
Citation: Ghanaiem, A.; Kagan, E.;

Kumar, P.; Raviv, T.; Glynn, P.;

Ben-Gal, I. Unsupervised

Classification under Uncertainty: The

Distance-Based Algorithm.

Mathematics 2023, 11, 4784. https://

doi.org/10.3390/math11234784

Academic Editor: Florin Leon

Received: 4 November 2023

Revised: 23 November 2023

Accepted: 24 November 2023

Published: 27 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

Unsupervised Classification under Uncertainty: The
Distance-Based Algorithm
Alaa Ghanaiem 1, Evgeny Kagan 2,* , Parteek Kumar 3, Tal Raviv 1 , Peter Glynn 4 and Irad Ben-Gal 1

1 Department of Industrial Engineering, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel
2 Department of Industrial Engineering and Management, Faculty of Engineering, Ariel University,

Ariel 40700, Israel
3 Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology,

Patiala 147004, India
4 Department of Management Science and Engineering, Institute of Computational and Mathematical Engineering,

Stanford University, Stanford, CA 94305, USA
* Correspondence: evganyk@ariel.ac.il

Abstract: This paper presents a method for unsupervised classification of entities by a group of agents
with unknown domains and levels of expertise. In contrast to the existing methods based on majority
voting (“wisdom of the crowd”) and their extensions by expectation-maximization procedures, the
suggested method first determines the levels of the agents’ expertise and then weights their opinions
by their expertise level. In particular, we assume that agents will have relatively closer classifications
in their field of expertise. Therefore, the expert agents are recognized by using a weighted Hamming
distance between their classifications, and then the final classification of the group is determined
from the agents’ classifications by expectation-maximization techniques, with preference to the
recognized experts. The algorithm was verified and tested on simulated and real-world datasets and
benchmarked against known existing algorithms. We show that such a method reduces incorrect
classifications and effectively solves the problem of unsupervised collaborative classification under
uncertainty, while outperforming other known methods.

Keywords: classification; uncertainty; collective choice; likelihood

MSC: 68T37

1. Introduction

Classification under uncertainty by a group of agents is a common task that appears
in different fields. In some applications it is formulated as a labeling process of similar
entities (also called “instances”), while in others it is formulated as clustering procedures.
For example, consider a group of physicians analyzing the medical records of a patient.
Each physician analyzes the symptoms of the patient and diagnoses possible diseases, thus
classifying or tagging the case with the disease name. The final diagnosis of the group is
made based on the collective classifications provided by the group members. Naturally,
with prior knowledge of the expertise of each physician, a larger weight can be given to
those physicians who are experts in the specific disease. Note, however, that the challenge
of reaching a collective decision is further enhanced when there is no prior knowledge
on the agents’ expertise. This can be the case when ad hoc classifications are obtained by
online surveys and questionnaires based on anonymous users with different yet unknown
expertise levels.

One of the most popular methods to reach a collective classification based on a group of
agents’ answers is known as the “wisdom of the crowd” (WOC). According to this approach,
a decision can be reached based on the aggregated opinion of the agents, including both
the experts and non-experts [1]. WOC is usually based on a majority (or plurality) vote,

Mathematics 2023, 11, 4784. https://doi.org/10.3390/math11234784 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math11234784
https://doi.org/10.3390/math11234784
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0002-3430-3849
https://orcid.org/0000-0002-5960-2386
https://orcid.org/0000-0003-2411-5518
https://doi.org/10.3390/math11234784
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math11234784?type=check_update&version=1


Mathematics 2023, 11, 4784 2 of 19

meaning that an opinion preferred by most of the agents is considered to be a correct
answer. The WOC’s main assumption is that the expertise level of the agents is distributed
somewhat symmetrically around the unknown true answer. Therefore, it makes sense to
apply a majority vote procedure to obtain better accuracy (i.e., relying on the law of large
numbers). Numerically, the majority vote is represented by the median statistics, and for a
relatively large number of non-skewed agents, it effectively solves the group classification
problem. Another setting where a majority vote is effective is when agents who make
classifications have high and homogeneous levels of expertise in the considered field.

Nonetheless, in various settings, the WOC assumption does not hold. For example, in
online questionnaires over the internet in specific fields, only a few of the users are real
experts in the field, while most of the users are non-experts, and considering their opinions
can seriously reduce the collective classification accuracy.

In this paper, we focus on ad hoc classification by a group of agents with unknown
different levels of expertise. The suggested algorithm includes two stages:

- Classification of the agents according to the levels of their expertise;
- Classification of the entities with respect to the agents’ levels of expertise.

In other words, in the first stage, the algorithm recognizes the experts in the fields of the
presented entities, and in the second stage it classifies the entities, preferring the opinions of these
experts (for example, using some weighting scheme or expectation-maximization scheme).

In the classification of the agents, we assume that the agents with the same fields of
expertise have relatively close or even the same opinions in their field of expertise, while
the non-experts’ opinions (if they are not biased) are more scattered over other possible
classifications. Accordingly, if the agents propose similar classes for the same entities, then
these agents are considered to be experts in these classes. Consequently, a lower level of
expertise can be associated with agents who are inconsistent in their opinions and create
classes that differ from the classes proposed by the other agents. Certainly, if the levels of
the agents’ expertise are known, then this stage can be omitted, and the problem can be
reduced to the majority or plurality votes and further optimization procedures.

In the classification of the entities, one can utilize conventional methods such as combi-
nation of the weighted agents’ classifications. We follow the expectation-maximization (EM)
approach as suggested by Dawid and Skene [2]. In the expectation (E) step, the algorithm
estimates correct choices according to the agent’s expertise, and in the maximization (M)
step, it maximizes the likelihood of the agent’s expertise with respect to the distances from
the correct choices. To measure the distances between the agents’ classifications, we use the
weighted Hamming distance, which is a normalized metric over the set of partitions that
represent the agents’ classifications.

The suggested algorithm was validated and tested using simulated and real-world
datasets [3,4]. The obtained classifications were compared against several approaches:
(i) classifications obtained by a brute-force likelihood-maximization (LM) algorithm (see
Section 4), (ii) majority vote (see Section 6.2.1), (iii) the recently developed fast Dawid–Skene
(FDS) algorithm [5], and (iv) the widely known GLAD classification algorithm [6]. It was
found that the proposed algorithm considerably outperforms these popular methods due
to its higher accuracy and lower computation time.

The rest of this paper is organized as follows: In Section 2, we briefly overview the
related methods that form a basis for the suggested techniques. Section 3 includes a formal
description of the considered problem. In Section 4, we outline and clarify the brute-force
likelihood-maximization algorithm, which is used for comparisons of the classifications of
small datasets. Section 5 presents the suggested distance-based collaborative classification
(DBCC) algorithm. Section 6 includes the results of the numerical simulations and the
comparisons of the proposed DBCC algorithm with other classification techniques. Section 7
concludes the discourse.



Mathematics 2023, 11, 4784 3 of 19

2. Related Work

In terms of the classification problems, aggregation of the agents’ opinions is often
treated as a proper application of crowdsourcing techniques. Chiu et al. [7] considered
decision-making processes with crowdsourcing and outlined three potential roles of the
crowd: intelligence (problem identification), design (alternative solutions), and choice
(evaluation of alternatives). Each of these problems can be considered by different methods
and, in particular, by recognition of the crowd’s preferences and choices of the alternatives
based on these preferences, or in contrast, by as many alternating opinions as possible and
further aggregation of these opinions into the unified one.

Crowd opinion aggregation is conducted by several methods and depends on the
problem set. For example, Ma et al. [8] (2014) developed an algorithm for gradual aggre-
gation based on measuring the distances between opinions at three similarity levels. In
the above-considered problems, following the “wisdom of the crowd” (WOC) approach,
the most commonly used aggregation technique was expectation maximization (EM) [9],
which was also implemented in the well-known Dawid–Skene (DS) algorithm [2]. First,
this algorithm was applied to analyze the error rate, and then it was extended to different
problems that required an aggregation of opinions. In particular, Zhang et al. [10] proposed
a two-stage version of the algorithm and justified its performance using spectral methods.
Shah et al. [11] considered a permutation-based model and introduced a new error metric
that compares different estimators in the DS algorithm. Finally, Sinha et al. [5] suggested a
fast-executable version of the DS algorithm (termed the FDS algorithm), and at the estima-
tion step (E-step) the dataset is estimated based on the current values of the parameters.
Moreover, while at the maximization step (M-step), the values of the parameters are chosen
such that the likelihood of the dataset is maximized. Starting from the initial estimates, the
algorithm alternates between the M-step and the E-step until the estimates converge to a
unified decision.

In parallel to the development of the DS method, other studies have focused on the
data analysis phase of the problem, as well as on the possible extensions of the method
to multilabel classifications. Following this direction, Duan et al. [12] proposed three
statistical quality control models based on the DS algorithm. The authors incorporated
label dependency to estimate the multiple true labels given crowdsourced multilabel agents
for each instance (entity). Another approach based on the Bayesian models was suggested
by Wei et al. [13], who considered the agent’s reliability and the dependency of the classes.

The EM-based methods were also enriched by learning methods to obtain a better
classification. In particular, the techniques of multiple Gaussian processes enabled us to
learn from the agents and estimate the reliability of the individual agents from the data
without any prior knowledge. Groot et al. [14] and Rodrigues and Pereira [15] introduced
different models based on standard Gaussian classifiers and presented a precise handling
of multiple agents with different levels of expertise.

Other suggested methods for estimating the agents’ expertise levels were based on
probabilistic methods. Using such an approach, Whitehill et al. [6] proposed a procedure
for determining the agents’ expertise (called the GLAD algorithm), while Raykar et al. [16]
suggested a method for estimating the classes’ true labels. Bachrach et al. [17] proposed a
probabilistic graphical model that considered the entities, the agents’ expertise, and the true
labels of the entities. Finally, since the considered problem could be deemed a framework
of unsupervised learning, Rodrigues and Pereira [15] addressed it as a problem of deep
learning using crowd opinions in neural networks. Moayedikia et al. [18] proposed an
unsupervised approach based on optimization methods using the “harmony search” over
different agent combinations.

Following the work of Chiu et al. [7], the present paper focuses on the evaluation
of classification alternatives, where the crowd preferences are identified and analyzed
ad hoc for further support of the decision-making process. This study presents a novel
heuristic that follows the direction outlined in the DS algorithm and its faster FDS (fast DS)
version. This study addresses the problem of unsupervised classification for a relatively



Mathematics 2023, 11, 4784 4 of 19

small number of entities and varying levels of the agents’ expertise. The performance of
the suggested heuristic is compared with several known approaches and, especially, with
the performance of the popular majority voting method and the FDS algorithm.

3. Problem Setup

Let X = {x1, x2, . . . , xn} be a set of n entities that represent certain characteristics of
some phenomenon, and let j = 1, 2, . . . , l be the labels by which the set of entities can be
divided into l classes Cj ⊂ X, such that

⋃l
j=1 Cj = X and Ci ∩ Cj = ∅ while i 6= j. The set

of the correct classes Cj forms an ordered partition γ = {C1, C2, . . . , Cl}, where the order of
the classes is defined by the order of the labels in the sense that if the labels i and j holds
i < j, then class Ci precedes class Cj in γ.

We assume that the classification of the entities is conducted by m agents. Conse-
quently, each kth agent, k = 1, 2, . . . , m, generates a partition αk =

{
Ck

1, Ck
2, . . . , Ck

l

}
of

the set X by labeling the entities, and this partition represents the agent’s opinion on the
considered phenomenon. Similar to the partition γ, the order in the agents’ partitions αk,
k = 1, 2, . . . , m, is defined by the order of the labels j = 1, 2, . . . , l. It is assumed that the
agents are independent in their opinions. However, different agents, u and v, u 6= v, can
generate equivalent classifications αu = αv, where Cu

j = Cv
j , j = 1, 2, . . . , l. In addition,

it is assumed that for each class, Cj ⊂ X, j = 1, 2, . . . , l, there exists at least one agent u
who is an expert in this class. This assumption implies that if the correct classification
γ = {C1, C2, . . . , Cl} is available, class Cu

j from the agent’s classification αu is equivalent to
class Cj from the correct classification γ.

The considered problem is formulated as follows: given the set X = {x1, x2, . . . , xn}
of entities and the set A = {α1, α2, . . . , αm} of classifications created by m experts using l
labels, find a classification γ∗ =

{
C∗1 , C∗2 , . . . , C∗l

}
, l ≤ n, which is as close as possible to the

unknown correct classification γ = {C1, C2, . . . , Cl}.
To clarify the problem, let us consider a toy example of the dataset presented in Table 1.

The dataset consists of n = 12 entities classified by m = 6 agents with l = 4 classes. The
unknown correct classification is denoted by γ. In addition, we use γM to denote the
classification obtained by the majority vote.

Table 1. Example of the simulated data with the correct classification and the majority vote for
m = 6 agents classifying n = 12 entities by l = 4 classes.

a1 a2 a3 a4 a5 a6 γ γM

1 2 2 2 4 3 1 2 2
2 1 3 1 4 3 1 1 1
3 3 2 2 1 1 1 2 1
4 4 4 4 3 1 3 3 4
5 4 4 4 3 2 3 3 4
6 1 3 1 1 2 2 1 1
7 4 3 3 1 4 4 4 4
8 1 3 1 2 2 2 1 2
9 3 3 4 2 4 4 4 4

10 3 2 2 1 1 1 2 1
11 4 3 4 3 2 3 3 3
12 3 3 3 1 4 4 4 3

Accuracy 42% 33% 58% 33% 25% 58% − 50%

The columns in the table are denoted by (r1,1, r2,1, . . . , r12,1)
T , . . ., (r1,6, r2,6, . . . , r12,6)

T ,
where the table entry ri,k represents the classification of element xi by agent ak to one of the
classes C1, C2, C3, and C4. The actual table entries are the tags of the corresponding class,
namely, 1, 2, 3, and 4.

In this example, we assume that the first agent, k = 1, is an expert in class C1, the
second agent, k = 2, is an expert in class C2, the third agent, k = 3, is an expert in classes C1



Mathematics 2023, 11, 4784 5 of 19

and C2, the fourth agent, k = 4, is an expert in class C3, the fifth agent, k = 5, is an expert in
class C4, and finally, the sixth agent, k = 6, is an expert in the last classes C3 and C4. The
data are summarized in Table 1.

The results of the comparison of the agents’ classifications ak with the correct clas-
sification γ appear in the eighth column of Table 1. It can be seen that each agent
k = 1, 2, . . . , 6 provides the classification ak which is rather far from the correct classifi-
cation, γ. Similarly, the classification γM, in the last column of Table 1, generated by the
majority vote is also far from the correct classification (with an accuracy level of 50%). Thus,
majority voting does not work well in this case, since the agents’ classifications are not
symmetrically distributed around the correct class. Note, however, that classification of the
proposed algorithm that is presented in Section 5, and denoted by γ∗, which classifies the
entities by the agent’s expertise (which is unknown a priori), is equivalent to the correct
classification γ, i.e., it results in a 100% accurate classification, where for

- Expert k = 1, class C1 = {x2, x6, x8};
- Expert k = 2, class C2 = {x1, x3, x10};
- Expert k = 3, classes C1 = {x2, x6, x8} and C2 = {x1, x3, x10};
- Expert k = 4, class C3 = {x4, x5, x11};
- Expert k = 5, class C4 = {x7, x9, x12};
- Expert k = 6, classes C3 = {x4, x5, x12} and C4 = {x7, x9, x12}.

Thus, by identifying the expert agents, a correct classification can be achieved (see the
implementation of the proposed algorithm to Table 1 at the end of Section 5).

Note, again, that in the considered setup both the correct classification and the agents’
levels and fields of expertise are unknown, and this information should be estimated only
from the agents’ classifications. As seen later, the recognition of the expert agents is based
on the assumption that experts in the same field of expertise provide closer answers than
the answers of the non-expert agents.

4. Local Search by Likelihood Maximization

Inspired by the considered example, where the best classification is provided by
considering the opinions of the experts, we start with an algorithm that provides an exact
solution by maximization of the expected likelihood between the agents’ classifications.
This algorithm follows the brute force approach and, because of its high computational
complexity, it can be applied only to small datasets.

Let X = {x1, x2, . . . , xn} be a set of entities and A = {α1, α2, . . . , αm} be the set of
agents’ classifications αk =

{
Ck

1, Ck
2, . . . , Ck

l

}
, k = 1, 2, . . . , m, while the correct classification

γ = {C1, C2, . . . , Cl} is unknown to the agents.
Let rik ∈ {1, . . . , l} be the tag by which the kth agent-labeled entity is xi (see the

columns in Table 1); in other words, the values rik are the opinions of the agents about that
entity, and rik = j denotes that in the classification of an agent αk, entity xi is in class Ck

j .
Assume that in the correct classification γ an entity xi ∈ X belongs to class Cj. Since γ

is unknown, we consider the probability pk
jj′ = Pr

{
rik = j′

∣∣xi ∈ Cj
}

that the kth agent clas-

sifies an entity xi as a member of the class Cj′ while the correct class is Cj, and Pk =
∥∥∥pk

jj′

∥∥∥
l×l

denotes the probability matrix that includes the opinions pk
jj′ of the kth agent, k = 1, 2, . . . , m,

on the membership of the entity xi, i = 1, 2, . . . , n to the classes Cj, j = 1, 2, . . . , l. If agent k
is completely reliable, then Pk is a unit matrix. In general, the agent is considered to be an
expert in class Cj if pk

jj′ is close to one, while pk
jj′ and pk

j′ j are close to zero for all j 6= j′.
Finally, we denote by pC = Pr{C 6= ∅} the probability that class C ⊂ X includes

at least one entity. Then, if
∼
C(i) is an estimated class for the entity xi, then p∼

C(i)
is the

probability that entity xi will be classified to class
∼
C(i). Additionally, we denote by

∼
c i ≤ l

the label associated with class
∼
C(i). Similarly, C(i) denotes the correct class; for the ith



Mathematics 2023, 11, 4784 6 of 19

entity xi, the value pC(i) is the probability that the entity xi will be correctly included in the
class C(i).

Using these terms, the classification problem can be formulated as a problem of finding

the classes
∼
C(i), i = 1, 2, . . . , n, the matrices Pk, k = 1, 2, . . . , m, and the probabilities pk

∼
c i ,rik

that maximize the likelihood function

L
(∼

C, p∼
C

, P1, P2, . . . , Pm

)
= ∏n

i=1

(
p∼

C(i)∏
m
j=1 pk

∼
c i ,rik

)
.

In the other words, it is required to maximize the value of the likelihood function

L
(∼

C, p∼
C

, P1, P2, . . . , Pm

)
→ max (1)

with respect to its arguments and subject to the relevant conditions:

∑l
j′=1 pk

jj′ = 1, pk
jj′ ≥ 0, k = 1, 2, . . . , m, j, j′ = 1, 2, . . . , l.

∑l
j=1 p∼

C(i)
= 1,

∼
c i ∈ {1, 2, . . . , l}, p∼

C(i)
≥ 0, i = 1, 2, . . . , n.

An approximated solution of this problem can be defined as follows:

pC(i) = ∑n
i=1 I

(∼
C(i) = C(i)

)
/n,

pk
ci ,j = ∑n

i=1 I
(∼

C(i) = C(i) ∧ rik = j
)

/∑n
i=1 I

(∼
C(i) = C(i)

)
,

where I is an indicator function that is I(a = b) = 1 if a = b and I(a = b) = 0 otherwise.
The approximated solution can be obtained, for example, by majority vote (see Section 6.2.1),
which can also be used as an initial solution in the considered optimization algorithm.

The proposed algorithm, which aims to solve optimization problem (1) by local search.
is outlined as follows (Algorithm 1).

Algorithm 1: Likelihood Maximization

Given the set X of n items xi, i = 1, 2, . . . , n, and the set of the agents’ classifications αk,
k = 1, 2, . . . , m, do:

1. Create the agents’ opinions matrix r = ‖rik‖, i = 1, 2, . . . , n, k = 1, 2, . . . , m.
2. Start with the solution given by the approximate formulae or by majority vote.
3. Solve optimization problem (1).

4. While no improvements to the current solution (which is the set of classes
∼
C(i),

i = 1, 2, . . . , n) in its entire neighborhood are found, do:
5. Define the neighbors of the solution as the classifications that can be obtained from the

solution by changing the estimated class
∼
C(i) for a single entity xi;

6. Calculate the likelihood for the set of neighboring classifications;
7. Exclude the neighbors with a small likelihood;
8. Solve optimization problem (1);
9. End while.
10. Return the obtained solution.

Following the outlined algorithm, an initial solution is refined iteratively until reaching
the maximal expected likelihood. Such a method can provide an optimal solution to the
problem; however, it requires high computation power and can be implemented only for
relatively small problems. The time complexity of the Algorithm 1 is O

(
υnml3), where n



Mathematics 2023, 11, 4784 7 of 19

is the number of entities, m is the number of agents, l is the number of classes, and υ is
the number of iterations until algorithm convergence. Here, υ is the number of repetitions
of lines 5–8 in the while loop, where a maximum of l classes are defined for each entity
of a maximum of n entities, and the optimization problem is solved by ml2 steps. Since
the number of classes l is at most equal to the number of items n, the complexity of the
Algorithm 1 in the worst case is O

(
υmn4).

Having said that, the above Algorithm 1 can be used to prove the existence of a solution
to the problem under the indicated assumption. Moreover, in the simulations shown below,
we use this algorithm for analysis and comparison of the optimal classifications against the
classifications generated by the heuristic method that is suggested next.

5. Suggested Algorithm: Distance-Based Collaborative Classification

The suggested algorithm, called the distance-based collaborative classification (DBCC)
algorithm, consists of two stages: in the first stage, based on the presented opinions, the
agents are tagged as experts and non-experts for each of the different classes, and in the
second stage, the classification of the entities is conducted with respect to the agents’ levels
of expertise.

Classification of the agents according to their expertise levels is based on the assump-
tion that agents with similar fields of expertise produce similar classifications of the related
entities. On the other hand, the classifications of non-expert agents are distributed over a
relatively larger range of classes. Consequently, the tagging of the agents as experts and
non-experts is conducted by clustering the agents’ classifications αk, k = 1, 2, . . . , m, with
respect to the different classes.

Let sim(αu, αv|C) be a certain measure of similarity between two classifications αu
and αv with respect to the class C ⊂ X, u, v = 1, 2, . . . , m. Then, over all of the agents’
classifications αk, k = 1, 2, . . . , m, a central classification ξ(C) with respect to class C can be
defined as follows:

ξ(C) = argmin
u=1,2,...,m

∑m
v=1 sim(αu, αv|C). (2)

The assumption about the closeness of the classifications produced by experts in a
certain class implies that the values sim(αk, ξ|C) of similarities between the agents’ classifi-
cations αk, k = 1, 2, . . . , m, and some central classification ξ(C) are distributed according to
the mixture of two distributions: the first represents the distribution of the experts in class
C, and the second represents the distribution of the non-experts in this class.

The similarity between the classifications can be measured by several methods, for
example, by the Rokhlin or Ornstein distances, or by the symmetric version of the Kullback–
Leibler divergence (for the use of such metrics, refer, e.g., to [19]). However, to avoid
additional specification of probabilistic measures over the entities, in the suggested algo-
rithm, we use a normalized version of the well-known Hamming distance. This distance is
defined as follows:

Let αu =
{

Cu
1 , Cu

2 , . . . , Cu
l
}

and αv =
{

Cv
1 , Cv

2 , . . . , Cv
l
}

be two classifications of the set
X = {x1, x2, . . . , xn} entities. Consider the classes Cu

j ∈ αu and Cv
j ∈ αv, j = 1, 2, . . . , l, and

let n(αu|j) = #Cu
j denote the cardinality of the class Cu

j , while n(αv|j) = #Cv
j denotes the

cardinality of the class Cv
j . The values n(αu|j) and n(αv|j) are the numbers of entities that

are included in the jth class or, similarly, are tagged with the label j by agents u and v,
respectively. In other words, n(αu|j) and n(αv|j) represent the independent opinions of
agents u and v about the jth class.

In addition, let n(αu, αv|j) = #
((

Cu
j ∪ Cv

j

)
\
(

Cu
j ∩ Cv

j

))
denote the cardinality of the

symmetric difference between the classes Cu
j and Cv

j . The number n(αu, αv|j) represents the
disagreement of the agents about the jth class. The normalized Hamming distance between
the classifications αu and αv is defined as the following ratio:

dnorHam(αu, αv|j) = n(αu, αv|j)/(n(αu|j) + n(αv|j)). (3)



Mathematics 2023, 11, 4784 8 of 19

For each j, the defined distance dNorHam(αu, αv|j) is a metric such that 0 ≤ dnorHam(αu, αv|j)
≤ 1. This represents the disagreements between the agents with respect to different classes
and, consequently, enables the definition of experts and non-experts per class.

Additionally, using this distance, the set of classifications αk and, consequently, the
set of m agents can be considered as a metric space that allows for the application of
conventional clustering algorithms. In the suggested DBCC algorithm, we apply Gaussian
mixture clustering and the expectation-maximization algorithm [20].

As a result of the clustering, the agents are tagged according to their level of expertise
with respect to each class C ⊂ X. These levels are represented by the weights wk(C)
associated with the agents and are used at the classification stage of the entities.

Classification of the entities xi ∈ X, i = 1, 2, . . . , n, based on the agents’ opinions αk,
k = 1, 2, . . . , m, with respect to their expertise levels wk(C), C ⊂ X, is conducted using
conventional voting techniques; in the suggested DBCC algorithm, we use the relative
majority vote.

In general, the suggested algorithm acts as follows: In the first stage, for each class,
the differences (in terms of the normalized Hamming distance) between the agents’ classifi-
cations are defined. Using these distances, the agents are divided into two groups: experts
and non-experts. At this stage, an assumption is made that the experts in their area of
expertise provide similar classifications of the related instances, unlike the non-experts,
whose classifications are more diverse. Accordingly, the opinions of the experts gain higher
weights with respect to the non-experts when all of the opinions are aggregated.

In the second stage, the entities are classified by majority vote with respect to the
weighted opinions of the agents. Then, the obtained solution is corrected following the
stages of the EM algorithms; the resulting classification of the entities is considered as an
estimated classification obtained at the M-step and is used at the E-step for the definition of
more precise levels of the agents’ expertise.

The DBCC algorithm is outlined as follows (Algorithm 2):

Algorithm 2: Distance-Based Collaborative Classification (DBCC) Algorithm

Given the set X of n items xi, i = 1, 2, . . . , n, the enumeration j = 1, 2, . . . , l of possible classes and
the set of the agents’ classifications αk, k = 1, 2, . . . , m, do:
Initialization

1. Initialize distance matrices ‖d‖m×m, distance arrays ‖a‖m, and weight arrays ‖w‖m.
2. Initialize expertise map ‖E‖n×m.

Classification of the agents and definition of the expertise levels

3. For each class Cj, j = 1, . . . , l, do:
4. For each agent u = 1, 2, . . . , m, do:
5. For each agent v = 1, 2, . . . , m, do:
6. Set distance duv = dnorHam(αu, αv|j) between the classifications αu and αv with respect to

class Cj into the distance matrix ‖d‖m×m.
7. End
8. End
9. Find central classification ξ j = Argmin

u=1,2,...,m
∑m

v=1 duv.

10. For each agent k = 1, 2, . . . , m, do:

11. Set distance dk = dnorHam

(
ξ j, αk

∣∣∣j) from agent’s classification αk to the central classification
ξ j into the distance array ‖a‖m.

12. End
13. Cluster the agents into two groups (experts and non-experts) with respect to distance array

‖a‖m.
14. For each agent k = 1, 2, . . . , m, do:



Mathematics 2023, 11, 4784 9 of 19

Algorithm 2: Cont.

15. Set weight wk into the weights array: the agent with the closest to the center vector obtains
the weight 1, and more distant agents obtain the weight 0.

16. End
17. For each agent in the group of expert agents, do:
18. Add class Cj to the expertise map Ejk of the kth agent with the weight wu.
19. End
20. End

Classification of the entities with respect to the agents’ expertise

21. For each entity xi, i = 1, . . . , n, do:
22. For each class Cj, j = 1, 2, . . . , l, do:
23. Initialize the score of Cj by zero.
24. End
25. For each agent k = 1, 2, . . . , m, do:
26. If class Cj is in the agent’s expertise map Ejk, then add a score to this class.
27. End
28. Set a label for entity xi as an index j of the class with the highest score.
29. End

Correction of the classification by repeating the expectation maximization steps

30. Repeat until convergence (expectation maximization):
31. M-step: from the estimated correct classification, obtain normalized Hamming distances for

all agents.
32. E-step: estimate the correct classification by running steps 4–17 over the obtained distances.
33. End

The suggested DBCC algorithm is a heuristic procedure utilized the EM techniques.
At the M-step, it maximizes the likelihood of agents’ expertise by using the distances from
the estimated correct classifications. The latter is obtained at the E-step with respect to
the agents’ expertise at the previous iteration. The process converges in the sense that the
difference between the classifications obtained in two sequential steps tends to be zero.
In practice, the process can be terminated when the difference between two sequential
classifications decreases more than a certain predefined value of order n× 10−3.

The time complexity of the suggested Algorithm 2 is O
(
υ
(
lm2 + (l + m)n

))
, where

n is the number of entities, m is the number of agents, l is the number of classes, and υ
is the number of iterations up to the convergence of the EM part of the algorithm. Here,
υ defines the number of iterations of the algorithm (see Line 32); in the term lm2, l is the
number of iterations the for loop (Lines 3–20), and m2 is the number of iterations for the
loops (lines 4–8) and the number of steps in the operation in Line 9 (the other loops require
m steps), and the term (l + m)n represents the number of iterations for the loop in Lines
21–29 and two internal for loops (Lines 22–24 and 25–27). Since the number of classes l is at
most equal to the number of items n, the complexity of the algorithm in the worst case is
O
(
υ
(
m2n + n2)).

To clarify the main advantage of the algorithm that aims to find experts and non-
experts for further classification, let us refer back to the dataset presented in Table 1.

Consider the classifications a1 and a2 provided by the first and the second agents
with respect to class C1. Following Equation (3), the distance between the classifications
a1 and a2 is a ratio between the number of disagreements of the agents about the mem-
bership of the entity to a certain class. For the first and the second agents with respect
to C1, one obtains n(α1, α2|1) = 3, which represents the disagreement regarding three
entities x2, x6, and x8 that were classified by the first agent to the class C1 (n(α1|1) = 3);
however, they were classified to other classes by the second agent (n(α2|1) = 0). Thus,
the distance dNorHam(α1, α2|1) = 3/(3 + 0) = 1 is the maximal possible distance between
these classifications.



Mathematics 2023, 11, 4784 10 of 19

Similarly, the distance between the classifications a3 and a4 with respect to the class C1
is as follows: The number of disagreements between the agents is n(α3, α4|1) = 6 (entities
x2, x3, x7, x8, x10 and x12), while regarding entity x6, the agents agree with one another.
The numbers of independent classifications of the third and fourth agents about class C1
are n(α3|1) = 3 (entities x2, x6 and x8) and n(α4|1) = 5 (entities x3, x6, x7, x10 and x12),
respectively. Thus, dNorHam(α3, α4|1) = 6/(3 + 5) = 0.75.

Calculation of the distances among the agents with respect to all four classes Cj,
j = 1, . . . , 4, results in the following tables (zero distances are shown in bold font):

Class C1 α1 α2 α3 α4 α5 α6

α1 − 1.0 0 0.75 1.0 0.71
α2 1.0 − 1.0 1.0 1.0 1.0
α3 0 1.0 − 0.75 1.0 0.71
α4 0.75 1.0 0.75 − 0.5 0.56
α5 1.0 1.0 1.0 0.5 − 0.43
α6 0.71 1.0 0.71 0.56 0.43 −

Class C2 α1 α2 α3 α4 α5 α6

α1 − 0.5 0.5 1.0 1.0 1.0
α2 0.5 − 0 1.0 1.0 1.0
α3 0.5 0 − 1.0 1.0 1.0
α4 1.0 1.0 1.0 − 0.67 0.5
α5 1.0 1.0 1.0 0.67 − 0.33
α6 1.0 1.0 1.0 0.5 0.33 −

Class C3 α1 α2 α3 α4 α5 α6

α1 − 0.64 0.67 1.0 1.0 1.0
α2 0.64 − 0.56 0.8 0.78 0.8
α3 0.67 0.56 − 1.0 1.0 1.0
α4 1.0 0.8 1.0 − 1.0 0
α5 1.0 0.78 1.0 1.0 − 1.0
α6 1.0 0.8 1.0 0 1.0 −

Class C4 α1 α2 α3 α4 α5 α6

α1 − 0.33 0.25 1.0 071 0.71
α2 0.33 − 0.33 1.0 1.0 1.0
α3 0.25 0.33 − 1.0 0.71 0.71
α4 1.0 1.0 1.0 − 0.5 0.56
α5 0.71 1.0 0.71 1.0 − 0
α6 0.71 1.0 0.71 1.0 0 −

Note that, for each class, the minimal distance between the classifications is zero,
and the experts can be defined with respect to this distance. For class C1, a zero distance
dNorHam(α1, α3|1) = 0 is obtained between classifications α1 and α3, i.e., the first and third
agents are considered to be experts with respect to class C1. Similarly, for class C2,, zero
distances are obtained for dNorHam(α2, α3|2) = 0 and, thus, the second and third agents are
considered to be experts with respect to class C2; dNorHam(α4, α6|3) = 0, so the fourth and
sixth agents are experts in class C3; and dNorHam(α5, α6|4) = 0, so the fifth and sixth agents
are considered to be experts with respect to class C4.

Following these distance calculations, the “experts” in each class obtain a weight
of 1, while the other nonexpert agents obtain zero weights. Thus, in this weighting
scheme, only expert classifications are considered. Finally, in the considered dataset (see
Table 1), according to the opinions of the experts (the first and third agents), the first class



Mathematics 2023, 11, 4784 11 of 19

is C∗1 = {x2, x6, x8}; according to the opinions of the experts (the second and third agents),
the second class is C∗2 = {x1, x3, x10}; according to the opinions of the experts (the fourth
and sixth agents), the third class is C∗3 = {x4, x5, x11}; and according to the opinions of the
experts (the fifth and sixth agents), the fourth class is C∗4 = {x7, x9, x12}.

Then, the resulting partitioning of the dataset is as follows:

γ∗ = {C∗1 , C∗2 , C∗3 , C∗4} = {{x2, x6, x8}, {x1, x3, x10}, {x4, x5, x11}, {x7, x9, x12}}.

Note that this straightforward, illustrative example does not require (and does not
demonstrate) the complicated clustering and correction steps by the E-M algorithm, which
plays an important role in the real-world datasets, where the division of the agents into
experts and non-experts is not binary.

6. Numerical Simulations and Comparisons

The suggested algorithm was studied using two data settings: simulated data with
known characteristics, which enabled the analysis of the effectiveness and robustness of
the DBCC algorithm, and real-world data obtained from a dedicated questionnaire.

Classifications obtained by the suggested Algorithm 2 were compared with the results
provided by the optimal likelihood-maximization brute-force algorithm, the majority vote,
the most accurate heuristic FDS algorithm, and the fastest GLAD algorithm.

The algorithms were implemented in the Python programming language and run on a
standard Lenovo ThinkPad T480 PC with an Intel® Core™ i7-8550U Processor (8M Cache,
4.00 GHz) and 32 GB memory (DDR4 4267 MHz).

6.1. Data

To analyze the proposed method, it was applied to different datasets: (i) simulated
data, (ii) real-world data with simulated classes and, finally, (iii) an entirely real-world
questionnaire dataset. In the first case, for a given n entity xi, i = 1, 2, . . . , n, we simulated
both the classes Cj, j = 1, 2, . . . , l, and the agents’ classifications αk, k = 1, 2, . . . , m; in the
second case, we used real-world data with simulated labeled datasets; and in the third case,
we created and analyzed an online questionnaire that measures the levels of expertise of
users regarding famous paintings and painters (the questionnaire is available via the link
Famous painters (google.com); see the Appendix A).

6.1.1. Simulated Data

In the simulated data, we used m ∈ {4, 10, 16, 20, 24, 32} agents in the trials, while their
classifications αk, k = 1, 2, . . . , m, were randomly generated. The probability of obtaining cor-
rect classifications for expert agents was specified as pe ∈ [0.6, 1.0], and for non-expert agents
as pn ∈ [0.2, 0.6]. The number of entities in the trials was n ∈ {50, 200, 300, 500, 1000, 2000},
and the number of classes was l ∈ {2, 3, 4, 6, 8, 10, 12, 16}.

6.1.2. Real-World Data with Simulated Classes

In the case of real-world data with simulated classes, we considered the real-world
data from different databases, where to define multiple agents with different expertise,
we used simulated labeling of the data. The agents were simulated by using different
classifiers (e.g., random forests), and their expertise over different classes was simulated by
scrambling the features in the dataset. In a comparative analysis, we used seven known
datasets from Kaggle [3], as follows: Iris, Abalone Age, Glass Type, Students’ Results, User
Activity, Robots Conversation, and Wine Quality.

For example, in the Iris dataset, the agents’ expertise was defined as follows: Agent 1
and Agent 2 are experts in the class “Iris-setosa”, Agent 2 is an expert in the class “Iris-
versicolor”, and Agent 4 is an expert in the class “Iris-verginica”. Recall that according to
this definition, the probability that these agents provide correct classification of the entities
of these classes is higher.



Mathematics 2023, 11, 4784 12 of 19

In addition, we used the Wi-Fi localization database from the Machine Learning
Repository [21]. The datasets have different numbers of entities 150 < n < 4000 and
different numbers of classes l ∈ {3, 4, 5, 6}; per the different numbers of classes, different
numbers of agents 10 < m < 20 are simulated with various levels of expertise.

6.1.3. Real-World Data

To obtain real-world data, we designed and distributed an online questionnaire that
contains questions on painters and paintings based on common knowledge. In particular,
the questionnaire contains 40 paintings created by eight famous painters. The agents were
asked to indicate the painter of each painting. Thus, in terms of classification, the agents
were required to classify n = 40 entities into l = 8 classes. The questionnaire was offered to
m = 90 volunteers in the university, including both students and professors, without any
specific educational background in the arts. An example of the paintings and questionnaire
that was used are presented in the Appendix A.

6.2. Algorithms for Comparisons

The results obtained by the suggested algorithm were compared with the results
obtained by four baseline methods: (i) the widely used majority voting algorithm; (ii) the
brute-force maximum-likelihood optimization; (iii) the FDS algorithm, which was recently
proposed as an effective heuristic to establish an expert-based classification; and (iv) the
GLAD algorithm.

6.2.1. Majority Vote

A majority vote is a simple and popular rule that is often used in different tasks of
social choices. The algorithm based on this rule acts as follows:

Let X = {x1, x2, . . . , xn} be a set of entities that should be classified by m experts to
l ≤ n possible number of classes. Then, the entity xi, i = 1, 2, . . . , n, is classified to class Cj,
j = 1, 2, . . . , l, if the majority of the agents classified it to this class (thus, labeling it by the
jth label); ties are broken randomly.

As indicated above, despite its simplicity, in crowdsourcing tasks, the majority vote
rule provides good results when the number of agents is relatively large and with similar
levels and fields of expertise.

6.2.2. Likelihood Maximization

The likelihood-optimization procedure—the Algorithm 1 presented in Section 4, is
an optimal brute-force algorithm that is used to obtain an optimal solution in relatively
small problems.

In the numerical simulations, optimization problem (1) has been solved by using a
local search heuristic that is feasible for considered cases with a small number of agents.

6.2.3. Fast Dawid–Skene Algorithm

As indicated above, the fast Dawid–Skene (FDS) algorithm [5] is a modification of the
original DS aggregation algorithm proposed by Dawid and Skene [2].

The FDS algorithm follows the EM approach, such that at the E-step, the data are
classified using the current parameter values, and at the M-step, these values are corrected
to maximize the likelihood of the data. The algorithm starts with some initial classification.
It then alternates between the E-step and the M-step up to convergence, such that the
difference between the current and the previously obtained classifications is less than the
predefined small value.

The unsupervised classification algorithm follows the same approach with the above-
indicated differences in the classifications conducted at the E-step and in the used parameters.



Mathematics 2023, 11, 4784 13 of 19

6.2.4. GLAG Algorithm

The generative model for labels, abilities, and difficulties (GLAD) [6] is a probabilistic
algorithm that simultaneously infers the expertise of each agent, the context of the entity,
and the most likely class for each entity.

Similar to the other indicated methods, this algorithm follows the EM approach,
namely, given the agents’ classifications and initial expertise. At the E-step, it computes the
posterior probability for every entity, and at the M-step it maximizes the expectation of the
log-likelihood of the observed and hidden parameters using gradient descent.

6.3. Simulation Results

The suggested algorithm was implemented over different datasets, as indicated above,
with different groups of agents, and compared with the four outlined algorithms.

6.3.1. Likelihood Maximization vs. Majority Voting

The comparison of the algorithm based on majority voting (Section 6.2.1) and the
likelihood-maximization Algorithm 1 (Section 6.2.2) was conducted using the simulated
settings, with m = 8 and m = 12 agents. In both cases, the number of entities was n = 400,
and the number of classes was l = 4. Such a relatively small dataset enables the application
of the optimal likelihood-maximization Algorithm 1 and its timely execution. The results
of the simulations are summarized in Table 2.

Table 2. Simulation results of majority voting and likelihood maximization for m = 8 and m = 12
agents classifying n = 400 entities by l = 4 classes.

m = 8 Agents m = 12 Agents

Hit Rate
CPU Time (s)

Hit Rate
CPU Time (s)

Majority Rule Suggested Rule Majority Rule Suggested Rule

0.815 0.958 54.1 0.818 0.990 49.3
0.807 0.938 54.3 0.860 0.988 49.2
0.802 0.948 39.2 0.823 0.993 29.7
0.802 0.958 38.7 0.850 0.988 49.0
0.787 0.963 31.2 0.833 0.973 29.4
0.772 0.960 38.9 0.840 0.995 29.5
0.830 0.963 31.1 0.838 0.995 29.5
0.812 0.973 38.9 0.828 0.983 29.4
0.810 0.963 54.5 0.843 0.985 59.3
0.785 0.950 23.6 0.865 0.995 39.9

In the considered settings, the likelihood-maximization Algorithm 1 outperformed
majority voting both for m = 8 and for m = 12 agents and provided a higher accuracy hit
rate within similar computation times.

6.3.2. Suggested Algorithm vs. Majority Voting

In the next simulations, the proposed DBCC algorithm was compared with the majority
voting rule. In the simulations, agents of different levels of expertise were selected, such that
their classifications αk, k = 1, 2, . . . , m would follow a correct classification with probabilities
pn ∈ [0.2, 0.6] for non-expert agents, and with probabilities (reliability) pe ∈ [0.6, 1.0] for
expert agents. Since the probabilities pn and pe are, in essence, measures of the agents’
levels of expertise in certain fields, we refer to these probabilities as the reliabilities of
the agents.

The trials were executed for m = 32 experts classifying n = 500 entities into l = 8 classes.
The probabilities of correct classifications (considered as the reliabilities of the agents) were
pe ∈ [0.6, 1.0]. The percentage of times where the proposed DBCC algorithm outperformed
the majority vote method with respect to the ratio of expert and non-expert reliability is
given in Figure 1.



Mathematics 2023, 11, 4784 14 of 19

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 19 
 

 

outperformed the majority vote method with respect to the ratio of expert and non-expert 
reliability is given in Figure 1. 

 
Figure 1. Percentage of cases in which the suggested algorithm outperformed the majority voting 
method in terms of accuracy (y-axis) with respect to the ratio of expert reliability to non-expert reli-
ability (x-axis). Different dashed lines correspond to different levels of the agents’ reliability, which 
represent the levels of the agents’ expertise. 

As expected, for homogeneous groups that included agents with close levels of ex-
pertise, majority voting outperformed the suggested algorithm. However, for heterogene-
ous groups of agents with different levels of expertise, the suggested DBCC algorithm 
outperformed the majority voting method. 

These results demonstrate once again that the suggested algorithm is preferable over 
a majority vote for practical tasks where the group of agents includes both experts and 
non-experts with respect to different fields. 

Figure 2 demonstrates the percentage of times when the proposed DBCC algorithm 
outperformed the majority voting method in a classification of 𝑛 entities. In these simu-
lations, the probability that the experts would provide correct classifications was 𝑝 = 0.7, 
and the probability that the non-experts would provide correct classifications was 𝑝 =0.2. 

 
Figure 2. Percentage of cases where the suggested algorithm obtained more accurate classifications 
than the majority voting method (y-axis) with respect to the number of entities 𝑛 (x-axis). 

It can be seen that for a heterogeneous group of agents that includes both experts and 
non-experts, the suggested algorithm substantially outperforms the majority voting 
method, and its effectiveness increases with the size of the group. 

In both settings, that group of agents included experts and non-experts of different 
levels of expertise. For these agents, the suggested DBCC algorithm outperformed the ma-

Figure 1. Percentage of cases in which the suggested algorithm outperformed the majority voting
method in terms of accuracy (y-axis) with respect to the ratio of expert reliability to non-expert
reliability (x-axis). Different dashed lines correspond to different levels of the agents’ reliability, which
represent the levels of the agents’ expertise.

As expected, for homogeneous groups that included agents with close levels of exper-
tise, majority voting outperformed the suggested algorithm. However, for heterogeneous
groups of agents with different levels of expertise, the suggested DBCC algorithm outper-
formed the majority voting method.

These results demonstrate once again that the suggested algorithm is preferable over
a majority vote for practical tasks where the group of agents includes both experts and
non-experts with respect to different fields.

Figure 2 demonstrates the percentage of times when the proposed DBCC algorithm
outperformed the majority voting method in a classification of n entities. In these simula-
tions, the probability that the experts would provide correct classifications was pe = 0.7,
and the probability that the non-experts would provide correct classifications was pn = 0.2.

Mathematics 2023, 11, x FOR PEER REVIEW 14 of 19 
 

 

outperformed the majority vote method with respect to the ratio of expert and non-expert 
reliability is given in Figure 1. 

 
Figure 1. Percentage of cases in which the suggested algorithm outperformed the majority voting 
method in terms of accuracy (y-axis) with respect to the ratio of expert reliability to non-expert reli-
ability (x-axis). Different dashed lines correspond to different levels of the agents’ reliability, which 
represent the levels of the agents’ expertise. 

As expected, for homogeneous groups that included agents with close levels of ex-
pertise, majority voting outperformed the suggested algorithm. However, for heterogene-
ous groups of agents with different levels of expertise, the suggested DBCC algorithm 
outperformed the majority voting method. 

These results demonstrate once again that the suggested algorithm is preferable over 
a majority vote for practical tasks where the group of agents includes both experts and 
non-experts with respect to different fields. 

Figure 2 demonstrates the percentage of times when the proposed DBCC algorithm 
outperformed the majority voting method in a classification of 𝑛 entities. In these simu-
lations, the probability that the experts would provide correct classifications was 𝑝 = 0.7, 
and the probability that the non-experts would provide correct classifications was 𝑝 =0.2. 

 
Figure 2. Percentage of cases where the suggested algorithm obtained more accurate classifications 
than the majority voting method (y-axis) with respect to the number of entities 𝑛 (x-axis). 

It can be seen that for a heterogeneous group of agents that includes both experts and 
non-experts, the suggested algorithm substantially outperforms the majority voting 
method, and its effectiveness increases with the size of the group. 

In both settings, that group of agents included experts and non-experts of different 
levels of expertise. For these agents, the suggested DBCC algorithm outperformed the ma-

Figure 2. Percentage of cases where the suggested algorithm obtained more accurate classifications
than the majority voting method (y-axis) with respect to the number of entities n (x-axis).

It can be seen that for a heterogeneous group of agents that includes both experts
and non-experts, the suggested algorithm substantially outperforms the majority voting
method, and its effectiveness increases with the size of the group.

In both settings, that group of agents included experts and non-experts of different
levels of expertise. For these agents, the suggested DBCC algorithm outperformed the
majority voting method. At the same time, the effectiveness of the suggested algorithm
decreased with the decrease in expertise levels, and when the group of agents included
only non-experts, it became less effective than majority voting.



Mathematics 2023, 11, 4784 15 of 19

The obtained results demonstrate that the suggested algorithm is preferable in tasks
where a small number m of agents classifies a large number n of entities. In contrast, if the
number n of entities is small and the number m of agents is large, it is preferred to use a
majority vote.

6.3.3. Accuracy Analysis

The accuracy of the suggested algorithm was compared against the accuracy of the ma-
jority voting (see Section 6.2.1), the likelihood-maximization Algorithm 1 (see Section 6.2.2),
and the FDS algorithm (see Section 6.2.3). In addition, we also present the results of the
GLAD algorithm [6]. The results of the simulations are shown in Figure 3.

Mathematics 2023, 11, x FOR PEER REVIEW 15 of 19 
 

 

jority voting method. At the same time, the effectiveness of the suggested algorithm de-
creased with the decrease in expertise levels, and when the group of agents included only 
non-experts, it became less effective than majority voting. 

The obtained results demonstrate that the suggested algorithm is preferable in tasks 
where a small number 𝑚 of agents classifies a large number 𝑛 of entities. In contrast, if the 
number 𝑛 of entities is small and the number 𝑚 of agents is large, it is preferred to use a 
majority vote. 

6.3.3. Accuracy Analysis 
The accuracy of the suggested algorithm was compared against the accuracy of the 

majority voting (see Section 6.2.1), the likelihood-maximization Algorithm 1 (see Section 
6.2.2), and the FDS algorithm (see Section 6.2.3). In addition, we also present the results of 
the GLAD algorithm [6]. The results of the simulations are shown in Figure 3. 

 
Figure 3. Accuracy of the suggested DBCC algorithm and the benchmark algorithms (y-axis) with 
respect to the number 𝑛 of entities (x-axis). In the figure, the algorithms are denoted as follows: 
CClas—the suggested DBCC algorithm, LMax—the likelihood-maximization algorithm, FDS—fast 
Dawid–Skene algorithm, GLAD—GLAD algorithm, Maj—majority voting method. 

It can be seen that for a relatively small number of entities (𝑛 < 750), the suggested 
DBCC algorithm outperforms the benchmark algorithms. For a larger number of entities, 
the DBCC is close to the FDS and the likelihood-maximization algorithms. The other two 
methods, majority voting and GLAD, result in lower accuracy. 

For many entities (𝑛 > 1000), the confusion matrices in the likelihood-maximization 
become more accurate and very close to optimal, which affects the algorithm’s accuracy 
until it becomes closer to the optimal solution, obtaining 100% accuracy. 

In the next simulations, the algorithms were applied to the real-world data [3,21] with 
simulated labeling, as indicated in Section 6.1.2. The results of the simulations are shown 
in Figure 4. 

Figure 3. Accuracy of the suggested DBCC algorithm and the benchmark algorithms (y-axis) with
respect to the number n of entities (x-axis). In the figure, the algorithms are denoted as follows:
CClas—the suggested DBCC algorithm, LMax—the likelihood-maximization algorithm, FDS—fast
Dawid–Skene algorithm, GLAD—GLAD algorithm, Maj—majority voting method.

It can be seen that for a relatively small number of entities (n < 750), the suggested
DBCC algorithm outperforms the benchmark algorithms. For a larger number of entities,
the DBCC is close to the FDS and the likelihood-maximization algorithms. The other two
methods, majority voting and GLAD, result in lower accuracy.

For many entities (n > 1000), the confusion matrices in the likelihood-maximization
become more accurate and very close to optimal, which affects the algorithm’s accuracy
until it becomes closer to the optimal solution, obtaining 100% accuracy.

In the next simulations, the algorithms were applied to the real-world data [3,21] with
simulated labeling, as indicated in Section 6.1.2. The results of the simulations are shown
in Figure 4.

The DBCC algorithm and the FDS algorithm outperformed the majority voting in all
of the datasets. Additionally, it should be noted that since the likelihood-maximization
Algorithm 1 utilizes the probabilities that the agents provide correct classification and
depends on the correctness of these probabilities, it results in lower accuracy on the datasets
with a relatively small number of entities than the other algorithms. In contrast, the datasets
with large numbers of entities demonstrate optimal accuracy. This observation illustrates
the well-known difference between statistical probabilities estimated by relatively small
samples vs. theoretical probabilities that are defined over infinite populations.



Mathematics 2023, 11, 4784 16 of 19
Mathematics 2023, 11, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure 4. Accuracy of the suggested and benchmark algorithms applied to real-world data with 
simulated labeling. In the figure, the algorithms are denoted as follows: CClas—suggested DBCC 
algorithm, LMax—the likelihood-maximization algorithm, FDS—fast Dawid–Skene algorithm, 
GLAD—GLAD algorithm, Maj—majority voting method. The number 𝑛 of entities in the datasets 
is as follows: Iris—150, Glass—215, Students—1000, User—1000, Wine—1000, Robots—2000, Wi-
Fi—2000, and Abalone—4000. 

The DBCC algorithm and the FDS algorithm outperformed the majority voting in all 
of the datasets. Additionally, it should be noted that since the likelihood-maximization 
Algorithm 1 utilizes the probabilities that the agents provide correct classification and de-
pends on the correctness of these probabilities, it results in lower accuracy on the datasets 
with a relatively small number of entities than the other algorithms. In contrast, the da-
tasets with large numbers of entities demonstrate optimal accuracy. This observation il-
lustrates the well-known difference between statistical probabilities estimated by rela-
tively small samples vs. theoretical probabilities that are defined over infinite populations. 

6.3.4. Run Time until convergence 
In the last simulations, the run time until convergence of the suggested algorithm 

was studied. We compared it with the benchmark methods: the likelihood-maximization 
Algorithm 1 (see Section 6.2.2), the FDS algorithm (see Section 6.2.3), and the previously 
mentioned GLAD algorithm (see Section 6.2.2). Since the majority voting method is not 
an iterated process, we did not consider it in these simulations. The graphs of the run time 
with respect to the number 𝑛 of entities are shown in Figure 5. 

 
Figure 5. Run time of the suggested and known algorithms with respect to the number 𝑛 of entities. 
In the figure, the algorithms are denoted as follows: CClas—the proposed DBCC algorithm, LMax—
the likelihood-maximization algorithm, FDS—fast Dawid–Skene algorithm, GLAD—GLAD algo-
rithm. 

It can be seen that the run time of the suggested algorithm is very close to the run 
time of the fastest GLAD algorithm and, as in the GLAD algorithm, it linearly depends on 
the number of entities. 

Figure 4. Accuracy of the suggested and benchmark algorithms applied to real-world data with
simulated labeling. In the figure, the algorithms are denoted as follows: CClas—suggested
DBCC algorithm, LMax—the likelihood-maximization algorithm, FDS—fast Dawid–Skene algo-
rithm, GLAD—GLAD algorithm, Maj—majority voting method. The number n of entities in the
datasets is as follows: Iris—150, Glass—215, Students—1000, User—1000, Wine—1000, Robots—2000,
Wi-Fi—2000, and Abalone—4000.

6.3.4. Run Time until convergence

In the last simulations, the run time until convergence of the suggested algorithm
was studied. We compared it with the benchmark methods: the likelihood-maximization
Algorithm 1 (see Section 6.2.2), the FDS algorithm (see Section 6.2.3), and the previously
mentioned GLAD algorithm (see Section 6.2.2). Since the majority voting method is not an
iterated process, we did not consider it in these simulations. The graphs of the run time
with respect to the number n of entities are shown in Figure 5.

Mathematics 2023, 11, x FOR PEER REVIEW 16 of 19 
 

 

 
Figure 4. Accuracy of the suggested and benchmark algorithms applied to real-world data with 
simulated labeling. In the figure, the algorithms are denoted as follows: CClas—suggested DBCC 
algorithm, LMax—the likelihood-maximization algorithm, FDS—fast Dawid–Skene algorithm, 
GLAD—GLAD algorithm, Maj—majority voting method. The number 𝑛 of entities in the datasets 
is as follows: Iris—150, Glass—215, Students—1000, User—1000, Wine—1000, Robots—2000, Wi-
Fi—2000, and Abalone—4000. 

The DBCC algorithm and the FDS algorithm outperformed the majority voting in all 
of the datasets. Additionally, it should be noted that since the likelihood-maximization 
Algorithm 1 utilizes the probabilities that the agents provide correct classification and de-
pends on the correctness of these probabilities, it results in lower accuracy on the datasets 
with a relatively small number of entities than the other algorithms. In contrast, the da-
tasets with large numbers of entities demonstrate optimal accuracy. This observation il-
lustrates the well-known difference between statistical probabilities estimated by rela-
tively small samples vs. theoretical probabilities that are defined over infinite populations. 

6.3.4. Run Time until convergence 
In the last simulations, the run time until convergence of the suggested algorithm 

was studied. We compared it with the benchmark methods: the likelihood-maximization 
Algorithm 1 (see Section 6.2.2), the FDS algorithm (see Section 6.2.3), and the previously 
mentioned GLAD algorithm (see Section 6.2.2). Since the majority voting method is not 
an iterated process, we did not consider it in these simulations. The graphs of the run time 
with respect to the number 𝑛 of entities are shown in Figure 5. 

 
Figure 5. Run time of the suggested and known algorithms with respect to the number 𝑛 of entities. 
In the figure, the algorithms are denoted as follows: CClas—the proposed DBCC algorithm, LMax—
the likelihood-maximization algorithm, FDS—fast Dawid–Skene algorithm, GLAD—GLAD algo-
rithm. 

It can be seen that the run time of the suggested algorithm is very close to the run 
time of the fastest GLAD algorithm and, as in the GLAD algorithm, it linearly depends on 
the number of entities. 

Figure 5. Run time of the suggested and known algorithms with respect to the number n of entities. In
the figure, the algorithms are denoted as follows: CClas—the proposed DBCC algorithm, LMax—the
likelihood-maximization algorithm, FDS—fast Dawid–Skene algorithm, GLAD—GLAD algorithm.

It can be seen that the run time of the suggested algorithm is very close to the run time
of the fastest GLAD algorithm and, as in the GLAD algorithm, it linearly depends on the
number of entities.

The likelihood-maximization Algorithm 1 is the slowest algorithm, since it checks all of
the possibilities to find the maximum likelihood according to the given confusion matrices.
The number of such possibilities increases exponentially with the number of entities.

The FDS algorithm is faster than the likelihood-maximization Algorithm 1, but it is
still slower than the suggested algorithm since, in contrast to the suggested algorithm, it
calculates the maximum likelihood of every class for every entity in the E-step.



Mathematics 2023, 11, 4784 17 of 19

Thus, from the run time point of view, the suggested algorithm acts similarly to the
fastest algorithm and results in classifications that are close in accuracy to the classifications
created by the most accurate algorithms.

7. Conclusions

In this paper, we present a novel algorithm for unsupervised collaborative classifi-
cation of a set of arbitrary entities. In contrast to the existing methods, the suggested
algorithm starts with the classification of the agents to experts and non-experts in each
domain, and then it generates classification of the entities by preferring the opinions of the
expert agents.

Classification of the agents is based on the assumption that the experts have similar
opinions in their field of expertise, while the non-experts often tend to disagree and adopt
different opinions in fields in which they are not experts.

Classification of the entities is based on the conventional expectation-maximization
method initialized by majority vote and using the agents’ levels of expertise, as defined at
the stage of the agents’ classification.

To verify the activity of the algorithm, we also formalized the considered task in the
form of an optimization problem and suggested the likelihood-maximization algorithm
(LMax) that uses brute force and provides the accurate solution.

Numerical simulations of the suggested DBCC algorithm and its comparisons with
the known methods, such as majority vote, the FDS algorithm, and the GLAD algorithm,
demonstrated that the run time of the suggested Algorithm 2 depends linearly on the
number of entities, and it is close in run time to the fastest GLAD algorithm.

The accuracy of the suggested Algorithm 2 depends on the expertise levels of the
agents. For the heterogeneous group that includes both experts and non-experts, the
suggested Algorithm 2 resulted in a higher accuracy than the known heuristic algorithms
and, especially, outperformed them in the scenarios where a small group of the agents
considered a dataset with many entities.

Author Contributions: Conceptualization, I.B.-G. and P.G.; methodology, I.B.-G., E.K. and T.R.;
software, A.G.; validation, P.G., A.G. and P.K.; formal analysis, A.G. and E.K.; investigation, T.R.;
resources, I.B.-G.; data curation, P.K.; writing—original draft preparation, E.K.; writing—review and
editing, P.K.; visualization, A.G.; supervision, I.B.-G.; project administration, I.B.-G. and P.G.; funding
acquisition, I.B.-G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by Koret Foundation, the Digital Living 2030 grant.

Data Availability Statement: Data in applicable by the links appearing in the references.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The data were collected using Google Forms [22]. The questionnaire included the
images of the paintings and the list of options regarding the author of the painting. The
resulting dataset can be downloaded via the link at [4].

An example of the question is shown in Figure A1.



Mathematics 2023, 11, 4784 18 of 19Mathematics 2023, 11, x FOR PEER REVIEW 18 of 19 
 

 

  
(a) (b) 

Figure A1. Example of the question: (a) the painting and (b) the list of possible alternatives to be 
selected by the user. 

The image is accompanied by a list of painters, and the respondent is required to choose the painter 
who authored the presented painting. The other examples of the paintings are shown in Figure A2. 

  
(a) (b) 

  
(c) (d) 

Figure A1. Example of the question: (a) the painting and (b) the list of possible alternatives to be
selected by the user.

The image is accompanied by a list of painters, and the respondent is required to
choose the painter who authored the presented painting. The other examples of the
paintings are shown in Figure A2.

Mathematics 2023, 11, x FOR PEER REVIEW 18 of 19 
 

 

  
(a) (b) 

Figure A1. Example of the question: (a) the painting and (b) the list of possible alternatives to be 
selected by the user. 

The image is accompanied by a list of painters, and the respondent is required to choose the painter 
who authored the presented painting. The other examples of the paintings are shown in Figure A2. 

  
(a) (b) 

  
(c) (d) 

Figure A2. Other examples of the paintings appearing in the questionnaire: (a) Paul Klee, Tale a la
Hoffmann; (b) Rembrandt Harmenszoon van Rijn, Storm on the Sea of Galilee; (c) Vincent van Gogh,
Rooftops; (d) Michelangelo di Lodovico Buonarroti Simoni, Libyan Sibyl.



Mathematics 2023, 11, 4784 19 of 19

References
1. Hamada, D.; Nakayama, M.; Saiki, J. Wisdom of crowds and collective decision making in a survival situation with complex

information integration. Cogn. Res. 2020, 5, 48. [CrossRef] [PubMed]
2. Dawid, A.P.; Skene, A.M. Maximum likelihood estimation of observer error-rates using the EM algorithm. J. Roy. Stat. Soc. Ser. C

1979, 28, 20–28. [CrossRef]
3. Kaggle Inc. Iris Flower Dataset/Abalone Age Prediction/Glass Classification/Students Test Data/User Activity/Classification of

Robots from Their Conversation/Wine Quality Dataset. Available online: https://www.kaggle.com/datasets/ (accessed on
23 November 2023).

4. The Paintings Authorship. Dataset. Available online: https://www.iradbengal.sites.tau.ac.il/_files/ugd/901879_2cafbbe73b024
8828ed5dece50c6c3f0.csv?dn=Painters_dataset.csv (accessed on 23 November 2023).

5. Sinha, V.B.; Rao, S.; Balasubramanian, V.N. Fast Dawid-Skene: A fast vote aggregation scheme for sentiment classification. In
Proceedings of the 7th KDD Workshop on Issues of Sentiment Discovery and Opinion Mining, London, UK, 20 August 2018.

6. Whitehill, J.; Ruvolo, P.; Wu, T.; Bergsma, J.; Movellan, J. Whose vote should count more: Optimal integration of labels from
labelers of unknown expertise. Adv. Neural Inf. Process. Syst. 2009, 22, 2035–2043.

7. Chiu, C.; Liang, T.; Turban, E. What can crowdsourcing do for decision support? Decis. Support Syst. 2014, 65, 40–49. [CrossRef]
8. Ma, J.; Lu, J.; Zhang, G. A three-level-similarity measuring method of participant opinions in multiple-criteria group decision

supports. Decis. Support Syst. 2014, 59, 74–83. [CrossRef]
9. Dempster, A.P.; Laird, N.M.; Rubin, D.B. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B

1977, 39, 1–38. [CrossRef]
10. Zhang, Y.; Chen, X.; Zhou, D.; Jordan, M.I. Spectral methods meet EM: A provably optimal algorithm for crowdsourcing. J. Mach.

Learn. Res. 2016, 17, 1–44. [PubMed]
11. Shah, N.B.; Balakrishnan, S.; Wainwright, M.J. A Permutation-based model for crowd labeling: Optimal estimation and robustness.

arXiv 2016, arXiv:1606.09632. [CrossRef]
12. Duan, L.; Oyama, S.; Sato, H.; Kurihara, M. Separate or joint? Estimation of multiple labels from crowdsourced annotations.

Expert Syst. Appl. 2014, 41, 5723–5732. [CrossRef]
13. Wei, X.; Zeng, D.D.; Yin, J. Multi-Label Annotation Aggregation in Crowdsourcing. In Proceedings of the 2018 IEEE International

Conference on Data Mining (ICDM), Singapore, 17–20 November 2018.
14. Groot, P.; Birlutiu, A.; Heskes, T. Learning from multiple annotators with Gaussian processes. In Proceedings of the 21st Int Conf

Artificial Neural Networks and Machine Learning, Espoo, Finland, 14–17 June 2011; pp. 159–164.
15. Rodrigues, F.; Pereira, F.C. Deep learning from crowds. In Proceedings of the 32nd Conference on Artificial Intelligence,

New Orleans, LA, USA, 2–7 February 2018; pp. 1611–1618.
16. Raykar, V.C.; Yu, S.; Zhao, L.H.; Valadez, G.H.; Florin, C.; Moy, L. Learning from crowds. J. Mach. Learn. Res. 2010, 11, 1297–1322.
17. Bachrach, Y.; Minka, T.; Guiver, J.; Graepel, T. How to Grade a Test Without Knowing the Answers—A Bayesian Graphical Model

for Adaptive Crowdsourcing and Aptitude Testing. In Proceedings of the 29th International Conference on Machine Learning,
Edinburgh, UK, 26 June–1 July 2012; pp. 819–826.

18. Moayedikia, A.; Yeoh, W.; Ong, K.; Ling, Y. Improving accuracy and lowering cost in crowdsourcing through an unsupervised
expertise estimation approach. Decis. Support Syst. 2019, 122. [CrossRef]

19. Kagan, E.; Ben-Gal, I. Probabilistic Search for Tracking Targets; Wiley & Sons: Chichester, UK, 2013.
20. van Dyk, D.A. Fitting Mixed-effects models using efficient EM-type algorithms. J. Comput. Graph. Stat. 2000, 9, 78–98.
21. UCI. 2007. Available online: https://archive.ics.uci.edu/dataset/196/localization+data+for+person+activity (accessed on

23 November 2023).
22. The Paintings Authorship. Questionnaire (Google Form). Available online: https://docs.google.com/forms/d/e/1FAIpQLSf_

iUo1T7gMIPJyEoG0Cz3xoetfv6LNZvHjcmUyRL_Z4i3Kqw/viewform (accessed on 23 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1186/s41235-020-00248-z
https://www.ncbi.nlm.nih.gov/pubmed/33057843
https://doi.org/10.2307/2346806
https://www.kaggle.com/datasets/
https://www.iradbengal.sites.tau.ac.il/_files/ugd/901879_2cafbbe73b0248828ed5dece50c6c3f0.csv?dn=Painters_dataset.csv
https://www.iradbengal.sites.tau.ac.il/_files/ugd/901879_2cafbbe73b0248828ed5dece50c6c3f0.csv?dn=Painters_dataset.csv
https://doi.org/10.1016/j.dss.2014.05.010
https://doi.org/10.1016/j.dss.2013.10.007
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://www.ncbi.nlm.nih.gov/pubmed/27239164
https://doi.org/10.1109/TIT.2020.3045613
https://doi.org/10.1016/j.eswa.2014.03.048
https://doi.org/10.1016/j.dss.2019.05.005
https://archive.ics.uci.edu/dataset/196/localization+data+for+person+activity
https://docs.google.com/forms/d/e/1FAIpQLSf_iUo1T7gMIPJyEoG0Cz3xoetfv6LNZvHjcmUyRL_Z4i3Kqw/viewform
https://docs.google.com/forms/d/e/1FAIpQLSf_iUo1T7gMIPJyEoG0Cz3xoetfv6LNZvHjcmUyRL_Z4i3Kqw/viewform

	Introduction 
	Related Work 
	Problem Setup 
	Local Search by Likelihood Maximization 
	Suggested Algorithm: Distance-Based Collaborative Classification 
	Numerical Simulations and Comparisons 
	Data 
	Simulated Data 
	Real-World Data with Simulated Classes 
	Real-World Data 

	Algorithms for Comparisons 
	Majority Vote 
	Likelihood Maximization 
	Fast Dawid–Skene Algorithm 
	GLAG Algorithm 

	Simulation Results 
	Likelihood Maximization vs. Majority Voting 
	Suggested Algorithm vs. Majority Voting 
	Accuracy Analysis 
	Run Time until convergence 


	Conclusions 
	Appendix A
	References

