics perform better

han the basic Random and GEC heuristics but worse than the SSH

euristics. We can also see that Picky-GEC performs slightly better

han Picky-Random since it also utilizes information on the net-

ork topology. 

.2.2. Centrality of seeded nodes 

In the previous experiment, we saw that the SSH heuristics per-

orm significantly better than the GEC heuristic. In order to under-

tand better why this is the case, we compared the centrality of

odes that were chosen by each of the two approaches. We were

ainly interested to know if the SSH heuristics select to seed cen-

ral nodes, or if it chooses to seed less central nodes. Note that in

eal-world marketing scenarios that involve seeding, not all seed-

ng actions have the same cost. In fact, highly central nodes in so-

ial networks often represent celebrities, and the cost of seeding

uch celebrities is likely to be higher than that of less known in-

ividuals. Fig. 5 presents the Eigenvector centrality of nodes that

ere chosen for seeding by the SSH-1 and GEC heuristics, along

ime. 

The exterior figure presents the average Eigenvector central-

ty of nodes over 400 executions, where all parameters from

able 1 were set to their default values. As can be seen from the

gure, both heuristics tend to start with nodes that have a higher

igenvector centrality score and continue with nodes with lower

nd lower Eigenvector centrality scores. While this observation is
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Fig. 4. An overall comparison of SSH (the three blue bars) with the benchmark methods, across different network topologies (top) and network sizes (bottom). 
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xpected for the GEC heuristic, it is less expected for the SSH-1

euristic, since it does not make an explicit use of the network

opology. It can also be seen that the average centrality score of

he nodes selected by the SSH-1 heuristic is substantially lower

han that of the GEC heuristic. 

The interior figure presents a single execution, out of these 400

xecutions, for each of the two heuristics. As expected, the GEC

euristic performs the same in the single execution case and in

he average case. However, with regard to the SSH-1 heuristic, we

otice that central nodes are chosen somewhere at the middle of

he contagion process and not necessarily at the initial stages. In

ther words, at any given time, the SSH-1 heuristic might prefer to

hoose a non-central node over a central node as long as its ex-

ected utility (its likelihood to be seeded successfully and its im-

act on its neighbors) is considered higher. This observation, to-

ether with the superiority of the SSH approach (as demonstrated

n the previous experiment), emphasize the importance of utilizing

he states of the nodes and not only the network topology when

F  
ssessing their ability to spread information. This is especially in-

eresting since, centrality measures of a node, such as Eigenvector

entrality, which take into account the network topology only, are

ften considered in the literature as a good proxy for the node’s

bility to spread information. 

.2.3. Sensitivity analysis of the model’s parameters 

Fig. 6 shows the total number of successful seeding attempts

s a function of the seeding budget B . As expected, the number

f successful seeding attempts grows with the budget size for all

euristics, but this growth presents a “diminishing return” effect.

he figure also demonstrates the superiority of the SSH approach

blue plots), where its gap from the other heuristics increases with

he budget size. 

As described in the previous section, we assume the existence

f an initially infected population of size F , prior to the beginning

f the seeding attempts. Fig. 7 reports the influence of F on the

uccess rate of the different seeding heuristics. As expected, larger

 values lead to higher success rates for all of the heuristics. While
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Fig. 5. Eigenvector centrality of the nodes chosen for seeding along time. 

Fig. 6. The number of successful seeding attempts as a function of the seeding budget B . 
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this increase exists, but is barely noticeable for the Random and

Picky Random heuristics, it is clearly evident in the case of the SSH

heuristics. Here as well, the SSH heuristics outperform the other

heuristics, even for small values of F , and the gap becomes larger

as F grows. 

Fig. 8 reports the influence of the infection time t inf on the

success rate of the different seeding heuristics. As can be seen in

the figure, larger t inf values lead to higher success rates for all of

the heuristics. This is quite expected since lower t inf values imply

shorter infectious period of newly infected nodes, leading to lower

social influence in the network at any given time. When the infec-

tion time is significantly short (around 5-10 time-steps), all of the

heuristics suffer from poor performance. However, infection times

of 50 time-steps and above result in high performance, where the

improvement in performance gradually decreases with higher val-

ues of t inf . Again, we see that the SSH approach (blue plots) sig-

nificantly outperforms the other heuristics, for all of the examined

values of t inf . 
The effect of the maximal social effect p soc 
v and the social

hreshold θ v on the success rate of the different seeding heuris-

ics is demonstrated in Fig. 9 . As can be seen in Fig. 9 (top),

igher values of p soc 
v are associated with higher success rates for all

euristics, as expected. Interestingly, the SSH approach grow super-

inearly with p soc 
v , whereas all other heuristics grow roughly lin-

arly. This causes the gap between the SSH approach (blue plots)

nd the other heuristics to become larger with higher values of

p soc 
v . Indeed, when the social forces are stronger, the SSH approach,

hich better utilizes the information about the social influence is

xpected to reach better results. A similar (though inversed) trend

f what was observed in Fig. 9 (top) is presented in Fig. 9 (bot-

om). This inversed trend is quite expected due to the 
P soc 
v 
θv 

element

n Eq. (1) . 

While all of the above analyses focused on the social effect,

here we set the individual effect to P ind 
v = 0 , we now turn to ana-

yzing the effect of the individual (non-social) effect on the success

ate of the different seeding heuristics (see Fig. 10 ). First, we ob-
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Fig. 7. The proportion of successful seeding attempts as a function of the initially infected populations size F . 

Fig. 8. The proportion of successful seeding attempts as a function of the infection time t inf . 
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erve that the success rates of all seeding heuristics increase with

he individual effect P ind 
v . We can also see that the growth rate is

imilar in all heuristics, including the Random heuristic. This obser-

ation makes sense, since large values of P ind 
v , significantly reduce

he importance of the social effect, and therefore make the sched-

led approach less necessary. Similarly, we also see that for larger

alues of individual effect (i.e., P ind 
v ≥ 0 . 05 ), the SSH-0 heuristic

utperforms the SSH-1 and SSH-2 heuristics. 

.2.4. Introducing uncertainty 

The results described in the section above were obtained by as-

uming that the values of P soc 
v and θ v are known. In most cases

owever, this is not a realistic assumption. At best, the distribu-

ion of these parameters can be estimated from previous market-

ng campaigns, but the specific parameter value for each person

s still considered unknown. Based on this understanding, we con-

ucted another experiment to inspect the performance of the pro-

osed SSH approach within a more realistic scenario, in which P soc 
v 
nd θ v are assumed to be normally distributed and their means

nd standard deviations are assumed to be known; however, the

ctual values for each node are considered unknown. 

Accordingly, in each set of executions, we first chose the mean

nd standard deviation. Then, we generated the “real” values for

 

soc 
v and for θ v for each node based on the chosen distributions.

inally, we ran the different seeding heuristics where the means of

he distributions were given as inputs, instead of their actual val-

es. Note that in these experiments, the real values are only used

n the simulative process, but is not used by the seeding node se-

ection process. 

Fig. 11 reports the success rate of the different heuristics as a

unction of uncertainty (reflected by SD/mean). 

The interior figure shows the success rate of Picky-Random as

 function of uncertainty. As can be seen from the figure, the suc-

ess rate increases moderately with uncertainty. The explanation

or this is that high uncertainty values lead to a larger number of

odes with high P v values (due to high P soc 
v and low θ v values). 
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Fig. 9. The proportion of successful seeding attempts as a function of the maximal social effect P soc 
v (top) and the social threshold θ v (bottom). 
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The exterior figure reports the relative success rate of the dif-

ferent heuristics, normalized with respect to Picky-Random, as a

function of uncertainty. As can be seen from the figure, while the

GEC, Picky-GEC and Random heuristics preserve the same relative

success rate when uncertainty increases, the success rate of the

SSH approach decreases. This is quite expected, as the SSH ap-

proach explicitly relies on the values of P soc 
v and θ v for calculating

the scores of nodes. Thus, an inaccurate estimation of these val-

ues due to a large standard deviation, leads to poorer selection of

nodes and to a reduced performance. In contrast, all other heuris-

tics which do not rely on the values of P soc 
v and θ v , and therefore

are not affected by inaccurate values of P soc 
v and θ v . Nevertheless,

even in relatively high uncertainty levels, the success rate of the

SSH approach is still significantly higher than that of the other

methods. 

5.2.5. Runtime 

The different SSH heuristics represent growing degrees of future

planning effort. While SSH-0 is fully greedy, in terms of planning

only the current step, SSH-1 tries to plan one step ahead, and SSH-

2 method plans two steps ahead. Although the SSH approach can
e used with even higher number of planning steps (i.e., higher

han 2), we did not find such large number of planning steps more

ffective. This observation is of high importance since the com-

utational cost of planning ahead significantly increases with the

etwork size, and due to the tremendous sizes of real-world social

etworks. 

Fig. 12 reports the runtime of the different heuristics as a func-

ion of the network size (different sam ple sizes of the Citation net-

ork). The runtime of SSH-0 and Picky-Random are roughly the

ame since they require to perform O (1) operations for each one

f the network nodes in each iteration. The runtime of SSH-1 is

lightly higher since it requires some calculations of the first social

ircle of each network node in each iteration. The runtime of SSH-

 is again significantly higher than the runtime of SSH-1, since it

equires some calculations on the first and second social circles of

ach network node (which cover a large fraction of the entire net-

ork) in each iteration. The runtime of GEC and Picky-GEC is also

ery high since it requires to calculate the Eigenvector centrality

core for each of the network nodes (this is done once for each

ode, but the calculation is still expensive). Finally, we observe that
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Fig. 10. The number of successful seeding attempts as a function of the individual effect P ind 
v . 

Fig. 11. The improvement rate as a function of the degree of uncertainty (measured as the standard deviation of P soc 
v and θ v ). 
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tarting from a certain network size ( 70 0,0 0 0), the runtime of GEC

nd Picky-GEC becomes even higher than that of SSH-2. Since the

un-times of SSH-0 and SSH-1 seems to be reasonable, and since

heir success rate is almost as good as that of SSH-2, we will prob-

bly prefer to use them in future applications of real-world scenar-

os that involve large-scale networks. 

. Summary and future work 

Many works that study information diffusion in social net-

orks consider a phenomenon by which information spreads vi-

ally through the network. Yet, unlike the spread of biological
iruses that can be carried passively by agents and infect a sig-

ificant portion of the network, information cascades are known

o be shorter while long cascades are rather rare. These results

o not necessarily imply that social impacts lost their importance,

ut rather that people spread information in a more selective way,

hich does not necessarily fit the assumptions of traditional mod-

ls of infectious diseases. 

We propose a new information diffusion model, named Active

iral Marketing (AVM), in which agents, e.g., sales representative

f a company, communicate with network users, e.g., potential

lients, and offer them a new product or service. The probability

hat a user accepts such an offer is based on the previous adoption
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Fig. 12. Runtime of the different heuristics as a function of the network size. 
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rate of his/her friends, as well as his/her own tendency toward the

product. 

Since promotion actions often incur some financial cost (limit-

ing the number of clients that can be approached), the company

has to select which users to approach and at what time, in or-

der to increase the total adoption rate in the network. The need

for a correct timing of approaching a customer is a direct result

of memory retention loss, where new products quickly become an

old habit and therefore the likelihood of influencing a peer node to

purchase the new product quickly decays. The proposed Scheduled

Seeding Heuristics (SSH) for user selection, chooses nodes that are

most likely to accept an offer at any given time-step, and thus are

more likely to influence their own non-infected neighbors at the

next time-step. 

In a large set of simulations, we show that the proposed heuris-

tics increase the adoption rate in 30%-75% (depending on the initial

conditions), over a state-of-the-art method that seeds the nodes

according to their Eigenvector centrality score. 

Having indicated that, it is important to note that the proposed

method is mainly applicable to products that have a viral charac-

teristic. These are products or services where a substantial part of

the purchasing decision is based on social influence. In products or

services for which the social forces are significantly less influential,

it might be better to use the existing state-of-the-art methods of

selecting nodes based on the network’s topological properties. 

Most diffusion models, including the proposed model, assume

that all seeding actions have the same cost. As mentioned in

Section 5.2.2 , highly central nodes in social networks often repre-

sent celebrities or influencers, and the cost of seeding such entities

is likely to be higher than that of less known individuals. Future

studies should take into account different seeding costs for differ-

ent nodes, depending for example on the network topology. 

An interesting future extension to this work would be to study

diffusion models that combine both the traditional passive infec-

tion together with the proposed continuous active seeding. Such

a combined model is expected to be applicable for a wider range

of real-world scenarios than each one of the two isolated mod-

els. Furthermore, it would be interesting to extend the proposed

utility-based heuristics to support such a combined model. 
The evaluation of this study is mainly based on simulations that

tilize real-world network topologies. In future works, it would be

nteresting to enrich these simulations with additional real-world

ata such as purchasing history of users. In addition, it would be

nsightful to conduct a live experiment to compare the adoption

ate obtained by the scheduled seeding approach versus the non-

cheduled seeding approach. 
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ppendix A. Properties of the influence maximization problem 

nder the active viral marketing diffusion model 

1. NP-hardness 

Claim: The influence maximization problem is NP-hard for the

ctive Viral Marketing diffusion model. 

Proof: Consider an instance of the NP-hard Set Cover problem

 Garey & Johnson, 1979 ): Given a collection of subsets { S 1 , S 2 , ...,

 m 

} of a ground set U = { u 1 , u 2 , ..., u n } , we wish to know whether

here exist k of the subsets whose union is equal to U . We show

hat this can be viewed as a special case of the influence maxi-

ization problem for the Active Viral Marketing diffusion model.

We can assume that k < n < m .) 

Given an arbitrary instance of the Set Cover problem, we define

 corresponding directed graph as follows. The graph contains 1 +
 + n nodes: a single node A , a node v S i for each subset S i , a node

 u j for each element u j , and m + 

∑ 

S i 
| S i | directed edges: a directed

dge (A, v S i ) from A to each one of the v S i nodes and a directed

dge (v S i , v u j ) whenever u j ∈ S i . 

In addition, consider the following parameters: θ = 1 , t in f = k,

 ind = 1 and P soc = 0 for node A , θ = 1 , t in f = 1 + k + n, P ind = 0 and

 soc = 1 for all other nodes, and a seeding budget of size B = 1 +
 + n . 

We note the following: 

1. For the instance we have defined, activation is a deterministic

process, as all probabilities are either 0 or 1. 
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2. A solution to the influence maximization problem must choose

to seed node A at time-step t = 0 (seeding the node A at time-

step t = 0 is assured to succeed while trying to seed any other

node is assured to fail). 

3. At least k out of the m nodes of type v S i must be seeded (a

direct result of the seeding budget size). 

4. Assuming that node A was seeded at time-step t = 0 , seeding

each one of the v S i nodes at time-steps 1 ≤ t ≤ k is assured to

succeed (they only need one infected neighbor for the seeding

action to succeed). Similarly, seeding each one of the v S i nodes

at time-steps t > k is assured to fail ( t in f = k for node A ). 

5. Following the four bullet points above, it stems that a solution

to the influence maximization problem must choose to seed

node A at time-step t = 0 , k out of the m nodes of type v S i at

time-steps 1 ≤ t ≤ k and all of the n nodes of type v u j at time-

steps k + 1 ≤ t ≤ k + n . 

6. Assuming that node A was seeded at time-step t = 0 and k out

of the m nodes of type v S i were seeded at time-steps 1 ≤ t ≤ k ,

seeding a node v u j at time-steps k + 1 ≤ t ≤ k + n will succeed

only if there exists a node v S i for which u j ∈ S i and v S i is one of

the k chosen nodes at time-steps 1 ≤ t ≤ k . 

7. The maximum number of nodes that can be seeded successfully

is 1 + k + n (due to the budget size). 

The answer to the Set Cover problem is True if and only if the

olution to the corresponding influence maximization problem led

o the successful seeding of exactly 1 + k + n nodes. ( 1 + k + n suc-

essful seedings mean that we managed to seed successfully node

, k out of the m nodes of type v S i and all n nodes of type u j , which

urther imply that there exists k subsets that cover the entire set

 ). 

Since the Set Cover problem is known to be NP-hard, then so is

he influence maximization problem for the Active Viral Marketing

iffusion model. 

2. Sub-modularity 

Consider the Active Viral Marketing diffusion model defined

bove and the function F , which receives an ordered subset of

etwork nodes to be seeded (at consecutive time-steps) as input,

nd returns the expected number of successful seedings as out-

ut. By definition, F is not sub-modular, since sub-modular func-

ions receive a set rather than an ordered set as input. More-

ver, even if we extend the definition of sub-modular functions

o the case of ordered sets, F would still not satisfy the sub-

odularity condition. To illustrate why, consider a network com-

osed of two nodes v 1 and v 2 and a single edge between them,

nd the following parameters: P ind 
v = 0 . 1 , P soc 

v = 0 . 9 , θv = 1 and

 in f = 2 , for all network nodes. Now, consider the two ordered

ets X = () and Y = (v 1 ) . The sub-modularity condition requires

among the rest) that adding v 2 to Y will result in a lower gain in

 than adding it to X (since X ⊂ Y ). More specifically, it is required

hat F ((v 1 , v 2 )) − F ((v 1 )) < F ((v 2 )) − F (()) However, it is easy to

ee that F (()) = 0 , F ((v 1 )) = 0 . 1 , F ((v 2 )) = 0 . 1 , and F ((v 1 , v 2 )) =
 . 1 + (0 . 1 · 1 + 0 . 9 · 0 . 1) = 0 . 29 . Therefore, F ((v 1 , v 2 )) − F ((v 1 )) =
 . 19 > F ((v 2 )) − F (()) = 0 . 1 and the sub-modularity condition is

iolated. 
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