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Personalized and Energy-Efficient Health
Monitoring: A Reinforcement Learning Approach
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Abstract—We consider a network of controlled sensors
that monitor the unknown health state of a patient. We
assume that the health state process is a Markov chain
with a transition matrix that is unknown to the controller.
At each timestep, the controller chooses a subset of sen-
sors to activate, which incurs an energy (i.e., battery)
cost. Activating more sensors improves the estimation of
the unknown state, which introduces an energy-accuracy
tradeoff. Our goal is to minimize the combined energy
and state misclassification costs over time. Activating sen-
sors now also provides measurements that can be used
to learn the model, improving future decisions. Therefore,
the learning aspect is intertwined with the energy-accuracy
tradeoff. While Reinforcement Learning (RL) is often used
when the model is unknown, it cannot be directly applied
in health monitoring since the controller does not know the
(health) state. Therefore, the monitoring problem is a par-
tially observable Markov decision process (POMDP) where
the cost feedback is also only partially available since the
misclassification cost is unknown. To overcome this diffi-
culty, we propose a monitoring algorithm that combines RL
for POMDPs and online estimation of the expected misclas-
sification cost based on a Hidden Markov Model (HMM).
We show empirically that our algorithm achieves compa-
rable performance with a monitoring system that assumes
a known transition matrix and quantizes the belief state. It
also outperforms the model-based approach where the esti-
mated transition matrix is used for value iteration. Thus, our
algorithm can be useful in designing energy-efficient and
personalized health monitoring systems.

Index Terms—Reinforcement learning, WBAN, health
monitoring, POMDP.

I. INTRODUCTION

W IRELESS Body Area Networks (WBANs) are medi-
cal sensor networks that monitor the health state of
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the patient in real-time [1], [2], [3]. WBANs enable real-time
data-driven healthcare, which can provide much more accu-
rate guidance for medical decision-making. Medical decisions,
however, need to be based on high-accuracy measurements.
On the other hand, wireless wearable sensors are battery-
limited and can be hard to replace (e.g., if implanted under the
skin). This makes the accuracy-energy tradeoff a key consider-
ation in designing WBANs that enable personalized real-time
healthcare.

Patient monitoring is a dynamic decision-making problem
where the goal is to estimate an unknown health state. At each
timestep, we can choose which subset of sensors to activate.
Activating more sensors will improve the estimation accuracy
of the current state, but deplete energy needed to monitor
future states. By exploiting the structure of the dynamics,
we can learn to save energy in states where misclassification
is inherently less likely. Hence, the total cost combines the
misclassification and energy costs amassed over time.

In cases where the patient’s health state model is considered
known, it has usually been estimated using past data of other
patients. Such a model-based approach is less accurate when
dealing with medical conditions that behave considerably dif-
ferently between patients. One recent example is COVID-19,
which exhibited significantly assorted symptoms in diverse
patients [4]. Personalized healthcare can lead to more accu-
rate medical decisions even in diseases where the health state
model is traditionally assumed to be known [5].

The model-based approach was taken in [1], [6], which
assumed that the transition matrix of the health state Markov
chain is known or can be initially estimated. Assuming that
a group of patients share the same health state model, [7]
proposed an algorithm that utilizes the measurements across
this group to learn the model online. However, such a homo-
geneous group of patients is often unrealistic, and assuming
its existence precludes personalized healthcare.

In this letter, we relax the assumption that the health model
is known, thus enabling a personalized WBAN that can moni-
tor medical conditions where the patients’ characteristics vary
considerably. This adds the dimension of learning to the
already complicated tradeoff between accuracy and energy.

Having to learn how to monitor introduces another tradeoff,
between exploration and exploitation. The system needs to
learn the dynamics better to save more energy in the future,
but this learning itself wastes energy. Moreover, learning the
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dynamics means that our estimation of the misclassification
cost which drives our decisions, is never perfect.

RL [8] is designed to solve dynamic problems with an
unknown model. Implementing RL in health monitoring, how-
ever, is challenging for two key reasons: the cost is not given
as feedback and the state is only partially observable.

Most RL algorithms assume a Markov decision process
(MDP) where the controller can observe the state. In the
monitoring problem, the state is only partially observable. To
overcome this obstacle, we employ the Utile Suffix Memory
(USM) algorithm [9], which maintains an inner state-space
represented by a suffix tree, based on past observations. The
USM algorithm then computes the optimal Q-values (‘Utility’)
for these inner states. However, like any RL algorithm, USM
still needs the cost as feedback.

Unique to the monitoring problem, the control decisions
do not affect the state but only our knowledge of the state.
Since the true health state is unknown, the misclassification
cost is also unknown to the controller. When the model is
known, we can compute the expected misclassification cost
with respect to the random state. When the model is unknown,
then the cost feedback, which is necessary for RL, is not
available.

We present a novel monitoring system that can deal with
both a POMDP and partial cost feedback, which are the main
difficulties in introducing RL into WBAN monitoring. Our
algorithm combines RL for POMDPs and online estimation
of the misclassification cost based on a hidden Markov model
(HMM). We show empirically that our algorithm achieves
comparable performance with a quantization of the optimal
belief-MDP solution that knows the Markov health model.
Hence, our work is a step forward toward energy-efficient,
adaptive and personalized WBAN monitoring systems.

II. PROBLEM FORMULATION

Consider J health states a patient can occupy. We typically
refer to wi as a healthier state than wj if i < j, where the super-
script denotes the state. We assume that the unknown health
state process wt that we wish to monitor is a Markov chain.
As such, given wt, the transition to wt+1 is independent of
past states. This would be the case if the current health state
summarizes all the necessary medical information. Examples
of practical Markovian health models are SIS and SIR in epi-
demiology [10], which have two and three states, respectively.
The transition matrix θ of this Markov chain is unknown to
the controller since it depends on the patient’s unique profile.

Our WBAN consists of N binary sensors. At each timestep t,
the controller picks a subset of n sensors to activate in the
next timestep, represented by a binary vector at of size N.
As a function of at and the unknown wt+1, we observe the
sensors’ output ot+1, where ot+1 ∈ {∅, 0, 1}N , on = ∅ denotes
a deactivated sensor (i.e., an = 0) and on ∈ {0, 1} otherwise.
We assume that the sensors have a known accuracy matrix E,
where Enj = p(on = 1|w = wj) for the n-th sensor and
the j-th health state. These probabilities are specified by the
manufacturer and depend on the sensor technology.

The monitoring problem is an interesting instance of a gen-
eral POMDP [11] in which the selected action does not impact
the true state, but does affect the amount of information we
have on this state. In health monitoring, the controller chooses
to activate the sensors that would provide the best measure-
ments to estimate the health state, while maintaining efficient
power consumption. The controller’s goal is to minimize the
expected accumulated discounted cost:

E

{ ∞∑
t=1

γ t(Ca(at−1)+ ρt(wt))

}
(1)

for some discount factor γ , 0 < γ < 1.
The instantaneous cost ct in (1) combines two types of

costs. The energy cost Ca(at−1) results from activating the
subset of sensors at−1. The misclassification cost at time t
ρt(wt) depends on the distribution of wt, and accounts for
wrongly classifying the patient’s true health state. In medical
applications, miss-detecting is typically more detrimental than
false-detecting. Accordingly, we want to assign different costs
for these cases:

1) False positive (FP): Occurs when the patient’s health
state is better (lower) than the predicted state.

2) False negative (FN): Occurs when the patient’s state is
worse (higher) than predicted.

Let CFP,CFN be the known FP, FN costs. If the estimated
state is wj while the true state is wt, the misclassification cost
is the sum of the FP cost p(wt < wj)CFP and FN cost p(wt >

wj)CFN . The magnitudes of CFP,CFN can be tuned to balance
the energy and misclassification costs.

Since the probabilities p(wt = wj) for all j are unknown,
we introduce and calculate the probability distribution of the
health states given the past observations and actions. We thus
define the misclassification cost of wj as:

ρt(wt = wj) = CFP

j−1∑
j′=1

p(wt = wj′ |a0:t−1, o1:t)

+ CFN

J∑
j′=j+1

p(wt = wj′ |a0:t−1, o1:t) (2)

and the expected misclassification cost at time t as:

ρ̄(a0:t−1, o1:t) =
J∑

i=1

ρt(wt = wi)p(wt = wi|a0:t−1, o1:t). (3)

An RL controller learns how to act by observing the cost
feedback. While the energy cost is known, the misclassification
cost is unavailable to the monitoring system, since it requires
knowing the distribution of the patient’s health state.

III. MODEL-FREE WBAN MONITORING ALGORITHM

In this section, we describe the three components of our
monitoring algorithm (see Figure 1 and Algorithm 1): RL,
cost estimation, and Baum-Welch HMM (BW-HMM).

Algorithm 1 is run by the external controller that sends the
sensors activation commands. Typically, due to physiological
constraints, a medical sensor has to stay active for milliseconds
or even seconds to take a reliable measurement (e.g., heartbeat
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Algorithm 1 WBAN-RL Algorithm
Initialization: Initiate a tree with depth d = 1 and |O| leaves.
For timesteps t = 1, 2, . . . , T

1) Receive sensor output ot, assign instance It to leaf and fringe
nodes L(It) = st,F(It) = ft.

2) Estimate θ̂ using (11).
3) Estimate p(wt|st, ot) based on θ̂ , using (9), (10).
4) Estimate the cost ct for It using (8).
5) Update the Q-value for inner state st using (4), (5).
6) Test for significance of the fringe nodes of st using the

Kolmogorov-Smirnov test with a given p-value threshold.
7) If one of the fringes is significant: create a leaf from each

fringe node that satisfies the minimum leaf weight condition
|I(s)| > 0.1| ∪s∈S I(s)|.

a) For Ii ∈ I(st):
i) Assign Ii to new leaf and fringe nodes st = snew,

ft = fnew.
ii) Calculate the Q-value for all snew using (4), (5).

8) With probability ε, select at uniformly at random, and other-
wise select at = a∗ = arg min

a
Q(L(It), a).

9) Update U(st) = min Q
(
L(It), a∗

)
.

End

Fig. 1. The observations ot are used by both the BW-HMM and RL
modules. The RL module runs the USM algorithm that assumes the cost
feedback is available. However, the misclassification cost is unknown. To
overcome that, the cost estimation module estimates this unknown cost
based on the coarse model estimation given by BW-HMM. This coarse
estimation, however, would not be sufficient for model-based dynamic
programming. The controller then chooses which sensors to activate,
which determines the next observations.

or blood sugar). Hence, a modest controller (e.g., GHz CPU)
has plenty of time to compute the next commands. In appli-
cations where a low-complexity algorithm is needed, a greedy
version of Algorithm 1 can be used (simulated in Section IV).

A. Inner State-Space and Q-Value

Most RL algorithms assume that the system’s state is
known, which is not the case in our setting. Hence, we have
to treat the monitoring problem as a POMDP. This introduces
the challenge of summarizing the observation history.

One way to capture the observation history is with a suf-
fix tree structure. USM is an RL algorithm [9] that offers
state representation via an online growing suffix tree, where
states are distinguished based on their utility. The algorithm
encodes the raw experience history into the tree, where the
leaves act as inner states. An instance of the raw experi-
ence of time t, It = (at−1, ot, ct) is associated with a leaf
of depth d whose label is the d-length suffix of the history
sequence preceding It. That is, It belongs to a leaf with the

label [(at−d−1, ot−d, ct−d), . . . , (at−2, ot−1, ct−1)]. Instances
of matching history suffixes of a certain length are clustered in
leaf nodes, based on how much history is considered signifi-
cant for each instance, in terms of the utility. As a result, USM
can maintain different history lengths for different states. The
current inner-state is denoted by st, and is a function of the
history {a1:t−2, o1:t−1}. The instance of time t, It, is assigned
to a leaf L(It) = st based on its history sequence beginning
at time t − 1 going backward from the root until reaching a
leaf. Let the depth of leaf s be d(s), indicating the length of
the suffix of the coded history sequence. To solve Bellman’s
equation, the Q-value Q(s, a) of taking action a at inner state
s is updated using value iteration as follows:

Q(s, a)← C(s, a)+ γ
∑

s′
θa

ss′U(s
′) (4)

where U(s′) = min
a

Q(s′, a) is the utility of state s′. The instan-

taneous cost C(s, a) and the inner state transition probabilities
θa

ss′ are calculated as:

C(s, a) =
∑

Ii∈I(s,a) ci

|I(s, a)|
θa

ss′ =
|{Ii ∈ I(s, a) | L(Ii+1) = s′

}|
|I(s, a)| (5)

where I(s, a) is the subset of I(s) where action a was taken.
At each timestep t, the controller selects the action at to be
taken at the end of the timestep. With some probability ε > 0,
at is chosen uniformly at random, and otherwise:

at = a∗ = arg min
a

Q(L(It), a). (6)

B. Cost Estimation

An RL controller expects to observe the cost feedback for
its chosen action. In the health monitoring problem, the mis-
classification cost is unknown and needs to be estimated. To
that end, we analyze the relationship of the true health state
to the inner state the controller holds. The mapping O→ A of
an observation to its generating action is one-to-one, and we
denote it by G, so G(ot) = at−1. For example, if ot = (0, 1,∅)
then the activation vector was at−1 = (1, 1, 0). This is a unique
property of the monitoring problem, which does not gener-
ally apply to POMDPs. Therefore, given an observation, its
associated action provides no additional information:

p(wt|st, at−1, ot) = p(wt|st, ot) (7)

which implies that the misclassification cost (3) is only a
function of o1:t. The next proposition provides an expres-
sion for the probability of a health state given an inner
state, which is used to estimate the expected misclassification
cost in (2) and (3).

Proposition 1: The inner-state to health state conditional
probability satisfies:

p(wt|st, ot)

= p(ot|wt)

p(ot|st)

∑
j′

p(wt|wt−1 = wj′)p(wt−1 = wj′ |st). (8)
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Proof:

p(wt|st, ot) = p(wt, ot|st)

p(ot|st)
= p(ot|wt, st)p(wt|st)

p(ot|st)

= p(ot|wt)

p(ot|st)
p(wt|st) (9)

where we drop st in last equality since wt is Markovian.
We obtain (8) using the law of total probability on p(wt|st),
dropping st from p(wt|wt−1 = wj′) using Markovity again.

We now discuss how Algorithm 1 estimates (9). First,
p(o|w) is the known sensor accuracy E. Then, p(o|s) is
estimated as the proportion of instances in leaf s with observa-
tion o, p̂(ot = o|st = s) = |I(s,o)||I(s)| . Similarly, p(s) is estimated
as the proportion of the instances occupying s, i.e., p̂(s) =
|I(s)|
|I| where I =⋃

s∈S I(s). Then, p(wt−1 = wj|st = si) is the
probability of occupying health state wj following the observa-
tion of the sequence suffix si+1. The leaf labeled si+1 defines a
specific sequence of observations (oi, oi−2, .., oi−d(si+1)) where
the joint probability for the sequence si+1 and the health state
at the end of the sequence, wi, is:

p(wi, si+1) = p(wi, oi, si) = p(oi|wi)p(wi, si) =
= p(oi|wi)

∑
wi−1

p(wi|wi−1)p(wi−1, si) (10)

where si is the parent node of leaf si+1. This can be effi-
ciently computed recursively if each node s in the tree holds
its joint probability distribution with the health states. For an
initial node of s′ = (o′), the joint probability is p(w′, s′) =
p(o′|w′)ψ(w′) where ψ(w′) is the initial probability of health
state w′ (assumed to be known).

As (10) suggests, the transition probability between health
states is required to estimate the transition probability from
the last controller state st to the new health state wt. We
once more leverage the unique WBAN structure where at a
certain timestep t we only need the sequence of past observa-
tions, since given them, the past actions are redundant. This
sequence can be used to estimate the transition matrix θ using
the sequential Expectation-Maximization (EM) HMM algo-
rithm of Baum-Welch (BW) [12]. The BW algorithm (detailed
as Algorithm 2) finds the set of parameters of the HMM model
λ = (θ,E, ψ) that maximizes p(o1:T |λ). In our case, the sensor
accuracies and initial health state distribution E, ψ are given
and fixed, and we aim to extract θ :

θ̂ij = p̂(wt+1 = wj|wt = wi) =
T∑

t=1

ξt(i, j)

ζt(i)
(11)

where ξt(i, j) := p(wt+1,wt|o1:T , λ) and ζt(i) := p(wt =
i|1:T , λ) are updated sequentially in a forward-backward algo-
rithm. In each iteration r, the estimated transition parameter
θ(r) is updated based on θ(r−1) (the ‘M’ step), and for each
t = 1, . . . ,T , the components are recursively updated, forward
and backward (the ‘E’ step). We then utilize the BW algorithm
to estimate the transition probabilities online, which are used
to estimate the expected misclassification cost in (3).

Algorithm 2 Baum-Welch Algorithm (HMM)

Initialization: pick θ(1) at random, and receive E, ψ as input. Set
α1(i) = ψiEi(ot=1), βT (i) = 1 and r = 1.
While the likelihood has not converged:

1) For all t ∈ {1, .., T}, i ∈ {1, ..., J}, compute:
a) The forward component using θ(r):

αt(i) = (∑j αt(j)θ
(r)
ji )Ei(ot).

b) The backward component using θ(r):
βt(i) =∑

j θ
(r)
ij Ej(ot)βt(j) and βT (i) = 1.

c) ζt(i) = αt(i)βt(i)∑
j αt(j)βt(j)

.

d) ξt(i, j) = αt(i)θ
(r)
ij Ej(ot)βt+1(j)∑

j αt(j)βt(j)
, ∀j ∈ {1, . . . , J}.

2) Compute θ(r+1)
ij =

∑T
t=1 ξt(i,j)∑T
t=1 ζt(i)

. ∀i, j ∈ {1, ..., J}.
3) r← r + 1.

C. Tree (Inner State-Space) Construction

The inner state-space defined by the suffix tree is built online
while learning the policy. This introduces an exploration-
exploitation tradeoff in the tree construction: we want to
exploit the knowledge of the best actions for the existing inner
states, but also to explore who those inner states should be.
The main question in building the tree is, therefore, whether
additional memory is required to summarize the history.

The USM algorithm defines ‘fringe nodes’, which are a
potential memory extension of length k − d to an “official”
leaf of depth d. The fringe node fj of depth k holds the
set of instances I(fij) of its parent’s leaf si extended by an
additional suffix of length k − d. Each leaf node and its
fringes hold the Q-value Q(Ii) = ci + γU(L(Ii+1)) for each
of their instances and actions. The idea is to split leaves if
their descendants show statistically different expected future
discounted costs for the same action. The Q-value distribu-
tions of the parent leaf si and each of its fringes are compared
using the Kolmogorov-Smirnov (KS) test to check whether
they are significantly different. If the test suggests a signifi-
cant statistical difference, then additional memory is allocated
to distinguish the inner states better and the fringe is ‘pro-
moted’ to an official leaf, which enlarges the inner state
space S .

A major shortcoming of the USM algorithm is its scala-
bility, due to the tree expansion mechanism. For example, a
WBAN of N sensors has |O| = 3N possible observations.
The USM algorithm determines that if at least one of the
fringes of si is found significant, the entire level of fringes
is promoted to official leaves, which requires |O|d possible
sequences. This exponential increase in the size of the inner
state-space favors exploration but increases the complexity
tremendously.

To improve scalability, we include a pruning mechanism
following the KS test. This pruning mechanism limits the
allowed exploration to states that are frequent enough. We
adopt the “partial leaf” concept [13] in which a parent node
can still serve as an inner state, holding instances for which
additional memory expansion is not beneficial. Specifically,
we employ a threshold on the size of the set of instances
of state s, |I(s)| > 0.1|I| where I = ∪s∈SI(s), such that
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only leaves holding sufficient information can be extended.
As information continues to flow, we re-evaluate the partial
leaf’s remaining fringes and if the threshold is reached, the
withheld expansions are promoted into official leaves.

IV. SIMULATION RESULTS

In this section, we test the performance of WBAN-RL com-
pared with two alternative algorithms based on a belief-MDP
(“bMDP”) [12]. BW-bMDP estimates the unknown Markov
model θ on the fly using BW-HMM and uses the estimated
matrix to compute the solution, in the spirit of [7]. In contrast,
bMDP knows the exact θ , and therefore, while unrealistic, pro-
vides a lower bound benchmark for WBAN-RL [14]. We also
test the greedy policy that selects the action that minimizes the
instantaneous cost from the assigned inner state. It represents
a low-complexity alternative to value iteration that still uses
both our cost estimation and the USM tree.

In our simulations, we run WBAN-RL (Algorithm 1) for
T timesteps to learn the control policy. To evaluate the pol-
icy against the benchmarks, we run the resulting policy for
50 timesteps and report the accumulated discounted cost (pol-
icy value, see (1)) with γ = 0.95, averaging over 100 such
runs.

A. Performance for Different Transition Matrices

Consider a health monitoring system with J = 3 health
states, monitored by a WBAN with N = 2 sensors whose

accuracy matrix is E =
[

0.8 0.1 0.1
0.1 0.8 0.1

]
and sensors energy

costs of Ca = [13, 5]. We use the following form for θ :

θ̃ =
⎡
⎣1− x− x2 x x2

y 1− x− y x
y2 y 1− y− y2

⎤
⎦

where x is the transition probability from a lower health state
to a worse (higher) health state, and y is the probability to
transition into a better (lower) health state. In addition, we
impose the constraint that the probability to remain in the
same health state is larger than the probability to transition to
another health state, i.e., 1− (x+ x2) > x; 1− (y+ y2) > y.

The initial health state probabilities are ψ = [0.6, 0.3, 0.1]
and the FP and FN misclassification costs are Cm = [70, 90].
We quantize the continuous belief space of bMDP into
four uniform levels. For the KS test, we used a p-value
threshold of 5%. We used a WBAN-RL learning period of
T = 5, 000.

In Figure 2, we compare the WBAN-RL for a range of tran-
sition matrices θ̃ to the model-free ‘greedy’ policy and the
benchmark bMDP that knows θ . The results demonstrate that
throughout the defined space, the WBAN-RL algorithm out-
performs the greedy approach, and in most areas of the space
only slightly underperforms vis-ä-vis the bMDP approach that

assumes a known θ . For example, for θ1 =
⎡
⎣0.61 0.3 0.09

0.3 0.4 0.3
0.09 0.3 0.61

⎤
⎦,

WBAN-RL obtains a policy value very close to that of bMDP
– 2,770 vs. 2,732, where the greedy policy only achieves

Fig. 2. Performance for a range of transition matrices, for the WBAN-
RL model-free algorithm, its greedy low-complexity alternative, and
quantization of the bMDP optimal policy that knows the transition matrix.

Fig. 3. Comparison of the “model-based” BW-bMDP that estimates the
transition matrix online, with the model-free WBAN-RL.

2,893. This hierarchy between the policies remains throughout
the entire space.

B. Comparison With a Model-Based Alternative

When the transition matrix θ is unknown, an alternative
approach is to estimate it given the observations, and then
use the estimated matrix in a ‘model-based’ value iteration
(i.e., bMDP). Using the setting in Section IV-A, we com-
pared WBAN-RL with this alternative, termed “BW-bMDP”.
In each iteration, we first estimate θ using BW-HMM with 100
iterations (Algorithm 2). We then use this estimated matrix
to compute the next quantized belief state, select the next
action and update the value function. Figure 3 shows, for

θ2 =
⎡
⎣0.5 0.2 0.3

0.1 0.7 0.2
0.2 0.2 0.6

⎤
⎦, the accumulated discounted cost for

the two methods as a function of the learning period (hori-
zon) T . We observe that WBAN-RL can sustain significantly
lower costs compared to BW-bMDP. A fine enough quantiza-
tion is required to approximate the optimal solution well, but
it also increases the convergence time of value iteration. This
might explain why BW-bMDP does not converge. In contrast,
WBAN-RL quickly converges to its superior performance.
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Fig. 4. Performance as a function of the number of sensors N.

C. Performance for Different Numbers of Sensors

Figure 4 shows the accumulated discounted cost after a
learning period of T = 5, 000, as a function of the num-
ber of sensors. The accuracy matrix for N = 6 sensors was

E =

⎡
⎢⎢⎢⎢⎣

0.8 0.1 0.1
0.1 0.1 0.8
0.7 0.2 0.1
0.1 0.7 0.2
0.1 0.2 0.7

⎤
⎥⎥⎥⎥⎦ and for smaller N we used the subma-

trix starting from row one. Similarly, the energy costs were
Ca = [13, 5, 25, 50, 15, 35]. The transition matrix was θ1
from Section IV-A. We used 6 uniform quantization levels
for the state space of bMDP. The performance of WBAN-RL
stays almost constant for N = 3, 4, 5 and only degrades for
N = 6. With more sensors, WBAN-RL needs a bigger USM
tree to summarize the past observations, which takes more
time to build. Nevertheless, the scalability of the performance
is far better than that of the greedy or random policies. The
performance of bMDP improves with 6 quantization levels
(compared to 4), but its complexity increases exponentially.

V. CONCLUSION

We studied the problem of monitoring an unknown Markov
process (i.e., health model) by activating a subset of a network
of sensors every timestep. We focused on the energy–accuracy
tradeoff that is intertwined with the exploration-exploitation
tradeoff introduced when learning the control policy.

The main goal of this letter is to enable RL for WBAN
health monitoring. The two main obstacles to implement-
ing RL in health monitoring are that the state is unknown
(i.e., the problem is a POMDP) and that the cost feedback
is not fully available (i.e., misclassification cost is unknown).
Our algorithm overcomes these obstacles by combining USM-
RL for POMDPs with cost estimation using BW-HMM. The
BW-HMM module, which estimates the unknown transition
matrix θ , is only used to estimate the unknown misclassifi-
cation cost, while the decision-making itself is based on the

USM-RL algorithm. Our simulations suggest that our algo-
rithm outperforms the model-based approach that estimates θ
directly and then uses a model-based value iteration. Our algo-
rithm also achieves comparable performance with a four-level
quantization of the optimal belief-MDP solution.

Our work lifts the assumption that a Markovian health
model is known. However, Markov models are unsuitable for
some physiological processes. Therefore an exciting next step
is to lift the assumption that the health process is Markovian,
and study the performance of the proposed monitoring algo-
rithm in more detailed models [15], [16], [17].

Our monitoring algorithm is applicable beyond health appli-
cations. However, in applications where real-time computation
is necessary, a scalable version of our algorithm would have to
overcome the exponential complexity of the USM tree (e.g.,
in the number of sensors or states).
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