
Citation: Matzliach, B.; Ben-Gal, I.;

Kagan, E. Detection of Hidden

Moving Targets by a Group of Mobile

Agents with Deep Q-Learning.

Robotics 2023, 12, 103. https://

doi.org/10.3390/robotics12040103

Academic Editor: Charalampos

Bechlioulis

Received: 25 June 2023

Revised: 9 July 2023

Accepted: 12 July 2023

Published: 14 July 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

robotics

Article

Detection of Hidden Moving Targets by a Group of Mobile
Agents with Deep Q-Learning
Barouch Matzliach 1,2,*, Irad Ben-Gal 1,2 and Evgeny Kagan 3

1 Department Industrial Engineering, Tel Aviv University, Tel Aviv 6997801, Israel; bengal@tauex.tau.ac.il
2 Laboratory for Artificial Intelligence, Machine Learning, Business and Data Analytics, Tel Aviv University,

Tel Aviv 6997801, Israel
3 Department Industrial Engineering, Ariel University, Ariel 4076414, Israel; evganyk@ariel.ac.il
* Correspondence: barouchm@mail.tau.ac.il

Abstract: In this paper, we propose a solution for the problem of searching for multiple targets by
a group of mobile agents with sensing errors of the first and the second types. The agents’ goal is
to plan the search and follow its trajectories that lead to target detection in minimal time. Relying
on real sensors’ properties, we assume that the agents can detect the targets in various directions
and distances; however, they are exposed to first- and second-type statistical errors. Furthermore,
we assume that the agents in the group have errorless communication with each other. No central
station or coordinating agent is assumed to control the search. Thus, the search follows a fully
distributed decision-making process, in which each agent plans its path independently based on
the information about the targets, which is collected independently or received from the other
agents. The suggested solution includes two algorithms: the Distributed Expected Information Gain
(DEIG) algorithm, which implements dynamic Voronoi partitioning of the search space and plans the
paths by maximizing the expected one-step look-ahead information per region, and the Collective
Q-max (CQM) algorithm, which finds the shortest paths of the agents in the group by maximizing
the cumulative information about the targets’ locations using deep Q-learning techniques. The
developed algorithms are compared against previously developed reactive and learning methods,
such as the greedy centralized Expected Information Gain (EIG) method. It is demonstrated that these
algorithms, specifically the Collective Q-max algorithm, considerably outperform existing solutions.
In particular, the proposed algorithms improve the results by 20% to 100% under different scenarios
of noisy environments and sensors’ sensitivity.

Keywords: search and detection; path planning; decision making; mobile agents; group dynamics;
neural networks; deep learning

1. Introduction

Target searching is a fundamental problem in mathematics, which can be traced back
to the origins of calculus [1] when it was considered a purely academic task. During World
War II, the search problem for static and mobile targets became practical when Koopman [2]
established a new research scheme to find German submarines in the Atlantic Ocean.

Formally, the target searching problem can be considered from two viewpoints. The
first perspective requires distributing a given search effort over a search domain so that
targets are detected with maximal probability. The second perspective requires planning
search and navigation paths for the search agents such that they detect the targets with
maximal probability in a minimal time.

In 1975, Stone presented the main concepts and ideas in his search theory [3] and
substantiated optimizing techniques for distributing search efforts. In 1989, Washburn
summarized the used search methods and presented formal techniques for tracking targets
using mobile agents [4]. In later research works, search and screening methods, as well as

Robotics 2023, 12, 103. https://doi.org/10.3390/robotics12040103 https://www.mdpi.com/journal/robotics

https://doi.org/10.3390/robotics12040103
https://doi.org/10.3390/robotics12040103
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/robotics
https://www.mdpi.com
https://orcid.org/0000-0003-2411-5518
https://orcid.org/0000-0002-3430-3849
https://doi.org/10.3390/robotics12040103
https://www.mdpi.com/journal/robotics
https://www.mdpi.com/article/10.3390/robotics12040103?type=check_update&version=2


Robotics 2023, 12, 103 2 of 23

target detection and tracking methods, were somewhat unified into a general probabilistic
framework [5–8] that allowed the consideration of search and detection in different settings
and with various levels of certainty.

Further developments in target-searching theory addressed multi-agent multi-target
systems. However, along with the obvious advantages of the cooperative search, there is
a considerable challenge to the high complexity of the involved algorithms for planning
the optimal paths of a group of agents (the terms group, team, set and fleet are used inter-
changeably). To overcome such a challenge, cooperative search methods have implemented
different heuristic approaches [7,9–11] and learning techniques [12–14].

In this paper, we consider the search for multiple static and moving targets by a group
of mobile agents and propose new algorithms for path planning and agent navigation.
Following conventional formulations, we consider a search with constrained paths [15] and
simulate the detection uncertainty by using intermittently emitting targets [16]. Similar to
previously obtained solutions [17,18], the agents utilize an occupancy grid [19,20], which
represents their knowledge about the targets’ locations, and we implement methods of
deep Q-learning for planning the paths and navigating in the grid [21].

In contrast to other existing algorithms, the suggested solution considers the target-
searching problem of mobile targets by a team of agents, such that detecting the targets
includes statistical errors of the first and the second types. The solution includes two
algorithms:

- A quick online reactive algorithm that implements dynamic Voronoi partitioning
of the search domain and plans the search paths by maximizing expected one-step
information gain in each region;

- A reinforcement learning algorithm that finds the shortest paths of the agents in the
group by maximizing the cumulative information about the targets’ locations using
deep Q-learning techniques.

In the first algorithm, at each moment, the search domain is divided into Voronoi
regions [22] with respect to the current probability map of the domain, and each agent
searches in its region independently from the other agents. During the search, the location
probabilities of the targets over the search domain change, causing the Voronoi regions to
change, thus directly affecting the agents’ search movements and plan over the updated
regions. We call this version of the algorithm the Distributed Expected Information Gain
(DEIG) algorithm in contrast to the previously developed versions of the centralized EIG
algorithm [17,18] that did not use the Voronoi diagram. A clear benefit of this heuristic is
its simplicity and low complexity, which allow online implementation over simple agents
and components.

In the second algorithm, the decision regarding the next step of the agent is obtained
via a deep Q-learning scheme over a neural network based on agent-by-agent value itera-
tion [23]. The network receives the agent’s location, the current probability map and the
networks’ parameters of previous agents as input and outputs the preferred move of the
agent. This algorithm maximizes the network Q-value over a group of agents and is called
the Collective Q-max algorithm.

The proposed algorithms are defined by a set of equations and are illustrated with
numerical simulations that are compared with existing methods. These algorithms are
implemented in the Python programming language using the PyTorch machine learning
library. It is found that the novel deep Q-learning algorithm effectively governs the col-
lective behavior of the search agents and substantially outperforms existing algorithms of
collective detection without learning.

The rest of the paper is organized as follows. In Section 2, we introduce the required
concepts and notation and formulate the problem. Section 3 is the main section where we
present the suggested algorithms. Section 3.1 presents the algorithm of collective detection
based on the Voronoi regions, and Section 3.2 presents the algorithm of collective detection
using deep Q-learning. Section 4 describes the numerical simulations of the suggested
algorithm and its comparisons with the known methods. Section 4.1 addresses the collective



Robotics 2023, 12, 103 3 of 23

detection of static targets, and Section 4.2 addresses the detection of moving targets. In
Section 4.3, we consider the training time required by the algorithm with deep Q-learning.
Section 5 includes a general discussion about the suggested algorithms, and Section 6
concludes the paper.

2. Problem Formulation

Let C = {c1, c2, . . . , cn} be a finite set of cells that represent a grid over a two-
dimensional domain. In the domain, there are ξ targets, ξ ≤ n− 1, and η agents, η ≤ n− 1
(in practice, η � n), each of which can be located in one cell. The agents are equipped with
sensors that can detect close-enough targets, and accordingly, each agent plans its motion
over the domain, aiming to detect the targets as fast as possible. The mobile targets, in
contrast, are not aware of the agents and move independently of the agents’ actions (i.e.,
we do not consider a game).

Each agent is equipped with sensors that can detect the targets in different directions
and distances. Following a conventional detection sensor approach, as presented by
Koopman [2,3], we assume that the detection probability of the target increases as the agent
moves closer to the target and as the agent is exposed to the target location for a longer
period of time. These assumptions are reflected by the simplified Koopman equation of the
diction probability of a target in a cell:

Pr{target detected in ci | target located in ci} = 1− exp[−κ
(
ci, cj, τ

)
], (1)

where κ
(
ci, cj, τ

)
∼ τ/d

(
ci, cj

)
is the search effort applied to cell ci when the agent is in

cell cj; τ is the observation period; and d
(
ci, cj

)
is the distance between cells ci and cj. If

all the cells are observed during the same period, τ can be omitted from the equation, as
implemented below.

Moreover, we assume that the detection of a target is not perfect but is exposed to
statistical errors of the first and second types, which implies that the agent can erroneously
miss an existing target and can erroneously detect a target that does not exist in the cell.

To represent this assumption, the state of cell ci ∈ C, i = 1, 2, . . . , n, at time t = 1, 2, . . .
is denoted by s(ci, t). Using occupancy grid techniques [19,20], the state s(ci, t) is considered
to be a random variable with the values s(ci, t) ∈ {0, 1}, such that s(ci, t) = 0 indicates
that cell ci at time t is empty, and s(ci, t) = 1 indicates that cell ci at time t is occupied by a
target. Because these two events are clearly complementary, their probabilities satisfy

Pr{s(ci, t) = 0}+ Pr{s(ci, t) = 1} = 1. (2)

We assume that the occupied cells at time t broadcast an alarm signal
∼
a(c, t) = 1 with

the following probability:

pTA = Pr{∼a(c, t) = 1 | s(c, t) = 1}, (3)

and the empty cells at time t broadcast an alarm signal
∼
a(c, t) = 1 with the following

probability:
pFA = Pr{∼a(c, t) = 1 | s(c, t) = 0} = αpTA, (4)

where 0 ≤ α < 1. The first alarm is called a “true alarm”, and the second alarm is called a
“false alarm”. The probabilities pTA and pFA are the probabilities of detection errors of the
first and the second type, respectively.

Relying on Koopman Formula (1), the probability of perceiving the alarms is

Pr
{

alarm percieved at cj by agent k| alarm sent f rom ci
}
= exp[−d(ci, cj)/λk], (5)

where λk, k = 1, 2, . . . , η, is the sensitivity of the sensor installed on the agent located in
cell cj.



Robotics 2023, 12, 103 4 of 23

The agents’ knowledge about the targets’ locations at time t is represented by a
probability vector P(t) = {p1(t), p2(t), . . . , pn(t)}, where pi(t) = Pr{s(ci, t) = 1} is the
probability that, at time t, cell ci ∈ C of the domain is occupied by the target. The vector
P(t) is called the “probability map”. We assume that all agents in the group are exposed to
the same map P(t) and share and update it in real time.

Accordingly, the probability of an event
∼
x j(ci, t) = 1, i, j = 1, 2, . . . , n, implying that at

time t, an agent k located in cell cj receives a signal from cell ci, is computed as follows:

Pr{∼x
k
j (ci, t) = 1} = pi(t− 1)pTAexp[−d

(
ci, cj

)
/λk] + (1− pi(t− 1))pFAexp[−d

(
ci, cj

)
/λk], (6)

and the probability of the event
∼
x j(ci, t) = 0, i.e., implying that the agent does not receive a

signal at time t from that cell, is

Pr{∼x j(ci, t) = 0} = 1− Pr{∼x
k
j (ci, t) = 1}. (7)

The event
∼
x

k
j (ci, t) represents a realistic assumption that the agent cannot distinguish

between true and false alarms but only receives a signal, which can be either true or false.
Following the Bayesian scheme, when agent k located in cell cj receives a signal from

cell ci, the probability that cell ci is occupied by the target is

Pr{s(ci, t) = 1|∼x
k
j (ci, t) = 1} = pi(t− 1)pTA

pi(t− 1)pTA + (1− pi(t− 1))pFA
, (8)

and when this agent does not receive a signal from ci, the probability that cell ci is occupied
by the target is computed as follows:

Pr{s(ci , t) = 1|∼x
k
j (ci , t) = 0} =

pi(t− 1)(1− pTAexp[−d
(
ci , cj

)
/λk ])

pi(t− 1)(1− pTAexp[−d
(
ci , cj

)
/λk ]) + (1− pi(t− 1))

(
1− αpTAexp

[
−d
(
ci , cj

)
/λk

]) , (9)

Therefore, the targets’ location probabilities are:

pi(t) =

Pr{s(ci, t) = 1|∼x
k
j (ci, t) = 1} if agent k received a signal at time t,

Pr{s(ci, t) = 1|∼x
k
j (ci, t) = 0} if agent k had not received a signal at time t.

(10)

Note that, if the true and false alarms are sent with equivalent probabilities pTA = pFA, then
the agents’ knowledge about the target location does not depend on the received alarms
and is represented only by the probability map, as follows:

Pr{s(ci, t) = 1|∼x
k
j (ci, t) = 1} = Pr{s(ci, t) = 1|∼x

k
j (ci, t) = 0} = pi(t− 1). (11)

The described process of receiving signals and updating the probability map is illus-
trated in Figure 1.



Robotics 2023, 12, 103 5 of 23

Robotics 2023, 12, x FOR PEER REVIEW 4 of 24 
 

 

where 𝜆 , 𝑘 = 1,2, … , 𝜂, is the sensitivity of the sensor installed on the agent located in 
cell 𝑐 . 

The agents’ knowledge about the targets’ locations at time 𝑡  is represented by a 
probability vector 𝑃 𝑡 = 𝑝 𝑡 , 𝑝 𝑡 , … , 𝑝 𝑡  , where 𝑝 𝑡 = 𝑃𝑟 𝑠 𝑐 , 𝑡 = 1   is the 
probability that, at time 𝑡, cell 𝑐 ∈ 𝐶 of the domain is occupied by the target. The vector 𝑃 𝑡  is called the “probability map”. We assume that all agents in the group are exposed 
to the same map 𝑃 𝑡  and share and update it in real time. 

Accordingly, the probability of an event 𝑥 𝑐 , 𝑡 = 1, 𝑖, 𝑗 = 1,2, … , 𝑛, implying that at 
time 𝑡, an agent 𝑘 located in cell 𝑐  receives a signal from cell 𝑐 , is computed as follows: 𝑃𝑟 𝑥 𝑐 , 𝑡 = 1 = 𝑝 𝑡 − 1 𝑝 exp − 𝑑 𝑐 , 𝑐 𝜆⁄ + 1 − 𝑝 𝑡 − 1 𝑝 exp − 𝑑 𝑐 , 𝑐 𝜆⁄ , (6) 

and the probability of the event 𝑥 𝑐 , 𝑡 = 0, i.e., implying that the agent does not receive 
a signal at time 𝑡 from that cell, is 𝑃𝑟 𝑥 𝑐 , 𝑡 = 0 = 1 − 𝑃𝑟 𝑥 𝑐 , 𝑡 = 1 . (7) 

The event 𝑥 𝑐 , 𝑡  represents a realistic assumption that the agent cannot distinguish be-
tween true and false alarms but only receives a signal, which can be either true or false. 

Following the Bayesian scheme, when agent 𝑘  located in cell 𝑐   receives a signal 
from cell 𝑐 , the probability that cell 𝑐  is occupied by the target is 𝑃𝑟 𝑠 𝑐 , 𝑡 = 1|𝑥 𝑐 , 𝑡 = 1 = , (8) 

and when this agent does not receive a signal from 𝑐 , the probability that cell 𝑐  is occu-
pied by the target is computed as follows: 𝑃𝑟 𝑠 𝑐 , 𝑡 = 1|𝑥 𝑐 , 𝑡 = 0 = , ⁄, ⁄ , ⁄ , (9) 

Therefore, the targets’ location probabilities are: 𝑝 𝑡 = 𝑃𝑟 𝑠 𝑐 , 𝑡 = 1|𝑥 𝑐 , 𝑡 = 1    if agent 𝑘 received a signal at time 𝑡,                𝑃𝑟 𝑠 𝑐 , 𝑡 = 1|𝑥 𝑐 , 𝑡 = 0    if agent 𝑘 had not received a signal at time 𝑡. (10) 

Note that, if the true and false alarms are sent with equivalent probabilities 𝑝 =𝑝 , then the agents’ knowledge about the target location does not depend on the received 
alarms and is represented only by the probability map, as follows: 𝑃𝑟 𝑠 𝑐 , 𝑡 = 1|𝑥 𝑐 , 𝑡 = 1 = 𝑃𝑟 𝑠 𝑐 , 𝑡 = 1|𝑥 𝑐 , 𝑡 = 0 = 𝑝 𝑡 − 1 . (11) 

The described process of receiving signals and updating the probability map is illus-
trated in Figure 1. 

 
Figure 1. Receiving information and updating a shared probability map. Figure 1. Receiving information and updating a shared probability map.

In the figure, each agent receives true and false alarms by its onboard sensors and
updates the targets’ location probabilities, which form a shared probability map.

In the case of static targets, the targets’ location probabilities pi(t), i = 1, 2, . . . , n,
depend only on the agents’ positions at time t and their movements, and in the case of
moving targets, these probabilities are defined both by the targets’ and by the agents’
motion.

Following the conventional formulation of search and detection problems [3,4], we
assume that the targets are unaware of the agents’ activities and move independently over
the domain.

The agents’ goal is to detect all ξ targets in a minimal time. Note that, in the prob-
lem of detecting the targets, the agents are not required to chase the targets or to reach
their locations physically but rather are required to specify the locations of the targets as
definitively as possible by using the information obtained from their sensors.

3. Cooperative Detection: Using Voronoi Regions and Deep Q-Learning

The considered detection process follows the outline of a decision-making procedure
and is specified as follows: at time t in cell c(t), each agent k obtains the probability map
P(t), receives the alarms

∼
a(c, t) from the available cells and decides which cell c(t + 1) it

should move to. Accordingly, a main challenge for an efficient cooperative search process
is how to divide domain C and distribute the search paths among η agents and how to plan
each agent’s path to achieve a minimum detection time.

Below, we present two algorithms that address the challenge: the first considers the
Voronoi regions of the agents and plans the agents’ motion in their own regions, whereas
the second uses the shared probability map and implements deep Q-learning techniques to
control the agents’ search.

3.1. Agents’ Actions and Decisions

Consider agent k to be at time t in cell c(t) ∈ C. We assume that the action a(t),
which can be chosen by the agent, is one of nine possible movements from cell c(t), which
are “forward”, “right-forward”, “right”, “right-backward”, “backward”, “left-backward”,
“left”, “left-forward” and “stay in the current cell”. In other words, the action of the kth
agent is denoted by

a
k(t) ∈ A = {↑,↗,→,↘, ↓,↙,←,↖,�}. (12)

A probability map that represents the targets’ locations at time t + 1 is denoted by
Pk
a
(t + 1), given that, at time t, the kth agent chooses action a

k(t). Then, given action a
k(t),



Robotics 2023, 12, 103 6 of 23

the immediate expected informational reward of the kth agent is given by the Kullback–
Leibler distance, namely

Rk
a
(t) = DKL(Pk

a
(t + 1)||P(t)), (13)

between the expected agent’s map Pk
a
(t + 1) and the current probability map P(t). This

informational reward Rk(t) forms a basis for making decisions about the agents’ next steps.
In the search by a single agent or by several agents making independent decisions

over a shared probability map [18], the choice of the next action is governed by a simple
rule:

a
k(t) = argmax

a∈A
Rk
a
(t), (14)

applied by each agent k = 1, 2, . . . , η. This rule represents the agents’ immediate one-step
reaction to the changes in the probability maps and states of the targets.

In more complicated search cases by a single agent [21], the decision-making process
considers the cumulative reward that is obtained in the sequence of the agent’s actions.
Given a policy π, which is a sequence of the agent’s movements starting from its current
position c(t), the expected cumulative discounted reward obtained by the agent is

qπ(c(t), P(t),a(t)) = Eπ{∑∞
τ=0γτ R(a, t + τ)}, (15)

where the discount factor is 0 < γ ≤ 1. The goal is then to find a maximum value

Q(c(t), P(t),a(t)) = max
π

qπ(c(t), P(t),a(t)) (16)

of the expected reward qπ over the policies π that can be obtained after action a(t) is chosen
at time t.

Next, we extend reactive rule (13) and decision-making rules (15) and (16) to a search
of multiple targets by a group of several interacting agents. The first approach is based on
the Voronoi diagrams [22], and the second uses deep-learning techniques [21].

3.2. Reactive Decision Making in Voronoi Regions: A Distributed EIG Algorithm

Let C = {c1, c2, . . . , cn} be a two-dimensional domain and P(t) = {p1(t), p2(t),
. . . , pn(t)} be a probability map at time t. We assume that the map P(t) is shared among
all η agents, η ≤ n− 1, and is updated with respect to the information obtained by each
kth agent, k = 1, 2, . . . , η.

The Voronoi region for each agent k is defined as follows. We assume that, at time
t, the kth agent is in the cell ck(t), and d(ck(t), c) are the distances between cell ck(t) and
cell c ∈ C of the domain. Then, the Voronoi region of agent k is subdomain Ck(t) ⊂ C of
domain C, where

Ck(t) = {c | d(ck(t), c) < d(cj(t), c), j = 1, 2, . . . η, j 6= k}, (17)

which includes the cells that are closer to the position of the kth agent than to the positions
of the other agents. Because the agents change their positions with time, the Voronoi regions
of the agents are updated accordingly.

The part of the probability map corresponding to the Voronoi region Ck(t) ⊂ C,
k = 1, 2, . . . , η, is denoted by Pk(t) ⊂ P(t). The probability maps Pk(t) are updated
simultaneously with the updates of regions Ck(t), and the values of the probabilities
p(t) ⊂ Pk(t) are updated according to the detection results. The set of Voronoi regions
Ck(t) is called the Voronoi diagram and is denoted by C, and the set of probability maps
Pk(t) is called the probability atlas and is denoted by P.

Based on the Voronoi regions, the detection process is conducted with several simple
steps. Given positions ck(t) of agents k = 1, 2, . . . , η, domain C is divided into Voronoi
regions Ck(t). Each kth agent focuses on the corresponding part Pk(t) of the probability map



Robotics 2023, 12, 103 7 of 23

P(t), and rule (14) is used to make an independent decision regarding its next movement.
When all η agents make their decisions, it moves to the next positions ck(t + 1) and observes
the sensors’ output. They update the location probabilities to p(t + 1) to form an updated
probability map P(t + 1), and the process continues.

Formally, the Distributed EIG algorithm (Algorithm 1) based on the Voronoi regions is
outlined as follows.

Algorithm 1. Cooperative detection with reactive decision making: Distributed EIG algorithm

Input: domain C = {c1, c2, . . . , cn},
number of agents η,
initial agents’ positions c1(0), c2(0), . . . , cη(0),
set A = {↑,↗,→,↘, ↓,↙,←,↖,�} of possible actions,
probability pTA of true alarms,
rate α of false alarms and their probability pFA = αpTA,
sensor sensitivity λ,
initial probability map P(0) = {p1(0), p2(0), . . . , pn(0)} on C,
number of targets ξ.
Output: target locations ĉ1(T), ĉ2(T), . . . , ĉξ(T) at a termination time T.

1. Start with t = 0, initial agent positions c1(t), c2(t), . . . , cη(t) and initial probability map
P(t) = {p1(t), p2(t), . . . , pn(t)}.

2. Create the Voronoi diagram C(t) =
{

C1(t), C2(t), . . . , Cη(t)
}

, Ck(t) ⊂ C, k = 1, 2, . . . , η.
3. Create the probability atlas P(t) =

{
P1(t), P2(t), . . . , Pη(t)

}
, Pk(t) ⊂ P(t), k = 1, 2, . . . , η.

Decision making

4. For each agent k = 1, 2, . . . , η, do:
5. Choose action ak(t) = argmax

a∈A
Rk
a
(t), where Rk

a
(t) = DKL(Pk

a
(t + 1)||Pk(t)).

6. End for

Acting

7. For each agent k = 1, 2, . . . , η, do:
8. Apply action ak(t): move to new position ck(t + 1).
9. End for

Updating

10. Set t = t + 1.
11. For each agent k = 1, 2, . . . , η, do:
12. Screen the domain C with respect to the sensor’s abilities.
13. Update the probability map P(t) to P(t + 1).
14. End for
15. If all ξ targets are detected, then
16. Set T = t and terminate (go to line 20).
17. Else
18. Continue with line 2.
19. End if.
20. Return targets’ locations ĉ1(T), ĉ2(T), . . . , ĉξ(T)

In the presented Algorithm 1, it is assumed that the number ξ of targets is known, and
this number is used to terminate the process. If the number of targets is unknown, then to
define the termination, one can use certain measures over the probability map P∗, such as
the entropy of the location probability, which represents sufficient knowledge about the
targets’ locations. In this case, the condition in line 15 is substituted or completed using the
condition concerning the equivalence of the current probability map P(t) and the objective
map P∗. In the simulations below, we assume that P∗ =

(
p∗1 , p∗2 , . . . , p∗n

)
is constant with

p∗i = 0.95, i = 1, 2, . . . , n, and we use this map as a termination condition. In the search with
deep Q-learning, the objective probability map P∗ is used both for learning and termination;
below, we consider this scenario in detail. Note that, in real-world search tasks, the map P∗



Robotics 2023, 12, 103 8 of 23

is not necessarily known to the agents, and they can continue their activity. However, it is
necessary to control the performance of the algorithms.

The activity of the Distributed EIG algorithm is illustrated in Figure 2, which shows
four detection stages of ξ = 30 static targets by η = 6 agents from a starting time t = 0 until
t = 90, when all the targets are detected. The figures on the left side show the positions
of the targets and the agents, and the Voronoi regions and the right-side figures show
the probability maps. The detected targets are denoted by white squares, and the targets
for which the detection probability is less than 0.95 are denoted by gray squares with the
brightness proportional to the detection probability.

Robotics 2023, 12, x FOR PEER REVIEW 8 of 24 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Cont.



Robotics 2023, 12, 103 9 of 23
Robotics 2023, 12, x FOR PEER REVIEW 9 of 24 
 

 

 
(d) 

Figure 2. Four stages of detection of 𝜉 = 30 static targets (denoted by circles ) by 𝜂 = 6 agents 
(denoted by triangles ). The left-side figures show the positions of the targets and the agents 
with their Voronoi regions (denoted by gray areas), and the right-side figures show the probability 
maps, where white squares indicate the detected positions of the targets. (a) Agents start at the 
origin 0,0  and move over the domain. (b) At time 𝑡 = 30, three targets are detected (the fourth 
target with low location probability is stressed by a dashed oval), and (c) at time 𝑡 = 60, the agents 
detect 19  targets with probability greater than 𝑝∗ = 0.95  (white squares) and 2  targets with 
lower probabilities (gray squares at points 7,37  and 12,33 ; stressed by a dashed oval). (d) At 
time 𝑡 = 90, all targets are detected. 

The presented Algorithm 1 is a direct extension of a previously developed algorithm 
[17,18] that maximizes the expected information gain over a domain 𝐶. However, as is 
demonstrated in Section 4, the use of a Voronoi diagram ℭ 𝑡  and the independent activ-
ity of the agents in their Voronoi regions lead to changes in the agents’ motion and a seri-
ous decrease in the detection time. 

3.3. Collective Deep Q-Learning Approach 
Now, we assume that, in addition to sharing the probability map, each agent makes 

its decisions with respect to the decisions made by the other agents. In this setting, a direct 
solution to the detection problem is computationally hard, and the exact activity of the 
group of agents can be specified only for small domains 𝐶. To overcome this problem, we 
apply agent-by-agent value iteration [23] together with reinforcement and deep learning 
techniques [24,25]. 

The suggested Collective Q-learning approach extends the Q-max search algorithm 
by a single agent described in detail [21]. It presents similar performances to those of the 
known optimal algorithms of search for moving targets based on dynamic programming 
techniques [26,27]. In particular, in comparison with the algorithms based on dynamic 
programming [26,27] and the algorithms with deep Q-learning, it was demonstrated that, 
in the search by a single agent and with a 10% false alarm ratio, the algorithm with deep 
Q-learning results achieves the same solutions as those of the known optimal dynamic 
programming algorithms. However, for 25%  and 50%  false alarm ratios, the algo-
rithms with dynamic programming can plan only 7 steps for the agent in 2 h of simu-
lation time, and the algorithm with Q-learning plans up to 32 steps. Consequently, the 
algorithm with Q-learning results in higher detection probabilities for the targets than 
those of the algorithm with dynamic programming: 𝑝 = 0.99  and 𝑝 = 0.95  versus 𝑝 = 0.84 and 𝑝 = 0.68 at best, respectively. 

Then, based on the obtained results at a given time, the algorithm with Q-learning 
plans more agent steps and results in higher detection probabilities than those of the 

Figure 2. Four stages of detection of ξ = 30 static targets (denoted by circles #) by η = 6 agents
(denoted by triangles N). The left-side figures show the positions of the targets and the agents with
their Voronoi regions (denoted by gray areas), and the right-side figures show the probability maps,
where white squares indicate the detected positions of the targets. (a) Agents start at the origin (0, 0)
and move over the domain. (b) At time t = 30, three targets are detected (the fourth target with low
location probability is stressed by a dashed oval), and (c) at time t = 60, the agents detect 19 targets
with probability greater than p∗ = 0.95 (white squares) and 2 targets with lower probabilities (gray
squares at points (7, 37) and (12, 33); stressed by a dashed oval). (d) At time t = 90, all targets are
detected.

The presented Algorithm 1 is a direct extension of a previously developed algo-
rithm [17,18] that maximizes the expected information gain over a domain C. However,
as is demonstrated in Section 4, the use of a Voronoi diagram C(t) and the independent
activity of the agents in their Voronoi regions lead to changes in the agents’ motion and a
serious decrease in the detection time.

3.3. Collective Deep Q-Learning Approach

Now, we assume that, in addition to sharing the probability map, each agent makes
its decisions with respect to the decisions made by the other agents. In this setting, a direct
solution to the detection problem is computationally hard, and the exact activity of the
group of agents can be specified only for small domains C. To overcome this problem, we
apply agent-by-agent value iteration [23] together with reinforcement and deep learning
techniques [24,25].

The suggested Collective Q-learning approach extends the Q-max search algorithm
by a single agent described in detail [21]. It presents similar performances to those of the
known optimal algorithms of search for moving targets based on dynamic programming
techniques [26,27]. In particular, in comparison with the algorithms based on dynamic
programming [26,27] and the algorithms with deep Q-learning, it was demonstrated that,
in the search by a single agent and with a 10% false alarm ratio, the algorithm with deep
Q-learning results achieves the same solutions as those of the known optimal dynamic
programming algorithms. However, for 25% and 50% false alarm ratios, the algorithms
with dynamic programming can plan only 7 steps for the agent in 2 h of simulation time,
and the algorithm with Q-learning plans up to 32 steps. Consequently, the algorithm
with Q-learning results in higher detection probabilities for the targets than those of the
algorithm with dynamic programming: p1 = 0.99 and p2 = 0.95 versus p1 = 0.84 and
p2 = 0.68 at best, respectively.

Then, based on the obtained results at a given time, the algorithm with Q-learning
plans more agent steps and results in higher detection probabilities than those of the



Robotics 2023, 12, 103 10 of 23

algorithm with dynamic programming. We extended the Q-learning algorithm for the
search using multiple cooperating agents.

In contrast to the algorithms with dynamic programming [26,27] and the previously
developed Q-max algorithm [21], the new Collective Q-max algorithm is not limited to
searching for a single target in small domains; it defines the search by a group of agents
acting in relatively large domains.

Each kth agent, k = 1, 2, . . . , η, deals with two neural networks: the prediction network
and the target or the Q-max network. The input layer of each of the networks includes 2n
neurons, where n is the size of the domain. The first chunk of n inputs (1, 2, . . . n) receives a
binary vector that represents the agent’s position. If the agent is in cell ck

j , then the jth input
of the network is equal to 1, and the other n− 1 inputs are equal to 0. For convenience,
the cell occupied by the considered agent is denoted by the value 10 instead of 1. The
second chunk of n inputs (n + 1, n + 2, . . . 2n) receives the target location probabilities; the
(n + i)th input receives the target location probability pi, i = 1, 2, . . . , n, as it appears in
probability map P.

The hidden layer of each network is a fully connected linear layer, which consists of
2n neurons and the sigmoid activation function f (x) = 1/(1 + e−x) that returns values in
the range (0, 1). The other possibility is to use the SoftPlus techniques with the activation
function f (x) = ln(1 + ex) that returns values in the range (0, ∞). In the simulations,
it was observed that both functions result in similar performances. However, for both
functions, the observed performance is significantly better than the performance based on
the step activation function.

The output layer includes nine neurons with respect to the number #A of possible
actions: the first output corresponds to the action a1 = “ ↑ ” , “step forward“; the second
output corresponds to the action a2 = “↗ ” , “step right-forward”, up to action a9 = “� ”,
which implies “stay in the current cell”. The value of the ith output is the maximal
expected cumulative discounted reward Q(ck

j , P,ak
i ) obtained by the agent if it is in cell

ck
j , j = 1, 2, . . . , n, and given the probability map P = (p1, p2, . . . , pn), it chooses action

a
k
i , i = 1, 2, . . . , 9.

The scheme of the network of the kth agent is shown in Figure 3. For the input, the
cells occupied by the agents have values of 1, and the cell occupied by the acting agent is
denoted by 10.

Robotics 2023, 12, x FOR PEER REVIEW 10 of 24 
 

 

algorithm with dynamic programming. We extended the Q-learning algorithm for the 
search using multiple cooperating agents. 

In contrast to the algorithms with dynamic programming [26,27] and the previously 
developed Q-max algorithm [21], the new Collective Q-max algorithm is not limited to 
searching for a single target in small domains; it defines the search by a group of agents 
acting in relatively large domains. 

Each 𝑘th agent, 𝑘 = 1,2, … , 𝜂, deals with two neural networks: the prediction net-
work and the target or the Q-max network. The input layer of each of the networks in-
cludes 2𝑛  neurons, where 𝑛  is the size of the domain. The first chunk of 𝑛  inputs 1,2, … 𝑛  receives a binary vector that represents the agent’s position. If the agent is in 
cell 𝑐 , then the 𝑗th input of the network is equal to 1, and the other 𝑛 − 1 inputs are 
equal to 0. For convenience, the cell occupied by the considered agent is denoted by the 
value 10  instead of 1 . The second chunk of 𝑛  inputs 𝑛 + 1, 𝑛 + 2, … 2𝑛   receives the 
target location probabilities; the 𝑛 + 𝑖 th input receives the target location probability 𝑝 , 𝑖 = 1,2, … , 𝑛, as it appears in probability map 𝑃. 

The hidden layer of each network is a fully connected linear layer, which consists of 2𝑛 neurons and the sigmoid activation function 𝑓 𝑥 = 1 1 + 𝑒⁄  that returns values 
in the range 0, 1 . The other possibility is to use the SoftPlus techniques with the activa-
tion function 𝑓 𝑥 = ln 1 + 𝑒   that returns values in the range 0, ∞  . In the simula-
tions, it was observed that both functions result in similar performances. However, for 
both functions, the observed performance is significantly better than the performance 
based on the step activation function. 

The output layer includes nine neurons with respect to the number #𝔸 of possible 
actions: the first output corresponds to the action 𝕒 = “ ↑ ”, “step forward“; the second 
output corresponds to the action 𝕒 = “ ↗ ”, “step right-forward”, up to action 𝕒 = “ ⊙”, which implies “stay in the current cell”. The value of the 𝑖th output is the maximal 
expected cumulative discounted reward 𝑄 𝑐 , 𝑃, 𝕒  obtained by the agent if it is in cell 𝑐 , 𝑗 = 1,2, … , 𝑛, and given the probability map 𝑃 = 𝑝 , 𝑝 , … , 𝑝 , it chooses action 𝕒 , 𝑖 = 1,2, … ,9. 

The scheme of the network of the 𝑘th agent is shown in Figure 3. For the input, the 
cells occupied by the agents have values of 1, and the cell occupied by the acting agent is 
denoted by 10. 

 
Figure 3. Scheme of the neural network used by the 𝑘th agent in the Q-max algorithm. 

The interaction between the agents is conducted with two channels. The first uses the 
shared probability map 𝑃, and the second shares the updated weights of the links in the 
prediction network. This means that the 𝑘 + 1 th agent starts training the network with 
weights that were specified at the end of the training by the 𝑘th agent. 

Figure 3. Scheme of the neural network used by the kth agent in the Q-max algorithm.

The interaction between the agents is conducted with two channels. The first uses the
shared probability map P, and the second shares the updated weights of the links in the
prediction network. This means that the (k + 1)th agent starts training the network with
weights that were specified at the end of the training by the kth agent.



Robotics 2023, 12, 103 11 of 23

The Bellman equation used for calculating the maximal cumulative discounted reward
is as follows:

Q
(

ck(l), P(l),ak(l)
)
=

 Rk
a
(l) + γmax

a∈A
Q(ck+1(l + 1), P(l + 1),a) k = 1, 2, . . . , η − 1,

R1
a
(l) + γmax

a∈A
Q(c1(l + 1), P(l + 1),a) k = η,

(18)

where l = 1, 2, . . . enumerates the steps at the learning stage. This equation forms a basis
for updating the weights of the links in the networks. Thus, in the suggested Collective
Q-max algorithm, the target network of the kth agent is considered a prediction network
for the (k + 1)th agent up to the ηth agent, which is a predecessor of the 1st agent.

The agents’ rewards are calculated using the Voronoi diagram C. Each kth agent
considers its region Ck ∈ C and calculates the reward Rk

a
within the relevant section Pk of

the probability map. Updating the Voronoi diagram C is conducted after completing the
calculations for all η agents.

The SoftMax policy is implemented to select an action, where the probability p(ai|Q; θ)
of choosing action ai is defined as follows:

p(ai|Q; θ) =
exp[Q(c, P,ai)/θ]

∑9
j=1 exp

[
Q
(
c, P,aj

)
/θ
] , (19)

where θ ∈ [0,+∞ ) is a parameter that governs the randomness of the choice. If θ → 0 ,
then p(ai|Q; θ)→ 1 for ai = argmax

a∈A
Q(c, P,a), and p(ai|Q; θ)→ 0 for all other actions. If

θ → ∞ , then p(ai|Q; θ)→ 1
9 , which corresponds to a randomly chosen action.

In the learning process, it is assumed that the value of the parameter θ decreases in
the number of steps l from its maximal value to zero. Then, in the first learning stages,
the agent chooses actions randomly, and then, along with learning, the agent uses the
information about the targets’ locations learned by the networks. The first stages with
randomly chosen actions are usually interpreted as exploration stages, and the later stages,
based on the learned information, are considered exploitation stages.

Finally, Q(ck(l), P(l),ak(l); w) denotes the maximal cumulative discounted reward
calculated at step l = 1, 2, . . . by the network with weights w, and Q+(ck+1(l + 1), P(l + 1),
a

k+1(l + 1); w′) denotes the expected maximal cumulative discounted reward calculated
using the vector w′ of the updated weights following the recurrent Equation (17). Note
that the value of Q+ is calculated for the next step l + 1 and for agent k + 1. Training of the
networks is conducted using the temporal difference learning error:

∆(Q, l + k− 1) = Q+(ck+1(l + 1), P(l + 1),ak+1(l + 1); w′)−Q(ck(l), P(l),ak(l); w), (20)

which allows sequential computation of the rewards obtained by the agents.
The learning process is illustrated in Figure 4.
The prediction network of the kth agent is used for choosing the action and specifying

the expected position of this agent at step l, and the target network of the kth agent is
used for calculating the reward after selecting and conducting the action that leads to step
l + 1. Then, the cumulative reward calculated by the target network is used to update the
prediction network, and its weights are then used to update the weights of the trained
network. Note that, together with the position of the kth agent, the target network considers
the position of the (k + 1)th agent. The target network of the kth agent, which at step l
is trained with respect to the positions of the kth and (k + 1)th agents, is considered a
prediction network of the (k + 1)th agent at step l + 1.

At the learning stage, we assume that the agents share the probability map, and that
each agent updates the probabilities of the targets’ locations over the entire domain. In
addition, the reward of the kth agent is calculated over its Voronoi region. The Voronoi
diagram is updated after updating the positions and the probability map by all η agents.



Robotics 2023, 12, 103 12 of 23
Robotics 2023, 12, x FOR PEER REVIEW 12 of 24 
 

 

 
Figure 4. Actions of the offline model-based learning procedure of the Q-max algorithm. 

The prediction network of the 𝑘th agent is used for choosing the action and specify-
ing the expected position of this agent at step 𝑙, and the target network of the 𝑘th agent 
is used for calculating the reward after selecting and conducting the action that leads to 
step 𝑙 + 1. Then, the cumulative reward calculated by the target network is used to update 
the prediction network, and its weights are then used to update the weights of the trained 
network. Note that, together with the position of the 𝑘th agent, the target network con-
siders the position of the 𝑘 + 1 th agent. The target network of the 𝑘th agent, which at 
step 𝑙 is trained with respect to the positions of the 𝑘th and 𝑘 + 1 th agents, is consid-
ered a prediction network of the 𝑘 + 1 th agent at step 𝑙 + 1. 

At the learning stage, we assume that the agents share the probability map, and that 
each agent updates the probabilities of the targets’ locations over the entire domain. In 
addition, the reward of the 𝑘th agent is calculated over its Voronoi region. The Voronoi 
diagram is updated after updating the positions and the probability map by all 𝜂 agents. 

In the above definitions, the cumulative rewards do not depend on the previous tra-
jectories of the agents, and the process that governs the activity of each agent is a Markov 
process with states that include the positions of the agent and the probability maps. This 
property allows the use of the offline learning procedure. In this process, at step 𝑙, instead 
of the target location probabilities defined by Equations (8)–(10), the networks use the 
probabilities of the expected targets’ locations 𝑃𝑟 𝑠 𝑐 , 𝑙 = 1|𝑠 𝑐 , 𝑙 − 1 = 1   and 𝑃𝑟 𝑠 𝑐 , 𝑙 = 1|𝑠 𝑐 , 𝑙 − 1 = 0  at step 𝑙 given the states of the cells in the previous step 𝑙 − 1. These probabilities are defined as follows using a Bayesian scheme: 𝑃𝑟 𝑠 𝑐 , 𝑙 = 1|𝑠 𝑐 , 𝑙 − 1 = 1 =   

= , ⁄ + , ⁄, ⁄ , ⁄ , (21) 

𝑃𝑟 𝑠 𝑐 , 𝑙 = 1|𝑠 𝑐 , 𝑙 − 1 = 0 =   

= , ⁄ + , ⁄ , ⁄, ⁄ , ⁄ , (22) 

Then, at the learning stage, instead of Equation (10), the targets’ location probabilities 
are specified by the following condition: 

Figure 4. Actions of the offline model-based learning procedure of the Q-max algorithm.

In the above definitions, the cumulative rewards do not depend on the previous
trajectories of the agents, and the process that governs the activity of each agent is a
Markov process with states that include the positions of the agent and the probability maps.
This property allows the use of the offline learning procedure. In this process, at step l,
instead of the target location probabilities defined by Equations (8)–(10), the networks
use the probabilities of the expected targets’ locations Pr{s(ci, l) = 1|s(ci, l − 1) = 1} and
Pr{s(ci, l) = 1|s(ci, l − 1) = 0} at step l given the states of the cells in the previous step
l − 1. These probabilities are defined as follows using a Bayesian scheme:

Pr{s(ci, l) = 1|s(ci, l − 1) = 1} =

=
pi(l−1)pTAexp[−d(ci ,cj)/λk]

pi(l−1)(1−α)+α
+

pi(l−1)(1−exp[−d(ci ,cj)/λk])
2

pi(l−1)(1−pTAexp[−d(ci ,cj)/λk])+(1−pi(l−1))(1−αpTAexp[−d(ci ,cj)/λk])

, (21)

Pr{s(ci, l) = 1|s(ci, l − 1) = 0} =
=

pi(l−1)αpTAexp[−d(ci ,cj)/λk]
pi(l−1)(1−α)+α

+
pi(l−1)(1−exp[−d(ci ,cj)/λk])(1−αpTAexp[−d(ci ,cj)/λk])

pi(l−1)(1−pTAexp[−d(ci ,cj)/λk])+(1−pi(l−1))(1−αpTAexp[−d(ci ,cj)/λk])
, (22)

Then, at the learning stage, instead of Equation (10), the targets’ location probabilities
are specified by the following condition:

pi(l) =
{

Pr{s(ci, l) = 1|s(ci, l − 1) = 1} if the target was in ci at l − 1,
Pr{s(ci, l) = 1|s(ci, l − 1) = 0} if the target was not in ci at l − 1.

(23)

The learning process is terminated when the updated probability map P(l) becomes
equal to the objective map P∗. The detection process, similar to the considered above
reactive procedures, can terminate either when the updated probability map P(t) becomes
equal to the objective map P∗ or when all ξ targets are detected. Note that, in the learning
scenario, the objective map P∗ is necessary for learning and for the control of the algorithm’s
performance.

The Collective Q-max algorithm used for the detection of multiple targets includes
two stages: the learning stage, during which the agents’ neural networks are trained, and
the acting stage, which is an application of the agents (with the trained neural networks)
for detecting the targets. The Algorithm 2 is outlined as follows.



Robotics 2023, 12, 103 13 of 23

Algorithm 2. Collective detection with deep learning: Collective Q-max algorithm

Network structure:
input layer: 2n neurons (n agent positions and n target location probabilities, both relative to the
size n of the domain),
hidden layer: 2n neurons,
output layer: 9 neurons (in accordance with the number of possible actions).
Activation function:
asymmetric sigmoid function f (x) = 1/

(
1 + e−x).

Loss function:
mean squared error (MSE) function.
Input: domain C = {c1, c2, . . . , cn},
number of agents η,
sensor sensitivities λ1, λ2, . . . , λη ,
initial agents’ positions c1(0), c2(0), . . . , cη(0),
set A = {↑,↗,→,↘, ↓,↙,←,↖,�} of possible actions,
probability pTA of true alarms,
rate α of false alarms and their probability pFA = αpTA,
initial probability map P(0) = {p1(0), p2(0), . . . , pn(0)} on C,
objective probability map P*,
number of targets ξ (or objective probability map P*).
Output: target locations ĉ1(T), ĉ2(T), . . . , ĉξ(T) at a termination time T.
Learning

1. Generate training data set: agents’ positions c(0) =
(
c1(0), c2(0), . . . , cη(0)

)
, probability

map, P(0) = {p1(0), p2(0), . . . , pn(0)}.
2. For each agent k = 1, . . . , η, do:
3. Create the prediction network.
4. Create the target network as a copy of the prediction network.
5. End for.
6. Start with l = 0.
7. For each pair (c, P) from the training dataset, do:
8. Create the Voronoi diagram C(l) =

{
C1(l), C2(l), . . . , Cη(l)

}
.

9. Create the probability atlas P(l) =
{

P1(l), P2(l), . . . , Pη(l)
}

.
10. For each agent k = 1, . . . , η, do:
11. For each action ak ∈ A, do:
12. Calculate the value Q(ck(l), P(l),ak(l)) with the prediction network.
13. Choose action ak(l) with the value p(a|Q; θ) and the SoftMax policy.
14. Apply the chosen action to the current position ck(l) and obtain the next position ck(l + 1).
15. Update the probability map P(l) to P(l + 1).
16. If P(l + 1) = P*, then
17. Set immediate reward Rk

a
(l) = 0.

18. Set cumulative reward Q(ck(l), P(l),ak(l), w) = 0.
19. Else
20. Calculate immediate reward Rk

a
(l) with respect to the probabilities of the agent’s parts

Pk(l) ∈ P(l) and Pk(l + 1) ∈ P(l) of the probability map. {The Voronoi diagram and the
cells associated with the kth agent remain, but the values of the probabilities change.}

21. End if.
22. End for.
23. Calculate the values Q+(ck(l + 1), P(l + 1),ak; w′) with the target network.
24. Calculate the temporal difference learning error ∆l(Q) for maximal Q+.
25. Update the prediction network with respect to the error ∆l(Q).
26. Update the target network with the weights of the prediction network.



Robotics 2023, 12, 103 14 of 23

27. Update the prediction network of the (k + 1)th agent with the target network of the kth
agent.

28. End for.
29. If the training epochs ended
30. For each agent k = 1, . . . , η, do:
31. Update the target network with the target network of the ηt agent.
32. End for.
33. Start acting (go to line 36).
34. End if.
35. End for

Acting

36. Start with t = 0.
37. Obtain the initial agents’ positions c1(t), c2(t), . . . , cη(t).
38. Obtain the initial probability map P(t) = {p1(t), p2(t), . . . , pn(t)}.
39. For each agent k = 1, . . . , η, do:

40. Obtain the values Q
(

ck(t), P(t),ak(t), w
)

using the trained network.

41. Choose action ak(t), which provides the maximum Q
(

ck(t), P(t),ak(t), w
)

.

42. Apply the chosen action to the current position ck(t) and obtain the next position ck(t + 1).
43. Screen the domain C. {The kth agent screens all of domain C with respect to the abilities of

the on-board sensors.}
44. Update the targets’ locations ĉ1(t), ĉ2(t), . . . , ĉξ(t).
45. Update the probability map P(t) to P(t + 1).
46. End for.
47. If all ξ targets are detected (or if P(t) = P*), then
48. Set T = t and terminate (go to line 53).
49. Else
50. Set t = t + 1.
51. Continue detection (go to line 39).
52. End if.
53. Return targets’ locations ĉ1(T), ĉ2(T), . . . , ĉξ(T).

The presented Algorithm 2 extends a previously developed detection algorithm by
a single agent [21] and follows the same techniques for training the networks. However,
instead of using individual prediction and target networks, it considers the prediction
network of the next agent as its target network. Thus, each agent uses the training results
of the previous agent and shares its knowledge with the next agent.

4. Numerical Simulations

The suggested algorithm 1 and algorithm 2 were implemented and tested in several
settings, and their functionality was compared against a previously developed heuristic
algorithm based on the same expected information gain.

Numerical simulations were implemented using the Python programming language,
including the PyTorch machine learning library. The trials were executed on a PC Intel®

Core™ i7-10700 CPU with 16 GB RAM (eight cores) with a GPU Nvidia GeForce GTX
1650Super (1280 CUDA Cores). Using this computer system, we measured the run time of
the simulations over different datasets, demonstrating that the suggested algorithms can
be implementable on conventional computers with CUDA parallel computing architecture
and do not require specific parameters for their functionality.

In the Collective Q-max algorithm, the initial weights w of neural networks were
generated via the corresponding procedures of the PyTorch library. The optimizer used
in the simulation was the ADAM optimizer from the PyTorch library. The size of the
training data set was 100, 000, the number of training epochs was 30, and the average time
required for the offline training of the prediction network was approximately 10 h on the
described computation platform. After an offline training period, online decision making
was conducted directly by applying immediate selection without additional calculations.



Robotics 2023, 12, 103 15 of 23

In the simulations, we compared four algorithms: random search, in which the agents
move randomly in the domain; centralized and Distributed EIG algorithms; and the
Collective Q-max algorithm.

In all algorithms, we used 40 × 40 and 50 × 50 cell grid sizes, which correspond to
practical military and civil tasks. In the case of military applications requiring search and
detection in active operations, the size of the cell in the detection tasks is up to 0.5 km2; thus,
the grid of the indicated size represents a city district or the natural terrain of up to 1.0 km2.
In the case of civil applications, for example, in the search and rescue tasks and military
logistic tasks, such grids represent the terrain of more than 6.0 km2 while searching objects
the size of a human and up to 25.0 km2 while searching objects the size of an automobile.

The sensitivity of the sensor is specified by the parameter λ (see Equation (5)), and
in the simulations, we used the values λ = 10 and λ = 15, which are associated with the
sensitivity of the Lidar sensor, for which the probability of detecting the target decreases
from 1 (detection at a distance of 0 m) to 1/e (detection at a distance of 15 m). Certainly, in
real-world tasks, the sensors’ sensitivity λ should be defined with respect to the type and
quality of the sensor.

4.1. Detection of Static Targets

The first set of simulations dealt with the detection of static targets. The results of
these simulations are illustrated by the detection of ξ = 30 targets by η = 6 agents in the
domain of size n = 40× 40 = 1600 cells. The probability of a true alarm is pTA = 1, the
sensor sensitivity is λ = 15, the initial target location probabilities are pi(0) = 0.05 and
i = 1, 2, . . . , n, and the initial agent positions are ck(0) = (0, 0) and k = 1, 2, . . . , η.

Let us consider the cumulated rewards obtained by the agents. The dependence of
the cumulative reward on the time for the ratio of false alarms α = 0.5 (see Equation (4)) is
shown in Figure 5.

Robotics 2023, 12, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 5. Dependence of the discounted cumulative reward on time; ratio of false alarms is 𝛼 = 0.5. 

The fastest growth of the cumulative reward is provided by the Collective Q-max 
algorithm, and the slowest growth is provided by the random search method. The random 
search is slightly outperformed by the grid search, in which the paths of the agents are 
determined in advance. At the beginning of the search process at 𝑡 = 0, the domain is 
divided into equal areas with respect to the number of agents, and each agent conducts 
the center of gravity search in its area according to the initial probability map. Finally, 
intermediate growth is provided by the EIG algorithms, for which the Distributed EIG 
algorithm outperforms the centralized EIG algorithm. 

The same tendency was observed for the number of search actions (moves) con-
ducted by the algorithms until detecting all the targets. The results of these simulations 
with different 𝛼 ratios of false alarms, for which the sensitivity of the agents’ sensors is 
defined by 𝜆 = 15, are summarized in Table 1. 

Table 1. Number of actions up to the detection of 30 static targets by 6 agents for different ratios 
of false alarms. Sensor sensitivity is defined by 𝜆 = 15; the domain size is 40 × 40. 

Detection 
Algorithm 

Number of Actions up to the Detection of 𝟑𝟎 Static Targets 𝒏 = 𝟒𝟎 × 𝟒𝟎, 𝝀 = 𝟏𝟓 𝜶 = 𝟎. 𝟐𝟓 𝜶 = 𝟎. 𝟓 𝜶 = 𝟎. 𝟕𝟓 
Random search 120 175 450 

Grid search 112 170 436 
Centralized EIG 88 122 232 
Distributed EIG 79 98 152 

Collective Q-max 75 88 102 
As expected, the worst results are obtained for a random search, in which the agents 

move randomly in the domain, whereas the best results are provided by the Collective Q-
max algorithm. Note that the difference between the best results provided by the Collec-
tive Q-max algorithm and the other methods increases with the ratio of false alarms. 

For comparison, Table 2 presents the number of search actions executed by the bench-
marked algorithms to detect all the targets with a lower sensitivity of the agents’ sensors 
given by 𝜆 = 10. 

Table 2. Number of search actions up to the detection of 30 static targets by 6 agents for different 
ratios of false alarms. Sensor sensitivity is given by 𝜆 = 10; the domain size is 40 × 40. 

Detection 
Algorithm 

Number of Actions up to the Detection of 𝟑𝟎 Static Targets 𝒏 = 𝟒𝟎 × 𝟒𝟎, 𝝀 = 𝟏𝟎 𝜶 = 𝟎. 𝟐𝟓 𝜶 = 𝟎. 𝟓 𝜶 = 𝟎. 𝟕𝟓 
Random search 205 310 > 600 

Grid search 198 305 590 

Figure 5. Dependence of the discounted cumulative reward on time; ratio of false alarms is α = 0.5.

The fastest growth of the cumulative reward is provided by the Collective Q-max
algorithm, and the slowest growth is provided by the random search method. The random
search is slightly outperformed by the grid search, in which the paths of the agents are
determined in advance. At the beginning of the search process at t = 0, the domain is
divided into equal areas with respect to the number of agents, and each agent conducts
the center of gravity search in its area according to the initial probability map. Finally,
intermediate growth is provided by the EIG algorithms, for which the Distributed EIG
algorithm outperforms the centralized EIG algorithm.

The same tendency was observed for the number of search actions (moves) conducted
by the algorithms until detecting all the targets. The results of these simulations with
different α ratios of false alarms, for which the sensitivity of the agents’ sensors is defined
by λ = 15, are summarized in Table 1.



Robotics 2023, 12, 103 16 of 23

Table 1. Number of actions up to the detection of 30 static targets by 6 agents for different ratios of
false alarms. Sensor sensitivity is defined by λ = 15; the domain size is 40× 40.

Detection
Algorithm

Number of Actions up to the Detection of 30 Static Targets
n = 40 × 40, λ = 15

α = 0.25 α = 0.5 α = 0.75

Random search 120 175 450

Grid search 112 170 436

Centralized EIG 88 122 232

Distributed EIG 79 98 152

Collective Q-max 75 88 102

As expected, the worst results are obtained for a random search, in which the agents
move randomly in the domain, whereas the best results are provided by the Collective Q-
max algorithm. Note that the difference between the best results provided by the Collective
Q-max algorithm and the other methods increases with the ratio of false alarms.

For comparison, Table 2 presents the number of search actions executed by the bench-
marked algorithms to detect all the targets with a lower sensitivity of the agents’ sensors
given by λ = 10.

Table 2. Number of search actions up to the detection of 30 static targets by 6 agents for different
ratios of false alarms. Sensor sensitivity is given by λ = 10; the domain size is 40× 40.

Detection
Algorithm

Number of Actions up to the Detection of 30 Static Targets
n = 40 × 40, λ = 10

α = 0.25 α = 0.5 α = 0.75

Random search 205 310 > 600

Grid search 198 305 590

Centralized EIG 145 221 321

Distributed EIG 134 210 285

Collective Q-max 106 138 178

Because the sensitivity λ = 10 of the agents’ sensors is lower than that in the previous
scenario, the agents need more search actions to detect the targets.

To stress the difference in the activity of the considered algorithms, Figure 6 illus-
trates the effectiveness of the search algorithms in comparison to Collective Q-max, which
achieves a maximum efficiency of 100%.

The figure shows that the proposed Collective Q-max algorithm outperforms the other
algorithms. The difference in the performance of the Collective Q-max algorithm and the
other algorithms depends on the sensitivity of the sensors. For example, for λ = 15 and
α = 0.25, the Collective Q-max algorithm requires nearly two times less time to detect the
targets than that of the random search, and for λ = 15 and α = 0.75, it requires nearly three
times less time than that of the random search. Similar ratios are observed for the other
algorithms and values of λ and α.

The same relations were demonstrated in the other scenarios. For example, the number
of actions conducted by the algorithms detecting up to 100 static targets by 10 agents
equipped with sensors of sensitivity λ = 10 are presented in Table 3; the domain size is
n = 50× 50.



Robotics 2023, 12, 103 17 of 23

Robotics 2023, 12, x FOR PEER REVIEW 17 of 24 
 

 

Centralized EIG 145 221 321 
Distributed EIG 134 210 285 

Collective Q-max 106 138 178 
Because the sensitivity 𝜆 = 10 of the agents’ sensors is lower than that in the previ-

ous scenario, the agents need more search actions to detect the targets. 
To stress the difference in the activity of the considered algorithms, Figure 6 illus-

trates the effectiveness of the search algorithms in comparison to Collective Q-max, which 
achieves a maximum efficiency of 100%. 

 
(a) 

 
(b) 

Figure 6. Effectiveness of search algorithms in search of 30 static targets by 6 agents with two 
values of sensors’ sensitivity 𝜆: (a) 𝜆 = 15 and (b) 𝜆 = 10. The size of the domain is 𝑛 = 40 × 40. 

The figure shows that the proposed Collective Q-max algorithm outperforms the 
other algorithms. The difference in the performance of the Collective Q-max algorithm 
and the other algorithms depends on the sensitivity of the sensors. For example, for 𝜆 =15 and 𝛼 = 0.25, the Collective Q-max algorithm requires nearly two times less time to 
detect the targets than that of the random search, and for 𝜆 = 15 and 𝛼 = 0.75, it requires 
nearly three times less time than that of the random search. Similar ratios are observed for 
the other algorithms and values of 𝜆 and 𝛼. 

The same relations were demonstrated in the other scenarios. For example, the num-
ber of actions conducted by the algorithms detecting up to 100  static targets by 10 
agents equipped with sensors of sensitivity 𝜆 = 10 are presented in Table 3; the domain 
size is 𝑛 = 50 × 50. 

  

Figure 6. Effectiveness of search algorithms in search of 30 static targets by 6 agents with two values
of sensors’ sensitivity λ: (a) λ = 15 and (b) λ = 10. The size of the domain is n = 40× 40.

Table 3. Number of search actions up to the detection of 100 static targets by 10 agents for different
ratios of false alarms. Sensor sensitivity is given by λ = 10; the domain size is 50× 50.

Detection
Algorithm

Number of Actions up to the Detection of 100 Static Targets
n = 50 × 50, λ = 10

α = 0.25 α = 0.5 α = 0.75

Random search 202 275 > 600

Grid search 196 272 > 600

Centralized EIG 156 215 322

Distributed EIG 135 198 305

Collective Q-max 102 135 165

Similar to the above, in this scenario, the Collective Q-max algorithm leads to essen-
tially better results than those of the other algorithms, and the difference in the number of
search steps required by the known methods and the suggested algorithm depends on the
ratio of false alarms. It is seen that, for higher ratios of false alarms, this difference is higher.
For example, for α = 0.75, the difference in the search steps in the random search and in the
suggested algorithm is greater than 400, and for α = 0.25, this difference is 100. Therefore,
when considering the detection of static targets, the suggested Collective Q-max algorithm
is shown to be preferable with respect to the other methods, and such preference is more
significant in tasks with a high ratio of false positive errors. If the ratio of false positive
errors is relatively low, then the suggested Distributed EIG algorithm can also be applied.



Robotics 2023, 12, 103 18 of 23

4.2. Detection of Moving Targets

The second set of simulations dealt with the detection of moving targets. As above,
we present the results of simulations with ξ = 30 targets searched by η = 6 agents in
a domain of size n = 40× 40 = 1600 cells. The probability of a true alarm is pTA = 1,
the sensor sensitivity is given by λ = 15, the initial targets’ location probabilities are
uniformly distributed with pi(0) = 0.05, i = 1, 2, . . . , n, and the initial agents’ positions are
ck(0) = (0, 0), k = 1, 2, . . . , η. For simplicity, here, we consider slowly moving targets such that
the probability of staying in the same cell is substantial, Pr{â(t) = �} = 0.9, and the probability
of taking a search step in any direction is Pr{â(t) ∈ A\�} = 1−Pr{â(t)=�}

#A−1 = 0.0125.
For convenience, we consider the results of the simulations with the same sensor

sensitivities, i.e., with λ = 15 and λ = 10 and three ratios of false alarms. However, in
this study, we limit the false alarm ratios to lower values: α = 0.1, α = 0.15 and α = 0.25.
The reason for this is that, in scenarios with higher false alarm ratios, the detection process
takes too much time, and the resulting high numbers of search actions, despite the use of
the same relations, are less illustrative.

The results of the simulations with different false alarm ratios α and a fixed sensitivity
of the agents’ sensors are given by λ = 15. These results are summarized in Table 4.

Table 4. Number of search actions up to the detection of 30 moving targets by 6 agents for different
ratios of false alarms. Sensor sensitivity is given by λ = 15; the domain size is 40× 40.

Detection
Algorithm

Number of Actions up to the Detection of 30 Moving Targets
n = 40 × 40, λ = 15

α = 0.1 α = 0.15 α = 0.25

Random search 205 310 720

Grid search 190 301 710

Centralized EIG 140 208 366

Distributed EIG 132 180 340

Collective Q-max 115 132 188

As seen above, the worst results correspond to the random search, and the best results
are provided by the Collective Q-max algorithm. In addition, note that, for moving targets,
when α = 0.25, the random search method requires six times more actions (720) than those
of the case of the detection of static targets (120, see Table 1). For the same α value, the EIG
algorithm requires nearly four times more search actions (366 vs. 88 and 340 vs. 79). Finally,
the ratio between these numbers of required actions between the static and the dynamic
case when applying the suggested Collective Q-max algorithm is only 188

75 ≈ 2.5.
For comparison, Table 5 presents the number of search actions conducted by the

algorithms until detecting all targets, with lower sensitivity for the agents’ sensors, λ = 10.
As expected, because the sensitivity of the agents’ sensors is given by λ = 10, the ratios
between the number of required actions are lower compared to this ratio in the previous
scenario, and the agents need more actions to detect the targets. In addition, the number of
search actions follows the same tendency as above. Thus, the suggested Collective Q-max
algorithm strongly outperforms all the other methods.

The difference in the activity of the considered algorithms is exemplified in Figure 7.



Robotics 2023, 12, 103 19 of 23

Table 5. Number of search actions required up to the detection of 30 moving targets by 6 agents
for different probabilities of false alarms. Sensor sensitivity is given by λ = 10; the domain size is
40× 40.

Detection
Algorithm

Number of Actions up to the Detection of 30 Moving Targets
n = 40 × 40, λ = 10

α = 0.1 α = 0.15 α = 0.25

Random search 280 410 850

Grid search 268 405 844

Centralized EIG 202 245 475

Distributed EIG 185 225 450

Collective Q-max 128 155 220

Robotics 2023, 12, x FOR PEER REVIEW 19 of 24 
 

 

As seen above, the worst results correspond to the random search, and the best re-
sults are provided by the Collective Q-max algorithm. In addition, note that, for moving 
targets, when 𝛼 = 0.25, the random search method requires six times more actions (720) 
than those of the case of the detection of static targets (120, see Table 1). For the same 𝛼 
value, the EIG algorithm requires nearly four times more search actions (366 vs. 88 and 340 vs. 79). Finally, the ratio between these numbers of required actions between the 
static and the dynamic case when applying the suggested Collective Q-max algorithm is 
only ≈ 2.5. 

For comparison, Table 5 presents the number of search actions conducted by the al-
gorithms until detecting all targets, with lower sensitivity for the agents’ sensors, 𝜆 = 10. 

Table 5. Number of search actions required up to the detection of 30 moving targets by 6 agents 
for different probabilities of false alarms. Sensor sensitivity is given by 𝜆 = 10; the domain size is 40 × 40. 

Detection 
Algorithm 

Number of Actions up to the Detection of 𝟑𝟎 Moving Targets 𝒏 = 𝟒𝟎 × 𝟒𝟎, 𝝀 = 𝟏𝟎 𝜶 = 𝟎. 𝟏 𝜶 = 𝟎. 𝟏𝟓 𝜶 = 𝟎. 𝟐𝟓 
Random search 280 410 850 

Grid search 268 405 844 
Centralized EIG 202 245 475 
Distributed EIG 185 225 450 

Collective Q-max 128 155 220 
As expected, because the sensitivity of the agents’ sensors is given by 𝜆 = 10, the 

ratios between the number of required actions are lower compared to this ratio in the pre-
vious scenario, and the agents need more actions to detect the targets. In addition, the 
number of search actions follows the same tendency as above. Thus, the suggested Col-
lective Q-max algorithm strongly outperforms all the other methods. 

The difference in the activity of the considered algorithms is exemplified in Figure 7. 

 
(a) 

Robotics 2023, 12, x FOR PEER REVIEW 20 of 24 
 

 

 
(b) 

Figure 7. Effectiveness of search algorithms in search of 30 moving targets by 6 agents with two 
values of sensors’ sensitivity 𝜆: (a) 𝜆 = 15 and (b) 𝜆 = 10. The domain size is 𝑛 = 40 × 40. 

Finally, parallel to the results presented in Table 3, the number of actions executed 
by the algorithms up to the detection of 100 moving targets by 10 agents equipped with 
sensors of sensitivity 𝜆 = 10 is presented in Table 6. The size of the search domain is 𝑛 =50 × 50. 

Table 6. Number of search actions required up to the detection of 100 moving targets by 10 agents 
for different ratios of false alarms. Sensor sensitivity is given by 𝜆 = 10; the domain size is 50 × 50. 

Detection 
Algorithm 

Number of Actions up to the Detection of 𝟏𝟎𝟎 Moving Targets 𝒏 = 𝟓𝟎 × 𝟓𝟎, 𝝀 = 𝟏𝟎 𝜶 = 𝟎. 𝟏 𝜶 = 𝟎. 𝟏𝟓 𝜶 = 𝟎. 𝟐𝟓 
Random search 295 422 865 

Grid search 285 411 861 
Centralized EIG 205 247 465 
Distributed EIG 190 232 447 

Collective Q-max 132 162 225 
In this scenario, the Collective Q-max algorithm also obtains the best results in com-

parison with the other algorithms, and its advantage is higher as the ratio of false alarms 
increases. 

4.3. Learning Errors and Run Time of the Collective Q-Max Algorithm 
We consider two characteristics of the suggested Collective Q-max algorithm, which 

emphasize the feasibility of its implementation in solving real-world problems. 
As indicated above, in the presented simulations, we used 30 learning epochs with 100, 000 training data sets. This choice of parameters is based on the dependence of the 

percentage of learning errors on the number of learning epochs. The graph of this depend-
ence is shown in Figure 8. 

Figure 7. Effectiveness of search algorithms in search of 30 moving targets by 6 agents with two
values of sensors’ sensitivity λ: (a) λ = 15 and (b) λ = 10. The domain size is n = 40× 40.

Finally, parallel to the results presented in Table 3, the number of actions executed
by the algorithms up to the detection of 100 moving targets by 10 agents equipped with
sensors of sensitivity λ = 10 is presented in Table 6. The size of the search domain is
n = 50× 50. In this scenario, the Collective Q-max algorithm also obtains the best results
in comparison with the other algorithms, and its advantage is higher as the ratio of false
alarms increases.



Robotics 2023, 12, 103 20 of 23

Table 6. Number of search actions required up to the detection of 100 moving targets by 10 agents for
different ratios of false alarms. Sensor sensitivity is given by λ = 10; the domain size is 50× 50.

Detection
Algorithm

Number of Actions up to the Detection of 100 Moving Targets
n = 50 × 50, λ = 10

α = 0.1 α = 0.15 α = 0.25

Random search 295 422 865

Grid search 285 411 861

Centralized EIG 205 247 465

Distributed EIG 190 232 447

Collective Q-max 132 162 225

4.3. Learning Errors and Run Time of the Collective Q-Max Algorithm

We consider two characteristics of the suggested Collective Q-max algorithm, which
emphasize the feasibility of its implementation in solving real-world problems.

As indicated above, in the presented simulations, we used 30 learning epochs with
100, 000 training data sets. This choice of parameters is based on the dependence of
the percentage of learning errors on the number of learning epochs. The graph of this
dependence is shown in Figure 8.

Robotics 2023, 12, x FOR PEER REVIEW 21 of 24 
 

 

 
Figure 8. Dependence of the percentage of learning errors on the number of training epochs. 

The percentage of learning errors decreases exponentially and converges to the value 0.1% after 30 training epochs. 
Next, we consider the training run time. The run times required for training the neu-

ral networks in different simulation settings for the abovementioned computation system 
are summarized in Table 7. 

Table 7. The training run times and learning errors for different data sets and search domains. 

Domain Size 𝒏𝒙 × 𝒏𝒚 
Number of Non-

zero Weights in the 
Neural Network 

Size of the 
Data Set 

Run Time for 
One Epoch 
[minutes] 

Mean Squared 
Error * 

20 × 20 648,009 50,000 5 0.20 100,000 9 0.13 40 × 40 10,272,009 50,000 12 0.28 100,000 20 0.17 50 × 50 25,050,009 50,000 14 0.30 100,000 22 0.19 
* Error was calculated over the temporal difference errors at the validation stage at epoch 𝑡 = 30. 

Whereas the size of the domain and the number of links in the network increase ex-
ponentially, the mean squared error increases very slowly and remains relatively small. 
Even on a commodity PC system, as described above, the computations require a reason-
able amount of time. Note again that, after training, decision making is processed using 
the already trained networks that allow the application of the suggested techniques in 
online algorithms. 

5. Discussion 
In this paper, we consider the problem of detecting and tracking multiple hidden 

static and moving targets by a team of mobile agents and suggest two algorithms for agent 
navigation under uncertainty. In contrast to existing methods, the suggested algorithms 
effectively resolve uncertainty about the expected target’s locations and navigate the 
agents in the presence of false-positive and false-negative detection errors. 

The first algorithm, the Distributed EIG algorithm (DEIG), is a reactive online proce-
dure in which each agent observes the environment and makes its decision using the ob-
tained Expected Information Gain (EIG) value. This algorithm extends the previously de-
veloped greedy centralized EIG algorithm. 

The DEIG algorithm uses Voronoi diagrams in parallel with the probability map. As 
a result, the search efforts are distributed in such a manner that the agents first consider 
their neighborhoods and then continue with detection in the other regions. 

Figure 8. Dependence of the percentage of learning errors on the number of training epochs.

The percentage of learning errors decreases exponentially and converges to the value
0.1% after 30 training epochs.

Next, we consider the training run time. The run times required for training the neural
networks in different simulation settings for the abovementioned computation system are
summarized in Table 7.

Table 7. The training run times and learning errors for different data sets and search domains.

Domain Size nx×ny

Number of Nonzero
Weights in the Neural

Network

Size of the Data
Set

Run Time for One
Epoch [minutes] Mean Squared Error *

20× 20 648,009
50,000 5 0.20

100,000 9 0.13

40× 40 10,272,009
50,000 12 0.28

100,000 20 0.17

50× 50 25,050,009
50,000 14 0.30

100,000 22 0.19

* Error was calculated over the temporal difference errors at the validation stage at epoch t = 30.



Robotics 2023, 12, 103 21 of 23

Whereas the size of the domain and the number of links in the network increase
exponentially, the mean squared error increases very slowly and remains relatively small.
Even on a commodity PC system, as described above, the computations require a reasonable
amount of time. Note again that, after training, decision making is processed using the
already trained networks that allow the application of the suggested techniques in online
algorithms.

5. Discussion

In this paper, we consider the problem of detecting and tracking multiple hidden
static and moving targets by a team of mobile agents and suggest two algorithms for agent
navigation under uncertainty. In contrast to existing methods, the suggested algorithms
effectively resolve uncertainty about the expected target’s locations and navigate the agents
in the presence of false-positive and false-negative detection errors.

The first algorithm, the Distributed EIG algorithm (DEIG), is a reactive online pro-
cedure in which each agent observes the environment and makes its decision using the
obtained Expected Information Gain (EIG) value. This algorithm extends the previously
developed greedy centralized EIG algorithm.

The DEIG algorithm uses Voronoi diagrams in parallel with the probability map. As a
result, the search efforts are distributed in such a manner that the agents first consider their
neighborhoods and then continue with detection in the other regions.

The main advantage of the DEIG algorithm is its computational simplicity and short
run time. The conducted simulation studies demonstrate the algorithm’s effectiveness,
especially in cases with a low ratio of detection errors of the second type.

The second algorithm, the Collective Q-max (CQM) algorithm, includes deep Q-
learning abilities that can be used both online and in the offline stage. The algorithm
extends the previously developed Q-max algorithm for a team of agents.

The simulations of the algorithms were conducted using grids of sizes representing
practical military and civil situations. A series of simulations show that both proposed
algorithms outperform the known greedy and learning procedures and require reasonable
and relatively moderate computation time. Note that, in the same situations, the existing
algorithms for search either do not converge or require an extremely long computation
time, which makes these algorithms unusable.

The CQM algorithm utilizes the learned information about the targets’ location prob-
abilities, the detection errors and the targets’ motion. In the considered simulations, the
targets’ motion was characterized as 90% static (remaining stationary) and 10% as a ran-
dom walk without any specific movement patterns. It is reasonable to expect that, if the
targets move according to certain movement patterns, the CQM algorithm would be able
to learn and detect these patterns, which can result in a shorter search time. Such scenarios,
especially the case of the search game in which targets attempt to evade the search agents,
require additional considerations.

The basic idea of the suggested learning procedure is the sequential training of the
prediction neural network. Each agent is trained by its predecessor in the array of agents
and trains its successor by simultaneously counting the expected actions. The training can
be conducted both offline and online or can be processed in a mixed regime with online
updating of the offline training results. In the considered scenarios, the order of the agents
varies and is specified with respect to the distance of the agent from the starting point.
Such a definition allows for the inclusion of all agents in minimal time in the search. In the
other scenarios, the order can be predefined by the enumeration of the agents or can vary
with respect to information measures or distances between the agents. Studies on different
ordering schemes remain for further research.

The further development of the suggested algorithms will include their extension to
detection in a domain with shadowing. For example, such tasks appear in the search in the
terrain where certain areas are shadowed and exposed only during the agents’ motion by
certain trajectories.



Robotics 2023, 12, 103 22 of 23

This problem, as well as the search by marine on-water and underwater agents,
gives rise to the detection problem with piecewise sensing, which requires combining the
probability maps from the parts obtained by different agents at various times.

Finally, we plan to consider the influence of the expected information that is obtained
by the agents in the next steps of the search and to determine the dependence of the
discount factor used in the learning procedure with this information.

6. Conclusions

In this paper, we suggest two algorithms for detecting multiple static and moving
targets by a team of mobile agents. The first algorithm is a reactive procedure, which
implements the Voronoi diagrams, and the second algorithm is a procedure that implements
deep Q-learning, which can be conducted both on- and offline.

Numerical simulations of the suggested algorithms in different scenarios of search for
static and mobile targets demonstrate that the algorithm with deep Q-learning consider-
ably outperforms the benchmark algorithms, including the algorithm based on Voronoi
diagrams.

The main advantages of the algorithm are demonstrated in a noisy environment with
the use of sensors with low sensitivity with many statistical errors of the first and second
types.

The suggested algorithms can be used both for the further development of probabilistic
search and detection methods and for practical applications for navigating autonomous
drones and ground vehicles in the protection of facilities, smart city maintenance, mapping
and surveying, precision agriculture, etc.

Author Contributions: Conceptualization, I.B.-G. and B.M.; methodology, B.M.; software, B.M.;
formal analysis, B.M. and E.K.; investigation, B.M. and E.K.; writing—original draft preparation, B.M.
and E.K.; writing—review and editing, I.B.-G.; supervision, I.B.-G. All authors have read and agreed
to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Nahin, P.J. Chases and Escapes: The Mathematics of Pursuit and Evasion; Princeton University Press: Princeton, NJ, USA, 2007.
2. Koopman, B.O. Search, and Screening; Operation Evaluation Research Group Report, 56; Center for Naval Analysis: Rosslyn, VA,

USA, 1946.
3. Stone, L.D. Theory of Optimal Search; Academic Press: New York, NY, USA, 1975.
4. Washburn, A.R. Search and Detection; ORSA Books: Arlington, VA, USA, 1989.
5. Stone, L.D.; Barlow, C.A.; Corwin, T.L. Bayesian Multiple Target Tracking; Artech House Inc.: Boston, MA, USA, 1999.
6. Kagan, E.; Ben-Gal, I. Probabilistic Search for Tracking Targets; Wiley & Sons: Chichester, UK, 2013.
7. Kagan, E.; Ben-Gal, I. Search, and Foraging. Individual Motion and Swarm Dynamics; CRC/Taylor & Francis: Boca Raton, FL, USA,

2015.
8. Stone, L.D.; Royset, J.O.; Washburn, A.R. Optimal Search for Moving Targets; Springer: Cham, Switzerland, 2016.
9. Senanayake, M.; Senthooran, I.; Barca, J.C.; Chung, H.; Kamruzzaman, J.; Murshed, M. Search and tracking algorithms for swarm

of robots: A survey. Robot. Auton. Syst. 2016, 75, 422–434. [CrossRef]
10. Robin, C.; Lacroix, S. Multi-robot target detection and tracking: Taxonomy and survey. Auton. Robot. 2016, 40, 729–760. [CrossRef]
11. Ding, H. Models and Algorithms for Multiagent Search Problems. Ph.D. Thesis, Boston University, Boston, MA, USA, 2018.
12. Nguyen, T.T.; Nguyen, N.D.; Nahavand, S. Deep Reinforcement Learning for Multiagent Systems: A Review of Challenges,

Solutions, and Applications. arXiv 2019, arXiv:1812.11794. Available online: https://arxiv.org/abs/1812.11794v2 (accessed on 7
May 2022). [CrossRef] [PubMed]

13. Dai, W.; Sartoretti, G. Multiagent search based on distributed deep reinforcement learning. In Proceedings of the 3rd Asian
Conference Artificial Intelligence Technology (ACAIT 2019), Chongqing, China, 5–7 July 2019.

14. Jeong, H.; Hassani, H.; Morari, M.; Lee, D.D.; Pappas, G.J. Learning to Track Dynamic Targets in Partially Known Environments.
arXiv 2020, arXiv:2006.10190. Available online: https://arxiv.org/abs/2006.10190v1 (accessed on 7 May 2022).

https://doi.org/10.1016/j.robot.2015.08.010
https://doi.org/10.1007/s10514-015-9491-7
https://arxiv.org/abs/1812.11794v2
https://doi.org/10.1109/TCYB.2020.2977374
https://www.ncbi.nlm.nih.gov/pubmed/32203045
https://arxiv.org/abs/2006.10190v1


Robotics 2023, 12, 103 23 of 23

15. Dell, R.F.; Eagle, J.N.; Martins, G.H.A.; Santo, A.G. Using multiple searchers in constrained-path, moving-target search problems.
Nav. Res. Logist. 1996, 43, 463–480. [CrossRef]

16. Pack, D.J.; DeLima, P.; Toussaint, G.J.; York, G. Cooperative control of UAVs for localization of intermittently emitting mobile
targets. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2009, 39, 959–970. [CrossRef] [PubMed]

17. Matzliach, B.; Ben-Gal, I.; Kagan, E. Sensor fusion and decision-making in the cooperative search by mobile robots. In Proceedings
of the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020), Valletta, Malta, 22–24 February 2020;
pp. 119–126.

18. Matzliach, B.; Ben-Gal, I.; Kagan, E. Cooperative detection of multiple targets by the group of mobile agents. Entropy 2020, 22,
512. [CrossRef] [PubMed]

19. Elfes, A. Sonar-based real-world mapping, and navigation. IEEE J. Robot. Autom. 1987, 3, 249–265. [CrossRef]
20. Elfes, A. Occupancy grids: A stochastic spatial representation for active robot perception. In Proceedings of the Sixth Conference

on Uncertainty in Artificial Intelligence (UAI1990), Cambridge, MA, USA, 27–29 July 1990; pp. 136–146.
21. Matzliach, B.; Ben-Gal, I.; Kagan, E. Detection of static and mobile targets by an autonomous agent with deep Q-learning abilities.

Entropy 2022, 8, 1168. [CrossRef] [PubMed]
22. Dames, P.M. Distributed multi-agent search and tracking using the PHD filter. Autonimous Robot. 2020, 44, 673–689. [CrossRef]
23. Bertsekas, D. Multiagent Value Iteration Algorithms in Dynamic Programming and Reinforcement Learning. arXiv 2020,

arXiv:2005.01627. Available online: https://arxiv.org/abs/2005.01627v1 (accessed on 7 May 2022). [CrossRef]
24. Sutton, R.S.; Barto, A.G. Reinforcement Learning: An Introduction, 2nd ed.; Bradford Book, MIT Press: Cambridge, MA, USA, 1998.
25. Quiroga, F.; Hermosilla, G.; Farias, G.; Fabregas, E.; Montenegro, G. Position control of a mobile robot through deep reinforcement

learning. Appl. Sci. 2022, 12, 7194. [CrossRef]
26. Brown, S. Optimal search for a moving target in discrete time and space. Oper. Res. 1980, 28, 1275–1289. [CrossRef]
27. Washburn, A.R. Search for a moving target: The FAB algorithm. Oper. Res. 1983, 31, 739–751. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1002/(SICI)1520-6750(199606)43:4&lt;463::AID-NAV1&gt;3.0.CO;2-5
https://doi.org/10.1109/TSMCB.2008.2010865
https://www.ncbi.nlm.nih.gov/pubmed/19473935
https://doi.org/10.3390/e22050512
https://www.ncbi.nlm.nih.gov/pubmed/33286284
https://doi.org/10.1109/JRA.1987.1087096
https://doi.org/10.3390/e24081168
https://www.ncbi.nlm.nih.gov/pubmed/36010832
https://doi.org/10.1007/s10514-019-09840-9
https://arxiv.org/abs/2005.01627v1
https://doi.org/10.1016/j.rico.2020.100003
https://doi.org/10.3390/app12147194
https://doi.org/10.1287/opre.28.6.1275
https://doi.org/10.1287/opre.31.4.739

	Introduction 
	Problem Formulation 
	Cooperative Detection: Using Voronoi Regions and Deep Q-Learning 
	Agents’ Actions and Decisions 
	Reactive Decision Making in Voronoi Regions: A Distributed EIG Algorithm 
	Collective Deep Q-Learning Approach 

	Numerical Simulations 
	Detection of Static Targets 
	Detection of Moving Targets 
	Learning Errors and Run Time of the Collective Q-Max Algorithm 

	Discussion 
	Conclusions 
	References

