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Taguchi Method for Off-Line Quality Control 
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Off-line quality control methods are often referred to the measures taken at the product and process 

design stages to improve product quality. G. Taguchi has developed a systematic approach to off-line 

quality control that has been used in Japan and has attracted attention in a number of other countries, 

including the United States, Germany, UK and China. What follows is a summary of main features and 

concepts of the so called “Taguchi Method” with emphasis on some of the associated statistical properties 

and some recent related developments. 

Taguchi defines the quality of a product to be “the loss imparted by the product to the society from the 

time the product is shipped” (Phadke [1] ). The emphasis is on losses caused by deviation of the product’s 

functional characteristic (Y) from a desired target value (m). Taguchi indicates that the behavior of loss 

can be approximated in some instances by a quadratic function 
 

L = k(Y − m)2                                                                                                        (1) 
 

where k is a cost conversion coefficient. Note that although this function was selected conceptually, some 

later works justify the use of a quadratic function by approximating the unknown loss function with a 

second-degree Taylor polynomial 
[2]
. The objective of such quality improvement method is to minimize total 

losses to society and practically to find a good trade-off between quality loss and product price. Taguchi’s 

concept is different from the traditional concept of conformance to specifications (See Târcolea and Paris[3]). 

Thus, the mere satisfaction of specified tolerances (such as occurs with a pass/fail interpretation of loss) is 

less desirable than the attainment of optimal conditions. Furthermore, when considering the expected loss 

with respect to the functional characteristic distribution, expressed by ])[(][
22

σµ +−= mkYE , one can 

decompose the deviation from the target value into two terms, the bias term (measuring the distance between 

the mean µ and the target size m) and the variance term, 2σ , of the functional characteristic itself. 

Accordingly, Taguchi proposed to identify those factors that can reduce the variation in the product’s 

functional characteristic, also called the noise factors, as well as those factors that can reduce the bias by 

shifting the mean closer to the target value, called the signal factors. Taguchi specified other two practical 

situations for the loss function: ‘larger-the-better’ when the goal is to maximize Y, e.g., obtaining maximal 

strength, and ‘smaller-the-better’ when the goal is to minimize Y, e.g., obtaining minimal weight. 

Taguchi advocates a three-stage design procedure for off-line quality control: (i) system design;  (ii) 

parameter design; and (iii) tolerance design.  

In the system design stage, a system is designed in a somewhat traditional manner to fulfill a specific 

characteristic function of the product, for example, designing the main characteristics of a can opener.  

In the parameter design stage, which is the key stage in Taguchi method, factors affecting the 

performance of Y are categorized as controllable factors and noise factors. The former are those factors that 

are controlled by the designer, e.g., the type of material selected to build a specific part in the product. 

The latter include outer noise (such  as the variation in operational  environment), inner noise (such  as 

the deterioration  in the product or process), and between product noise (such as noise due to 

manufacturing imperfections). The parameter design attempts to find good levels of the controllable 

factors, such that the effects of the noise factors on the functional characteristic are minimized, resulting in a 

smaller loss. In other words, Taguchi’s goal is to reduce variation in the output by reducing the sensitivity of 

the process to the sources of variation rather than controlling these sources directly. This approach is called 

robust parameter design or simply robust design and exploits interaction between the causes of output 

variation and control factors in the process. The robust design approach got extremely popular as indicated 

in the section below. 

In the final tolerance design stage, it may be necessary to specify narrower tolerances for some of the 

factors in order to fine-tune the system. This final stage is considered only if the reduction in variation 

achieved at the parameter design stage is insufficient.  

To illustrate Taguchi’s concepts, consider the following example (see Table 1) presented by Byrne and S. 

Taguchi [4] in which an objective is to maximize the pull-off force of nylon tubing inserted into an 

elastomeric connector for use in automotive  engine  components. The four controllable factors are: 



 

interference between the tubing and the connector (A), wall thickness of the connector (B), insertion 

depth of the tubing into the connector (C), and percent adhesive (D). Three levels were chosen for each 

of the controllable factors. The three noise factors are conditioning time (E), conditioning temperature 

(F), and conditioning relative humidity (G). Each noise factor was set at two levels (values representative 

of what the product would experience in the engine).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The design that Taguchi recommends is actually the product of two designs. A so-called inner array is 

constructed to study the effects of the controllable factors themselves, and for each cell of this inner array, a 

design for the noise factors is run, called the outer array. The mean and variance of the functional 

characteristic over the outer array are computed for each cell of the inner array and then analyzed with 

respect to the controllable factors. Taguchi himself recommends that orthogonal arrays (See Orthogonal 

Arrays and Applications; Orthogonal Arrays) be used for both the inner and outer arrays, but this choice 

has been criticized on the grounds that it ignores the possibility of important interaction effects between 

the controllable  factors. (See Hunter[5] ). Also, it is at least questionable whether  a highly systematic 

arrangement for the outer array such as a fractional factorial design (See Fractional Factorial Designs, 

issues in; Fractional Factorial Designs), in which not all the factors’ level are experimented and analyzed, 

can be expected to reflect accurately the true behavior of the noise factors, which behavior is by definition 

unsystematic  and possibly random. [6] [7] 

In order to facilitate the study of the variation (noise) in the response as well as the mean  response 

(signal) for each row of the inner array, Taguchi introduces a signal-to-noise index. Kackar [6]  provides an 

overview of these indices and demonstrates how they are related to the expected loss function as well as 

to the more conventional mean-square-error measure.  For the Byrne and Taguchi example, the appropriate 

index is 

S/N= -10log∑
��
��

��

��
��	  

 

where the values are shown in Table 1 with, n2 = 8. 

Although a formal analysis of variance can be conducted to determine which factors are significant, 
Taguchi advocates graphical methods that are simpler to adopt by the industry (as indeed actually 

happened). For each controllable factor, this would include plots of the average S/N ratios for each 

level, as well as plots of the mean response.  Such an analysis for the Byrne and Taguchi example 

yielded the following choice of levels for the controllable  factors: A2  (medium interference), B2 

(medium  wall thickness), C3 (deep insertion), and D1 (low percent adhesive). However, cost 

considerations resulted in using B1 (thin wall thickness) in place of B2 . 

After the operating conditions are determined using off-line quality control, it is necessary to follow 

this up with those quality control activities needed during manufacturing. Taguchi refers to these as 

on-line activities which include (i) diagnosis and adjustment of process; (ii) forecasting and correction; 

(iii) measurement (inspection) and disposition; and (iv) after service by the sales department. For 

additional detail, refer to Taguchi [8] . G. Taguchi [9] has also developed accumulation  analysis, a technique 

for testing independence in ordered categorical data. This procedure is reviewed by Nair [10] . 

Taguchi has been enthusiastically praised for emphasizing the use of designed experiments not only to 

set a product’s characteristics at target values but also to reduce variation around these targets, as well as 

for putting forward a dedicated strategy for effecting these goals. Moreover, the straightforward, systematic 

nature of Taguchi’s program makes it relatively easy to introduce to experimenters and practitioners and, 

Table 1. Data from Byrne and Taguchi [4]
 

 

      
Outer Array (L8 ) 

   

 8 7 6 5 4              3 2 1 Run No. 

 2 2 2 2 1            1 1 1 E 

 2 2 1 1 2            2 1 1 F 

 1 1 2 2 2            2 1 1 Ex F 

 2 1 2 1 2            1 2 1 G 

 1 2 1 2 2            1 2 1 Ex G 

 1 2 2 1 1            2 2 1 Fx G 

 2 1 1 2 1            2 2 1 e 

 Inner Array (L9 )        

Run Factor       S/N 

No. A               B            C           D       Ratio 

1 1            1            1            1          19.1 20.0 19.6 19.6 19.9       16.9 9.5 15.6 24.025 

2 1            2            2            2          21.9 24.2 19.8 19.7 19.6       19.4 16.2 15.0 25.522 

3 1            3            3            3          20.4 23.3 18.2 22.6 15.6       19.1 16.7 16.3 25.335 

4 2            1            2            3          24.7 23.2 18.9 21.0 18.6       18.9 17.4 18.3 25.904 

5 2            2            3            1          25.3 27.5 21.4 25.6 25.1       19.4 18.6 19.7 26.908 

6 2            3            1            2          24.7 22.5 19.6 14.7 19.8       20.0 16.3 16.2 25.326 

7 3            1            3            2          21.6 24.3 18.6 16.8 23.6       18.4 19.1 16.4 25.711 

8 3            2            1            3          24.4 23.2 19.6 17.8 16.8       15.1 15.6 14.2 24.832 

9 3            3            2            1          28.6 22.6 22.7 23.1 17.3       19.3 19.9 16.1 26.152 



 

hence, easy to implement. On the other hand, certain important statistical details of Taguchi’s proposed 

strategy— e.g., the selection of experimental designs, the method of analysis, the sequential experimental 

steps and other— have been heavily criticized as simplistic and inaccurate. The fact that Taguchi’s 

orthogonal arrays make it impossible to sort out possibly important interaction effects is one example. The 

relative lower resolution level of Taguchi’s fractionally factorial arrays is another example, where the 

sequential designs of the response surface methodology (RSM) has been shown to require far fewer 

experimental runs than would a sequence of Taguchi's designs 
[7]

. A deep discussion of the pros and cons of 

off-line quality control can be found in the article by Kackar [6]  and the ensuing  discussions by Box,  

Easterling, Freund, Lucas, and Pignatiello and Ramberg, as well as the article by Hunter [5] . 

In the last decades, the development of Taguchi’s robust design approach continued to prosper despite the 

ambiguous ideas on his method. Many such developments either focus on new applications to the Taguchi 

method or aim to couple and strengthen it  by using new analytical tools from area such as machine learning, 

data mining and information theory. For example, Kumar and Motwani [11] extended the applicability of the 

Taguchi methods for process optimization - from manufacturing to a service setting. Using a real-world 

example pertaining to the complaint correction process of a small export company, it was demonstrated that 

the Taguchi's robust experimental design, hitherto employed to optimize product specifications and process 

parameters in manufacturing settings, can be employed, with equal effectiveness, to optimize the factors that 

influence a service process. Another real world application was suggested in Ben-Gal et al. 
[12]

 that 

demonstrated how the Taguchi method can be used to obtain a robust eco-design (ecological design), while 

using the highly non-linear models that represent physical behavior of ecological noise factors. 

Lunani et al. [13] demonstrated the limitation of the data analysis methods recommended by Taguchi. Two 

graphical methods were proposed: the sensitivity-standard deviation plot and the gamma-plot. These 

graphical methods are related to the mean-variance plot and the lambda-plot that have been found useful in 

analyzing data from static robust design studies. Chao-Ton [14] proposed a procedure on the basis of principal 

component analysis (PCA) to optimize the multi-response problems in the Taguchi method. With the PCA, a 

set of original responses can be transformed into a set of uncorrelated components. Therefore, the conflict 

for determining the optimal settings of the design parameters for the multi-response problems can be 

reduced. Chao-Ton and Kun-Lin [15] presented a novel means of applying neural networks to Taguchi's 

dynamic problem. The neural network utilizes the feature hid in the designed experiment not only to learn, 

but also to store the feature into the connected weights between layers. The connected weights reach steady-

state after neural learning. Kenett & Zacks 
[2]

 illustrated how to approximate the expected value and the 

variance of a known nonlinear response by using a Taylor series. They found the robust solution 

analytically, and compared it to a solution found by a numerical Monte-Carlo sampling. Chipman [16] used 

Bayesian methods for fitting the response models and their subsequent optimization by incorporation of 

reliable assessments of uncertainty into the analysis of robust design experiments. Jayaram and Ibrahim [17] 

presented a method of achieving high yield and robust design for multiple responses, utilizing the Cp and 

Cpk capability indices implemented in on-line quality control techniques. The proposed method is applied to 

a single response problem and two multiple response problems. The results showed that the proposed 

method is capable of producing good manufacturing yield and robust design simultaneously. Nair and Taam 
[18] considered general and flexible methods for analyzing location and dispersion effects and use three real 

applications to illustrate the methods. Two applications demonstrate the usefulness of functional regression 

techniques for location and dispersion analysis while the third illustrates a parametric analysis with two-

stage modeling. Both a mean-variance analysis for random selection of noise settings as well as a control-

by-noise interaction analysis for explicitly controlled noise factors are considered. Kowalski [19] used a split-

plot fractional factorial design and proposed a method for constructing sixteen-run experiments. Semi 

folding was also used to add eight more runs. The resulting 24 run design breaks some of the alias chains 

and provides some degrees of freedom for estimating a subplot error variance. Also, an alternative 24 run 

design based on the balanced incomplete block design was proposed. Romano [20] presented a general 

framework for the multivariate problem. Within the framework, both parameter and tolerance design are 

handled in an integrated manner. The used optimization criterion is based on a single value in terms of the 

quadratic loss function, and it is selected in order to incorporate both statistical information and economic 

information relevant to the product or process. McLeod [21] explored blocked fractional-factorial split-plot 

designs for robust parameter design. A ranking scheme for such designs was developed and, using a search 

algorithm, a catalog of 32-run optimal designs was provided. Dasgupta [22] developed a parameter design 

methodology in the presence of feedback control for long-duration processes. Systems that follow a pure-

gain dynamic model were considered and the best proportional-integral and minimum mean squared error 

control strategies were developed using robust parameter design. Chang [23] proposed an alternative approach 

based on data mining tools to model and optimize dynamic robust design with missing data. First, a back-

propagation network is trained to construct the response model of a dynamic system. Second, three formulas 

of performance measures are developed to evaluate the predicted responses of the model. Finally, a genetic 

algorithm is performed to obtain the optimal parameter combination via the response model. Frey [24] 

proposed an approach for evaluating the effectiveness of robust parameter design methods. A hierarchical 

probability model was presented that enables an investigator to represent assumptions about regularities in 

system responses such as effect sparsity, hierarchy, and inheritance. Kang and Roshan [25] argued that 

hierarchy principle should not be altered for achieving the robustness objective of the experiment. The 

authors proposed a Bayesian approach to develop single arrays which incorporate the importance of control-

by-noise interactions without altering the effect hierarchy. Kovach [26] proposed a robust design method for 

multiple quality characteristics where the goal is to first reduce the variability of the system under 

investigation and then attempting to locate the mean at the desired target value. The paper investigated the 



 

use of a response surface approach and a sequential optimization strategy to create a flexible and structured 

method for modeling multi-response problems in the context of robust design. Nonlinear programming was 

used as an optimization tool. Besseris [27] presented an additive ranking scheme based on converting the 

responses of interest to rank variables regardless of the nature of each response and the optimization 

direction that may be issued for each of them. Collapsing all ranked responses to a single rank response 

allows simultaneous optimization for all the considered factor settings. Dasgupta [28] developed an integrated 

approach for estimation and reduction of measurement variation through a single parameter design 

experiment. Systems with a linear signal-response relationship are primarily addressed in this work. The 

noise factors are classified into a few distinct categories based on their impact on the measurement system. 

A random coefficients model that accounts for the effect of control factors and each category of noise factors 

on the signal-response relationship is proposed. A suitable performance measure is developed using this 

general model, and conditions under which it reduces to the usual dynamic signal-to-noise ratio are 

discussed. Two different data analysis strategies, response function modeling and performance measure 

modeling, for modeling and optimization were proposed and compared. The effectiveness of the proposed 

method has been demonstrated via a simulation study using the Taguchi's drive-shaft experiment. Ben-Gal 
[29]

 suggested an approach that uses data compression measures, such as the Entropy, and Huffman Coding, 

to assess the effects of noise factors on the reliability of tested systems. He extends the Taguchi method for 

robust design by computing the entropy of the percent contribution values of the noise factors and show by 

implementing the proposed approach the designer obtains the minimal expected number of steps to find the 

disturbing noise factor. Hossein et al. [30] compared two classes of plans that they call desensitization and 

robustness experiments. With a desensitization experiment, one needs knowledge of a dominant cause and 

the ability to set its level in the experiment. With a robustness experiment, one uses time or location to 

indirectly generate the effect of the dominant causes of the output variation. The authors explored 

qualitatively and quantitatively the differences between robustness and desensitization experiments. They 

argue that for an existing process, desensitization is the preferred choice. Gremyr [31]   investigated whether a 

design of experiments application in a company that works with robust design management (RDM) reflects 

the principles and practices of RDM. The findings of this paper were based on an empirical study of a 

medium-sized Swedish enterprise that develops and manufactures consumer products for domestic use and 

actively uses RDM. The results show the difficulties that companies face when trying to introduce RDM 

principles. The research also provides insights into RDM implementation work at the company in question. 

Timothy [32] presented a Bayesian approach to process optimization for a general class of robust parameter 

design models, including both normal and non-normal responses, in the split-plot context using an empirical 

approximation of the posterior distribution for an objective function of interest. Jeang [33] developed a new 

process capability index (PCI) to reflect the differences among alternative designs for a better decision 

making at the product design and process planning stages. However, using such a deterministic approach 

with a new process capability index has been shown to be disadvantageous when dealing with uncertainties 

during the product design and process planning activities.  

In summary, although some of the statistical aspects of the Taguchi methods are arguable, there is no 

dispute that they are widely applied to various processes until these days. A quick search in the world wide 

web, reveals that the method is being successfully implemented in diverse areas, such as the design of VLSI, 

optimization of communication networks, development of electronic circuits, laser engraving of photo 

masks, cash-flow optimization in banking, runway utilization improvement in airports and even government 

policymaking. 
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