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Abstract— Estimating the entropy of a discrete random vari-1

able is a fundamental problem in information theory and related2

fields. This problem has many applications in various domains,3

including machine learning, statistics, and data compression.4

Over the years, a variety of estimation schemes have been5

suggested. However, despite significant progress, most methods6

still struggle when the sample is small, compared to the variable’s7

alphabet size. In this work, we introduce a practical solution8

to this problem, which extends the work of McAllester and9

Statos. The proposed scheme uses the generalization abilities10

of cross-entropy estimation in deep neural networks (DNNs) to11

introduce improved entropy estimation accuracy. Furthermore,12

we introduce a family of estimators for related information-13

theoretic measures, such as conditional entropy and mutual14

information (MI). We show that these estimators are strongly15

consistent and demonstrate their performance in a variety of16

use cases. First, we consider large alphabet entropy estimation.17

Then, we extend the scope to MI estimation. Next, we apply the18

proposed scheme to conditional MI estimation, as we focus on19

independence testing tasks. Finally, we study a transfer entropy20

(TE) estimation problem. The proposed estimators demonstrate21

improved performance compared to existing methods in all of22

these setups.23

Index Terms— Cross-entropy, joint entropy, mutual informa-24

tion (MI), neural networks, transfer entropy (TE).25

I. INTRODUCTION26

ENTROPY is one of the basic building blocks of informa-27

tion theory [1]. It quantifies the minimum average number28

of bits required to represent an event that follows a given prob-29

ability distribution rule. Many important information-theoretic30

measures such as mutual information (MI) and conditional31

MI (CMI) include marginal, conditional, and joint entropies.32

These measures have many applications in machine learning,33

such as feature selection [2], [3], representation learning [4],34

[5], and analyses of the learning mechanism [6], [7].35

One of the first entropy estimation methods is the classic36

plug-in scheme. In this scheme, an empirical distribution37

replaces the true (unknown) probability rule, and the corre-38

sponding empirical entropy is the estimated entropy. In addi-39

tion to its simplicity, the plug-in scheme enjoys several40

favorable properties (consistent, asymptotically unbiased, and41

others (see [8] and references therein). Unfortunately, it does42

not scale well as the dimension of the problem increases [9].43

A variety of parametric and nonparametric methods have44
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been proposed to improve entropy estimation, such as in [9], 45

[10], and [11]. Recently, a neural network-based method was 46

proposed to estimate entropy by minimizing the cross-entropy 47

(CE) loss [12] as an upper bound of the entropy. The CE 48

measures the average number of bits required to represent an 49

event that is generated from a probability distribution P by a 50

different probability distribution Q. CE achieves its minimum 51

when P = Q. Thus, minimizing CE implies searching for 52

a Q that is as similar as possible in a log-loss [13], [14] 53

sense to P . This approach has several advantages. First, it uses 54

the generalization power of neural networks and their univer- 55

sality [15], [16], [17]. Second, CE is less prone to negative 56

bias and high variance in large entropy values [12]. However, 57

this approach has certain limitations. First, it requires prior 58

assumptions on the true underlying distribution, as discussed 59

in Section III. Second, the statistical properties of this CE 60

estimator are currently unexplored. Therefore, the existence of 61

a neural network-based estimator that can provide an accurate 62

estimation of entropy is not guaranteed. 63

These challenges in entropy estimation are also related to 64

other information-theoretic measures. For example, one of 65

the most common MI estimation schemes is the K-nearest 66

neighbor (KNN) estimator [18]. This estimator was shown 67

to introduce a significant negative bias in setups with high 68

dependencies between the variables, resulting in large MI val- 69

ues [19]. Neural-network-based approaches have been recently 70

proposed to overcome this problem using variational bound 71

optimization [19], [20], [21]. Although a significant improve- 72

ment in the MI estimation has been achieved, the results are 73

not yet satisfying and suffer from theoretical limitations that 74

are primarily manifested in large MI values [12], [20]. There 75

is also a large body of work on fundamental estimation bounds 76

for different information-theoretic measures (see [9], [22] and 77

related work). 78

In this article, we address the inherent estimation challenges 79

discussed above. The proposed estimation scheme focuses 80

on joint entropy estimation. This problem is similar to the 81

standard entropy estimation problem as any discrete univariate 82

random vector may be represented, for example, as a binary 83

multivariate vector. In particular, we combine the chain rule 84

with the CE loss minimization procedure using neural net- 85

works to obtain a more accurate joint entropy estimation. 86

We denote this estimation procedure as the neural joint entropy 87

estimator (NJEE). We study the properties of NJEE and show 88

that it is strongly consistent. In a similar manner, we obtain 89

the conditional NJEE (C-NJEE), as an estimator for the 90

joint conditional entropy between two or more multivariate 91

variables. 92

Having these two estimators, we can use the difference 93

between the marginal entropy of one random variable and 94
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the conditional entropy of this variable given another to95

estimate the MI among these variables. Adding a second96

conditioning variable results in the CMI estimator. Addition-97

ally, we apply the proposed scheme to transfer entropy (TE)98

estimation. Given two time series, the TE is defined as the99

CMI between the “past” of the first series and the “future”100

of the second series given its “past.” TE is used to explore101

the information flow and causality among time-dependent102

data in neuroscience [23], [24], finance [25], [26], process103

control [27], [28], and many other applications. We show104

that using an autoregressive neural network model, such as105

a recurrent neural network, C-NJEE can be used for efficient106

TE estimation.107

The advantages of the estimators proposed in this article are108

demonstrated in various use cases. First, we study the entropy109

estimation of a discrete random variable with a large alphabet110

size. Applying NJEE to this problem, we outperform existing111

methods when the sample size is much smaller than the112

alphabet size. Further, we focus on MI estimation between two113

multivariate variables. A commonly used toy problem is used114

for this task. The performance of the proposed MI estimator115

demonstrates improved results in terms of lower bias and vari-116

ance, compared to existing methods. This result is specifically117

manifested in larger values of MI. Next, we demonstrate the118

performance of the suggested CMI estimator, as we focus119

on conditional independence tests. We study a real protein120

dataset where dependencies among the variables (protein ele-121

ments) are known. Here to, the proposed estimation scheme122

demonstrates better results than existing methods. Finally, the123

CMI estimator is applied to a TE estimation task. Specifically,124

we study a real financial dataset of stock index prices and show125

that the C-NJEE-based estimation provides additional insights126

on the information flow between the time series that are not127

discovered by the other methods. These insights are in line128

with domain knowledge and the world financial timeline.129

To summarize, the contributions of this article are threefold.130

First, we extend the work of [12] and introduce strongly131

consistent estimators for joint entropy and conditional joint132

entropy. The proposed estimators, NJEE and C-NJEE, are133

based on minimization of the CE loss while applying the134

entropy chain rule property. Second, we apply these estimators135

to obtain estimators for related measures such as MI, CMI,136

and TE. Third, we propose a practical implementation scheme137

of these estimators that demonstrates better performance than138

existing methods on various tasks and datasets.139

The remainder of this article is organized as follows.140

Related works on entropy, MI, CMI, and TE estimation141

are discussed in Section II. In Section III, definitions and142

related mathematical overview are given to support the scheme143

and ideas proposed in this article. The primary results are144

shown in Section IV. An empirical study of various tasks and145

comparisons with different benchmark methods are provided146

in Section V. We conclude this article in Section VI.147

II. RELATED WORK148

Estimating information-theoretic measures is a well-studied149

problem. We refer the reader to [9], [11], [18], [20], [29], [30]150

for a comprehensive review of these measures. The following 151

literature review focuses on estimators that are relevant for this 152

work. 153

A. Entropy Estimation in Large Alphabet 154

As mentioned in Section I, the simplest method for estimat- 155

ing the entropy of a discrete random variable is the so-called 156

plug-in estimator [1]. The Miller-Madow (MM) estimator [31] 157

adds a bias correction to the plug-in estimator. This correction 158

depends on the ratio between the number of symbols from 159

the alphabet that appear at least once in the sample and the 160

sample size. 161

More recently, the Chao–Shen (CS) estimator [10] was 162

proposed to estimate the entropy of species in a commu- 163

nity (in this biological context, the entropy is called the 164

diversity index), where the number of species (alphabet 165

size) is large and unknown. This estimator is based on 166

the Horvitz–Thompson estimator for population size and the 167

Good-Turing estimator for the probability of unseen events. 168

In [9], an entropy estimator is obtained using a polynomial 169

approximation for the terms in the entropy sum that involve 170

small probabilities with respect to log k, where k is the alpha- 171

bet size. For larger probabilities, an unbiased plug-in estimator 172

is used that is similar to the MM estimator. Thus, improved 173

results are demonstrated on simulated data of discrete random 174

variables with large alphabet sizes where many symbols have 175

relatively low probability. 176

B. MI and CMI Estimation 177

In this section, we provide a brief review of MI and 178

MI-related estimators for both discrete and continuous 179

variables. 180

The KNN-based KSG estimator [18], uses KNN-based 181

density estimation over a shared space of the marginal and con- 182

ditional entropy. Using the connection between MI and entropy 183

(see Section III-B), the entropies’ bias terms are subtracted to 184

provide a more accurate MI estimation. This estimator is also 185

shown to be consistent. However, it underestimates the MI 186

when the true MI is large [19], [32]. An intuitive explanation 187

is that the KSG estimator approximates the probability density 188

in a k nearest neighbors ball or max-norm rectangle, under 189

the assumption that in this local neighborhood, the density 190

is uniform. If strong correlations exist, the density in the 191

shared space will be more singular, hence the uniform density 192

assumption becomes problematic [32]. Another drawback of 193

the KSG estimator is that there is no clear way to choose 194

the most appropriate value of k, since this is an unsupervised 195

estimation procedure [33]. 196

The recent advances in deep learning motivated various 197

researchers to address the dimensionality problem by estimat- 198

ing the MI with neural networks. This is usually obtained 199

by finding variational lower bound for the MI (typically, 200

a differentiable function that is called a critic, which its 201

supremum is the MI). These functions are approximated by 202

neural networks to maximize the lower bound [19], [20], [21]. 203

These methods yield improved results compared to the KNN- 204

based estimators. However, they are quite limited in cases 205
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where the MI increases, since their estimation complexity206

increases exponentially with the number of samples [12], [20].207

A different MI estimation approach, which also utilizes208

neural network CE minimization, is proposed in [12]. There,209

a MI estimate is obtained by subtracting the estimated con-210

ditional entropy from the estimated marginal entropy. This211

approach motivates our proposed estimation scheme as dis-212

cussed in further detail in Section III-C. A similar approach for213

MI estimation using the softmax function (e.g., as the output214

layer in a neural network), is suggested in [34]. However,215

this scheme is limited to the case where the input variable216

is multivariate, while the target variable is univariate.217

An additional important approach utilizes an embedding218

of the data to reproducing kernel Hilbert spaces (RKHS)219

for estimating the Rényi’s entropy. Rényi’s quadratic entropy220

is the log function of the statistical mean embedding of221

the projected data in RKHS [35]. Let x and y be samples222

from two Borel measures P and Q. Since the embedding is223

injective, transforming the respective samples to a RKHS (with224

a corresponding kernel G(·, ·)) implies that E(G(x, .)) =225

E(G(y, .)) if P = Q [36], [37], [38]. This shows that one226

does not need to explicitly define functional approximators to227

estimate information descriptors in this framework. To obtain228

the estimated value, all is needed is to compute the mean229

value of the projected samples using the kernel trick and apply230

a log function. Note that this can be extended to any value231

α of Rényi’s entropy, which includes Shannon entropy for232

α→ 1. In a more recent result, Giraldo et al. [39] utilizes the233

eigenvalues of the normalized Gram matrix to estimate MI,234

which is more flexible than the statistical embedding.235

Additional approaches using RKHS were recently proposed.236

The kernel KL divergence estimator (KKLE) [40] is a nonpara-237

metric method which is suggested to reduce the optimization238

problem of searching a tight lower bound to the MI to a239

convex problem. It is also shown that this estimator is strongly240

consistent. However, as noted by Ahuja [40], this approach241

still suffers from a large estimation error in cases where242

the dimensions of the variables increase. Sreekar et al. [41]243

proposed to optimize the variational lower bound, such as244

those described earlier, while limiting the search for functions245

in the RKHS, thus controlling the complexity of the hypothesis246

space. This regularization is applied by an automated spectral247

kernel learning (ASKL) to learn the appropriate kernel. It is248

shown that using ASKL, MI estimations with lower bias and249

variance are obtained, specifically in larger values of MI.250

As for the CMI estimation problem, a classifier based251

conditional MI (CCMI) is proposed in [42]. A two-sample252

classifier is used to distinguish between samples from the253

joint distribution and samples from the marginal distribution.254

Combining conditional generative models [e.g., conditional255

generative adversarial networks (CGANs) or conditional vari-256

ational autoencoders (CVAEs)], an estimator for the CMI was257

developed. This approach introduced a significant improve-258

ment over other recently proposed methods.259

C. TE Estimation260

The TE is defined as a form of CMI between time series.261

Specifically, TE(Yfuture; Xpast) = CMI(Yfuture, Xpast|Ypast)262

(see a formal definition of TE in Section III-B). There are 263

two primary approaches for TE estimation. The first approach 264

considers every variable in every timestamp as a separate 265

variable, and uses any MI or CMI estimator to estimate the 266

TE [43], [44], [45]. The second approach applies a sequential 267

model that considers the time dependencies among different 268

time lags to extract an estimator for the TE and its related 269

measures [46], [47]. As a representative of the first approach, 270

a recently proposed estimator [45] called the intrinsic transfer 271

entropy neural estimator (ITENE) applies a neural network 272

two-sample classifier to estimate the TE. Using the second 273

approach, the context tree weighting (CTW) algorithm [48] is 274

utilized in [46] for directed information estimation (a closely 275

related measure to TE [49]). Both works investigate a financial 276

time series of index prices to evaluate their estimators. We use 277

the same dataset to evaluate the proposed method. 278

III. BACKGROUND 279

A. Notations 280

The following notations are used throughout this article. 281

A univariate discrete random variable is denoted by an 282

upper-case letter (e.g., X), that obtains values x from the 283

alphabet Ax = {1, . . . , ax}. A multivariate variable with 284

dimensions dx is denoted by an underline, (e.g., X ), where its 285

values are denoted by underlined lower-case letter x . The mth 286

component of X is denoted as Xm , which obtains values xm 287

from the alphabet Axm = {1, . . . , axm } which can be different 288

for different values of m. The vector of the first k components 289

of X is denoted by X k . 290

We denote Ĥn(X) as the estimator of X’s entropy given a 291

sample S = {. . .}ni=1, where it is implied from the text that S 292

is a collection of n samples of X . This notation holds for other 293

estimators as well. For example, În(X; Y |Z) is an estimator 294

of the CMI between X and Y given Z , from a collection of n 295

samples from the joint distribution of X , Y and Z . To avoid 296

an overload of notation, we denote xi as the i th sample in S, 297

while Xm is the mth component of the random vector X . 298

For the time notation, a multivariate variable in time t 299

is represented by a bracket index, e.g., X (t) and a matrix 300

that represents its past l time lags is represented by X (l)
(t) = 301

[X (t−l), . . . , X (t)]. 302

B. Definitions 303

Let X be a discrete random variable that follows a proba- 304

bility distribution P(X ). Shannon’s entropy is defined as 305

H (X) = −EP(X)

[
log P(x)

]
. (1) 306

The entropy (1) can be represented by the chain rule 307

H (X) = H (X1, X2, . . . , Xdx ) 308

=
dx∑

m=1

H (Xm|Xm−1, . . . , X1) (2) 309

where H (X1|X0) abbreviates H (X1). 310

The CE between any two distribution functions P(X ) and 311

Q(X) is defined as 312

CE(Q(X)) = −EP(X)

[
log Q(X)

]
(3) 313
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where the expectation is over the distribution of X , namely,314

P(X).315

The following inequality holds for every pair of distributions316

P(X) and Q(X):317

CE(Q(X)) ≥ H (X) (4)318

where an equality is obtained for Q(X) = P(X).319

A related measure to CE is the Kullback–Leibler divergence320

(DKL) between P(X) and Q(X)321

DKL(P(X )||Q(X)) = EP(X)

[
log

P(X)

Q(X)

]
. (5)322

The DKL is a nonnegative measure and equals zero iff323

P(X) = Q(X).324

The MI, denoted as I (X ; Y ), quantifies in bits the entropy325

reduction in X given the knowledge obtained from another326

random variable Y , that is,327

I (X ; Y ) = H (X)− H (X|Y ). (6)328

Another important measure that is represented by the dif-329

ference of entropies is conditional MI (CMI)330

I (X ; Y |Z) = H (Y |Z)− H (Y |X , Z). (7)331

CMI is also used to evaluate the TE, which is defined in [50]332

TEX→Y = I
(

X (k)
(t) ; Y (t+1)|Y (l)

(t)

)
. (8)333

Assuming discrete time, the TEX→Y is the CMI between334

the past k time lags of X and Y at time t + 1 given the past335

l time lags of Y .336

C. CE-Based Entropy337

Let P(X ) be the distribution function of X . Let Tθ (X) be338

a neural network that approximates it. In [12], the following339

upper bound for the entropy of X was proposed:340

H�(X) = inf
θ∈� CE(Tθ (X)) (9)341

and H�(X) = H (X) iff P(X ) = Tθ (X). Given a sample S of342

size n, the sample mean is used to estimate the CE343

ĈEn(Tθ (X)) = −1

n

n∑
i=1

log Tθ (x i). (10)344

This estimator is shown to be unbiased under the conditions345

of the uniform law of large numbers, which are described in346

Section IV.347

Next, an estimator of the entropy is obtained by348

Ĥn(X) = inf
θ∈� ĈEn(Tθ (X)). (11)349

McAllester and Stratos [12] suggest an entropy estimator350

based on the above. However, they require a prior knowledge351

of P(X). The reason for this requirement is that [12] treat (11)352

as a maximum likelihood optimization problem, where the353

parameters θ of the function T are obtained by a training354

procedure given samples from X . As such, one should define355

in advance what is the family of functions for which T belongs356

to, and optimize its parameters accordingly.357

IV. MEASURING THE JOINT ENTROPY 358

WITH NEURAL NETWORKS 359

In this section we discuss the primary concepts of this 360

article. First, the neural network classifier and its respective 361

CE are formally defined. Then, the NJEE is introduced. 362

Next, we define a strongly consistent estimator and show 363

that the proposed joint entropy estimator satisfies this prop- 364

erty. We also provide an algorithmic implementation of the 365

proposed estimator and discuss practical aspects of its imple- 366

mentation. Next, estimator for the joint conditional entropy is 367

provided with the corresponding algorithmic implementation. 368

Using the estimators of the joint entropy and the conditional 369

joint entropy, estimators for MI, CMI, and TE are obtained. 370

Throughout this work we focus on measures that are 371

continuous functions in an n-dimensional space, unless explic- 372

itly stated otherwise. We also use continuously differentiable 373

activation functions, such that the conditions for the universal 374

approximation theorem holds [15], [51]. 375

A. Neural Network Classifier and Classification CE 376

The following basic definitions are used throughout this 377

section. 378

Definition 1 (Neural Network Classifier): Let Gθ (Y |X) be 379

a neural network model with a random variable input X and 380

parameters θ in a compact domain � ∈ R
k . The outputs of 381

Gθ (Y |X) are defined over the probability simplex: {Gθ (y|x) ∈ 382

R
ay : ∑ay

y=1 Gθ (y|x) = 1, Gθ (y|x) ≥ 0}, where Y ∈ Ay = 383

{1, . . . , ay}, ay ≥ 2. 384

Intuitively, a neural network classifier provides a mapping 385

from an input X to an output Y . This output is the probability 386

to obtain every symbol in the alphabet of Y given the input 387

X . For example, mapping a vector of pixel values to prob- 388

abilities over possible image classes in image classification 389

task. In practice, the probability distribution of Y is obtained 390

by a softmax layer with number of nodes that is equal to the 391

alphabet size of Y (see [52], Section IV for more details). 392

Next, we define the CE of this classifier. 393

Definition 2 (Classifier CE): Let Gθ (y|x) be a neural net- 394

work classifier. The CE of this classifier is defined as 395

CE(Gθ (Y |X)) = −EP(X,Y ) log Gθ (y|x). (12) 396

We assume that − log(Gθ (y|x)) ≤ η for all x ∈ X 397

and for all θ ∈ R
k , for any value of Y . Practically, this 398

assumption is used in many model training procedures to avoid 399

an unbounded loss [14]. The empirical estimator of this CE is 400

given in [53], namely 401

ĈEn(Gθ (Y |X)) = −1

n

n∑
i=1

log(Gθ (yi |xi)). (13) 402

Note that under these definitions, the input X is not neces- 403

sarily discrete. However, the proposed entropy estimator that is 404

introduced in the following section assumes that X is discrete 405

as well. 406

B. Neural Joint Entropy Estimation 407

Given (2) and Definitions 1 and 2, we define the estimator 408

of the joint entropy. 409
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Definition 3 NJEE: Let Ĥn(X1) be an estimated marginal410

entropy of the first components in X and let Gθm (Xm |Xm−1)411

be a neural network classifier. Then, NJEE is defined as412

Ĥn(X) = Ĥn(X1)+
dx∑

m=2

ĈEn(Gθm (Xm|X m−1). (14)413

In words, the joint entropy estimator consists of a marginal414

estimator for the first component, followed by estimators for415

the conditional entropies H (Xm|Xm−1), for m = 2, . . . , dx .416

The main difference between the NJEE and the estimator417

defined in (11) is the use of the chain rule, which enables418

a self-supervised procedure, where the input to the neural419

network is composed from the first m − 1 components of X ,420

and the target goal is to infer the class of component m of421

X . Thus, it does not require any prior knowledge about the422

underlying distribution of either X or Y .423

Definition 4 [Strong Consistency (Following [19])]: The424

estimator Ĥn(X) is strongly consistent if for all ε, δ > 0 and a425

constant C > 0, there exists a positive integer N and a choice426

of a neural network such that427

∀n ≥ N, |H (X)− Ĥn(X)| ≤ C · ε + δ, a.e.428

Theorem 1: NJEE is strongly consistent.429

C. Proof of Strong Consistency Property430

In this section we follow the scheme shown in [19] to prove431

Theorem 1. This proof includes the following main steps.432

1) Connecting the true CE of a classifier-based neural net-433

work and the conditional entropy H (Y |X) (Lemmas 1434

and 2).435

2) Showing the convergence of the empirical CE to the true436

CE (Lemma 4).437

3) Showing that the empirical CE can approximate with438

high accuracy the conditional entropy (Lemma 5).439

4) Applying the chain-rule property and the previous steps440

to show that the proposed estimator of the joint entropy441

is strongly consistent.442

We begin with the first step. Formally, since neural networks443

are universal approximation functions [15], [16], [17], the444

following holds.445

Lemma 1: For any ε > 0, and any conditional distribution446

function P(Y |X) that is continuous over its support, there447

exists a neural network Gθ (Y |X) such that448

DKL(P(Y |X)||Gθ (Y |X)) ≤ ε

2
, a.e. (15)449

That is, it is possible to find a neural network that can450

approximates P(Y |X) in any desired approximation level.451

The next Lemma states that the CE can be used to estimate452

the conditional entropy.453

Lemma 2: Let P(Y |X) be a conditional distribution and let454

H (Y |X) be the entropy associated with this distribution. Then,455

for any ε > 0, there exists a neural network Gθ (Y |X) such456

that457

|CE
(
Gθ (Y |X)

)− H (Y |X)| ≤ ε

2
, a.e. (16)458

The proof of this lemma follows the ideas shown in [12] 459

H (Y |X) = EP(X,Y ) log
1

P(y|x)
460

= EP(X,Y ) log
1

Gθ (y|x)

Gθ (y|x)

P(y|x)
461

= EP(X,Y ) log
1

Gθ (y|x)
− DKL(P(y|x)||Gθ (y|x)) 462

≥ CE(Gθ (Y |X))− ε

2
(17) 463

where the last line follows Lemma 1. As shown in (4), we have 464

that 465

CE(Gθ (Y |X))− H (Y |X) ≥ 0 (18) 466

therefore 467

|CE
(
Gθ (Y |X)

)− H (Y |X)| ≤ ε

2
. 468

The empirical estimator for this classifier CE is obtained 469

from (13). The conditions for the convergence of this estimator 470

are defined by the uniform law of large numbers. 471

Lemma 3: The uniform law of large numbers [54]. Let � 472

be a compact set of parameters. Let fθ (xi ) be a continuous 473

function at each θ ∈ � and x i ∈ X . Assume there exists an 474

upper bound η(X) such that � f (x)� ≤ η(x) for all θ ∈ � and 475

E[η(X)] <∞. Then, E[ fθ (X)] is continuous and 476

sup
θ∈�

∥∥∥∥∥1

n

n∑
i=1

fθ (x i)− E[ fθ (X)]
∥∥∥∥∥ p→ 0. (19) 477

Using Lemma 3, the convergence of the classifier CE is 478

obtained 479

Lemma 4: For any ε > 0 and ∀θ ∈ �, there exists a 480

positive integer n ≥ N such that 481

P
(
|ĈEn(Gθ (Y |X))− CE(Gθ (Y |X))| ≤ ε

2

)
= 1. (20) 482

The proof of this Lemma is an immediate application of (13) 483

with 484

fθ ((xi , yi)) = − log(Gθ (yi |x i)) (21) 485

since − log(Gθ (yi |xi )) ≤ η, then fθ ((x i , yi )) ≤ η and 486

Lemma 3 holds. 487

Lemma 5: The estimator ĈEn(Gθ (Y |X)) is strongly con- 488

sistent. That is, for all ε > 0, there exists a positive integer 489

n ≥ N and a choice of neural network such that 490

|H (Y |X)− ĈEn(Gθ (Y |X))| ≤ ε, a.e. (22) 491

This lemma is obtained using the triangular inequality with 492

Lemmas 2 and 4 493

|H (Y |X)− ĈEn(Gθ (Y |X))| 494

≤ |CE
(
Gθ (Y |X)

)− H (Y |X)| 495

+ |ĈE(Gθ (Y |X))− CE(Gθ (Y |X))| ≤ ε. (23) 496

Restating (2) 497

H (X) = H (X1)+
dx∑

m=2

H (Xm|Xm−1). (24) 498
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Suppose there exists dx−1 neural networks that approximate499

each term in the sum with an ε accuracy. Then, the total error500

of the sum expression is ε · (dx − 1). The marginal entropy501

H (X1) is estimated with an estimator Ĥn(X1) that guarantees502

an error that is not larger than certain δ > 0. Several estimators503

can provide such a guarantee, e.g., [9], [11]. In this case504

|H (X)− Ĥn(X)|505

=
∣∣∣∣∣H (X1)− Ĥn(X1)+

dx∑
m=2

H (Xm|X m−1)506

−
dx∑

m=2

ĈEn(Gθm (Xm |Xm−1)

∣∣∣∣∣507

≤ |H (X1)− Ĥn(X1)|508

+
∣∣∣∣∣

dx∑
m=2

H (Xm|Xm−1)−
dx∑

m=2

ĈEn(Gθm (Xm|Xm−1)

∣∣∣∣∣509

≤ δ + C · ε (25)510

where C = dx − 1. �511

D. Algorithmic Implementation of NJEE512

The implementation of the NJEE estimator is described in513

Algorithm 1.514

Algorithm 1 NJEE
1: input: Sample S = {xi }ni=1 from P(X )
2: hm ← 0, for m = {1, . . . , dx}
3: h1 ← Ĥn(X1)
4: Initialize {θm}dx

m=2
5: for m in 2 to dx do
6: hm ← Minimize Ĉ En(Gθm (Xm|X m−1))
7: end for
8: Ĥn(X)← h1 +∑dx

m=2 hm

9: return: Ĥn(X)

Practically, Algorithm 1 can be implemented in parallel per515

each value of m. Another approach is to use a recurrent neural516

network (RNN) that replaces the dx − 1 networks. In this517

case, the sequential input to the RNN is the components518

vector of X (e.g., see distribution estimation with RNN519

in [55]). Then, the estimated entropy would be the sum of520

all the CE losses in every time step. The empirical results521

of this implementation demonstrate similar performance to522

Algorithm 1.523

We also note that using the CE loss, it is possible to replace524

the neural network model with any other classifier to estimate525

the entropy. However, in this case, Lemma 1 may not apply,526

and strong consistency is not guaranteed.527

E. Conditional-Neural Joint Entropy Estimation528

The conditional entropy of two multivariate random vari-529

ables X and Y is530

H (X |Y ) =
dx∑

m=1

H (Xm|Y , X m−1). (26)531

To estimate (26), a slight change is made to NJEE, where 532

all components in the proposed estimator are neural networks 533

[c.f. (14)]. 534

Definition 5: C-NJEE. Let Gθm (Xm |Y , X m−1) be a neural 535

network classifier with inputs Y and X m−1. Then C-NJEE is 536

defined as 537

Ĥn(X |Y ) =
dx∑

m=1

ĈEn(Gθm (Xm |Y , X m−1)). (27) 538

Corollary 1: C-NJEE is strongly consistent 539∣∣∣∣∣H (X |Y )−
dx∑

m=1

ĈEn(Gθm (Xm |Y , X m−1))

∣∣∣∣∣ ≤ dx · ε, a.e. 540

(28) 541

The proof of Corollary 1 is straightforward. Notice that 542

every conditional entropy in the sum expression of (26) can 543

be estimated by a classifier CE with ε estimation error. 544

Since there are dx conditional entropies estimators, the total 545

estimation error of Ĥ(X |Y ) is dx · ε. The implementation of 546

C-NJEE is described in Algorithm 2. 547

Algorithm 2 C-NJEE
1: input: Sample S = {xi , y

i
}ni=1 from P(X , Y )

2: hm ← 0, for m = {1, . . . , dx}
3: Initialize {θm}dx

m=1
4: for m in 1 to dx do
5: hm ← Minimize Ĉ En(Gθm (Xm|Y , X m−1))
6: end for
7: Ĥn(X |Y )←∑dx

m=1 hm

8: return: Ĥn(X |Y )

We now apply NJEE and C-NJEE to introduce an estimator 548

for the MI 549

În(X; Y ) = Ĥn(X1)+
dx∑

m=2

ĈEn(Gθm (Xm |Xm−1) 550

−
dx∑

m=1

ĈEn(Gθm (Xm |Y , X m−1)). (29) 551

Similarly, given a variable Z , an estimator for the CMI (7) 552

can be obtained 553

În(X; Y |Z) =
dx∑

m=1

ĈEn(G(Xm|Z , X m−1)) 554

−
dx∑

m=1

ĈEn(G(Xm|Z , Y , X m−1)). (30) 555

Again, since all models are trained independently, the worst 556

case error of these estimators is the sum of the errors of 557

NJEE and C-NJEE, thus these estimators are also strongly 558

consistent. Note that unlike the entropy estimator, În(X ; Y ) 559

and În(X ; Y |Z) are well defined also in cases where X is 560

discrete while Y and/or Z are continuous. This important class 561

of MI estimation problems is discussed in detail in [56]. 562
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SHALEV et al.: NEURAL JOINT ENTROPY ESTIMATION 7

Fig. 1. RMSE (log scale) of entropy estimations versus the log of the sample size for NJEE and the benchmark methods from Section II-A (Polynomial [9],
CS [10], MM [31], and plug-in [11]), in different simulated studies. The results are the average of 100 measurements per each sample size and distribution
type. The standard deviation of the RMSE is negligible with respect to its average value for each estimator.

V. EXPERIMENTS563

In this section, we demonstrate the performance of the564

proposed estimators in various estimation tasks. A python565

implementation of the code, including the presented experi-566

ments, is located in https://github.com/YuvalShalev/NJEE.567

To apply these estimators, we train a set of neural networks.568

Unless stated otherwise, the following basic network structure569

is considered throughout these experiments: an input layer,570

two fully connected layers with 50 nodes, a ReLU activation571

function, and an output softmax layer. The loss is optimized572

with the ADAM [57] optimizer with the following parameters573

(lr = 0.001, β1 = 0.9, β2 = 0.999).574

A. Entropy Estimation With Large Alphabet575

We begin this experimental section with large alphabet576

entropy estimation using NJEE. Prior to applying NJEE,577

we change the univariate representation values of the alpha-578

bet to their binary representation. Any other small alphabet579

representation, such as ternary, is also valid. The evaluation is580

preformed on six simulated studies, most of which were used581

in previous works (e.g., [9]).582

1) Uniform distribution.583

2) Zipf’s law distribution with parameters α = 1, 2.584

3) Geometric distribution with p = 1/105.585

4) Symmetric mixture of a Zipf’s law distribution (α = 1)586

and Geometric distribution (p = 2/105).587

5) Discrete Laplace (DL), where DL(X, σ ) ∝588

(1/2σ)e−(X/σ ) and σ = 10−4.589

The alphabet size of X is set to 105 (excluding the last experi-590

ment where the alphabet is not limited, yet is approximated to591

105 given the value of σ ). Every simulated study (defined by592

a distribution type and a sample size) is repeated 100 times.593

Fig. 1 demonstrates the root mean squared error (RMSE)594

of the entropy estimation as a function of the sample size for595

NJEE and other entropy estimators described in Section II-A.1596

1The code of the polynomial method is provided by [9] in
https://github.com/Albuso0/entropy. See the Entropy R package in [58]
for the implementation of the other benchmark methods.

As shown, NJEE demonstrates the lowest RMSE in most 597

cases. Specifically, NJEE demonstrates the lowest error in all 598

the experiments where n ≤ 1000. This result should not be 599

surprising, since it was demonstrated that neural networks can 600

generalize well on small dataset [59]. 601

B. Multivariate MI Estimation 602

In the following set of experiments we apply the proposed 603

scheme to a simple multivariate MI estimation problems. 604

This setup is commonly used to benchmark estimators of the 605

MI [19], [20], [21], [40], [41], [42]. 606

The setup is defined as follows. Let X and Y be two random 607

vectors in R
d such that 608[

X Y
]T ∼ N (0,
XY) 609


XY =
[

Id ρ Id

ρ Id Id

]
. (31) 610

Notice that the correlation between the pairs (Xi , Y j ) is ρ 611

when i = j and zero otherwise. Further, Cov(X) = Cov(Y ) = 612

Id , and the MI between X and Y is thus simply 613

I (X ; Y ) = −d

2
· log(1− ρ2). 614

In this study, samples are generated from the model above, 615

using different values of ρ (or equivalently, different values of 616

MI). 617

Our proposed scheme (Algorithm 1), is designed for dis- 618

crete variables. To apply our scheme to continuous variables, 619

we suggest to first quantize them. Binning of continuous 620

data for MI estimation has been extensively studied over 621

the years [12], [26], [44], [46], [60], [61]. Here, a simple 622

(heuristic) binning scheme is applied. We start by binning the 623

data to a small number of equal-probability bins and estimate 624

the MI using NJEE. This procedure is repeated for increasing 625

number of bins, where larger number of bins results in larger 626

MI values. We continue until the change in the obtained MI 627

value as a function of the number of bins is below a predefined 628

threshold, that equals to 0.01 nats in this study. Note that this 629
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Fig. 2. MI estimation of the study in (31) with various values of ρ. În(X; Y )
is compared to the KNN (k = 3) method [18]. The dimensions of X and Y are
20. The results are obtained from ten repetitions of the simulation with 50 000
samples each. Bin number for the NJEE-based estimator is 60. The variance
of the RMSE is small with respect to its average value for each estimator.

binning scheme cannot be applied for entropy estimation of630

continuous data.631

In Fig. 2, the NJEE-based algorithms are compared to the632

KNN MI estimation method [18]. With small absolute values633

of ρ, the two methods yield accurate results with variance634

of 0.01 bits. As ρ increases (and thus the MI increases),635

the KNN estimator significantly deviates from the true value,636

as demonstrated in [19]. This verifies the results obtained637

in [32], where it is stated that the KNN estimator requires638

exponential number of samples in the value of MI to provide639

accurate estimation. On the other hand, NJEE yields better640

results for greater MI, similar to [12], yet without a prior641

assumption on the characteristics of the underlying distribution642

(e.g., normal distribution function). Although not presented643

here, a similar experiment with low dimensions (d ≤ 6)644

and small correlations ρ ≤ 0.5, demonstrates comparable645

performance of the KNN estimator to NJEE and other neural646

network-based estimators. To conclude, in problems with low647

dimensional space and expected small MI, the KNN estimator648

is a good choice. Otherwise, in possibly more challenging649

setups, a neural network-based approach should be considered.650

Let us now compare NJEE to alternative neural-network-651

based estimation schemes. Here, we focus on the experimental652

setup of [19].653

Again, we draw samples from the model described in (31).654

In this experiment, we begin with ρ = 0 and draw a655

total of 4000 batches with 64 samples in each batch. Then,656

we estimate the MI from the drawn samples. We increase657

ρ and repeat the previous step. We terminate at ρ = 1.658

În(X ; Y ) is compared to the recently proposed variational659

methods.2 As demonstrated in Fig. 3, the results achieved by660

the proposed estimator exhibits lower bias and variance with661

respect to the variational benchmark methods. The upper rows662

2Poole et al. [20] for providing us with the implementation code for the
variational methods.

TABLE I
BEST RESULTS OF EVERY ESTIMATOR FOLLOWING A HYPERPARAMETER

GRID SEARCH FOR THE GAUSSIAN SETUP (31) (UPPER ROWS) AND ITS
CUBIC TRANSFORMATION (LOWER ROWS). THE TRUE MI VALUES ARE

SHOWN IN THE FIRST ROW. THE RESULTS OF THE BENCHMARK

METHODS FOR 2 TO 10 NATS ARE ALSO REPORTED IN [20]. THE
RESULTS FOR THE NJEE-BASED APPROACH ARE OBTAINED

WHEN THE DATA IS QUANTIZED TO 250 BINS, USING

THE BINNING SCHEME AS DESCRIBED ABOVE

of Table I demonstrate the best estimation results for each 663

method obtained by hyperparameter grid search. The proposed 664

NJEE scheme yields better results for most MI values ranging 665

from 2 to 20. 666

These results are in line with [12], [20], who discuss the 667

limitations of lower bound estimators in large values of MI. 668

Specifically, in [12], it is shown that the MINE-based lower 669

bound estimator [19] involves a negative exponential term of 670

the critic. In this case, the bound is dominated by large values 671

of the critic. The probability of extreme events (defined as 672

extreme values that do not appear in a sample) are proven to 673

be large enough to show that such a high confidence lower 674

bound cannot be higher than log N . There, it also shown that 675

this statement is true for any high confidence lower bound. 676

Otherwise, in possibly more challenging problems, a CE-based 677

estimators (11) and NJEE, do not have a lower bound. In fact, 678

when bounding the CE loss, estimating the MI reduces to a 679

problem of standard sample mean estimator of the expectation 680

of a bounded variable [12]. 681

Let us now study the estimators’ sensitivity to invertible 682

transformation, in which we do not expect any change in the 683

MI under such transformations [1], [63]. The cubic transforma- 684

tion y ⇒ z = (W y)3 is chosen for this experiment, where W is 685

an invertible d × d matrix with the entries wi j ∼ N (0, 1). The 686

lower rows of Table I summarize the results. As shown, the 687

proposed MI estimator yields identical results to the original 688

problem, while the alternative methods yield lower estimates. 689

Due to stability issues in the benchmark methods, we could 690

not obtain estimates for the cubic transformation when the true 691

MI equals 20.0 nats. 692

We now study the robustness of NJEE to a change in the 693

dimensions of the random variables. We compare the perfor- 694

mance of NJEE to recently proposed RKHS-based methods, 695

namely the KKLE and the ASKL-based approaches. In the 696

following experiment, we use the same scheme (31), but this 697
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Fig. 3. MI estimation with NJEE versus recently proposed variational methods from [20]. Samples from two multivariate random variables in d = 20 are
generated according to (31) with an increasing ρ every 4000 batches. The estimated MI in every batch appears in light blue, the moving average of the MI
over a rolling window of 200 batches is shown in dark blue and the true MI value is represented by the black line. The variational bounds shown in this
figure are further discussed in the literature (see NWJ [62], InfoNCE [5], Jensen-Shannon lower bound (JS), and the interpolated bound between NWJ and
NCE with α = 0.01 and α = 0.99 [20]).

Fig. 4. Bias (left) and the variance (right) of MI estimation of (31), as a
function of the variables dimensions d. NJEE is compared to the ASKL-based
approach [41] that limits the critic’s hypothesis space to RKHS. As in the
original article, this approach is applied on the following variational lower
bounds: NWJ [62], JS [20], MINE [19], and SMILE [21].

time we change the MI by gradually increasing the features698

dimensions d , while holding constant the value of ρ. In this699

specific experiment, we use 20 ≤ d ≤ 60 and ρ = 0.9. Using700

publicly available code implementation of KKLE provided by701

Ahuja [40],3 we were not able to obtain MI estimation in702

such values of d , due to convergence issues. This result is in703

line with the results obtained in [40], where KKLE introduced704

a large estimation error when d = 5. In Fig. 4, the bias705

and the variance of the NJEE-based and the ASKL-based706

approaches [41], are compared.4707

As demonstrated, the NJEE-based approach provides signif-708

icantly lower bias and variance in all values of d , specifically709

in larger values, where the ASKL-based approach demonstrates710

large bias and variance values.711

3https://github.com/ahujak/KKLE
4The code implementation of the ASKL-based approach is provided by its

authors in https://github.com/blackPython/mi_estimator

C. Independence Test 712

Two random variables are independent if and only if the 713

MI between them equals zero [64]. Therefore, we can apply 714

an independence test using MI estimation. We follow the 715

simulated experiment in [39] and [65] to compare between our 716

proposed method and RKHS-based schemes [39].5 We begin 717

with sampling n examples from two independent univariate 718

random variables, each chosen at random from the following 719

list. 720

1) Uniform. 721

2) Normal. 722

3) Student’s t with three degrees of freedom. 723

4) Student’s t with five degrees of freedom. 724

5) Laplace. 725

6) Exponential. 726

For simplicity, we scale all the distributions to zero mean and 727

a unit variance. For example, in an arbitrary simulation run, 728

one set of samples is drawn from a uniform distribution while 729

the other is sampled from a Laplace distribution. 730

Next, the samples are mixed by a rotation matrix with an 731

angle 0 ≤ γ ≤ (π/4). Notice that for γ = 0, two inde- 732

pendent univariate samples are obtained, while the strongest 733

dependency is obtained for γ = (π/4). To generate random 734

samples with a dimension d larger than one, we add a vector 735

of n samples from a standard normal distribution per each 736

additional dimension. Then, the samples are multiplied with 737

an arbitrary orthogonal matrix to obtain dependency across all 738

dimensions. We estimate the corresponding MI using our pro- 739

posed scheme and [39]. This experiment is repeated 100 times 740

for different pairs of n and γ . Under the null hypothesis H0, 741

5The code implementation of the method in [39] can be found at
https://github.com/jthoth/InfiniteDivisibleKernels.
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Fig. 5. Independence testing experiment. The acceptance rate of the null
hypothesis as a function of the rotation angle γ . Top: Univariate case (d = 1).
Bottom: Multivariate case (d = 5).

the two set of samples are independent. To reject H0 with a742

confidence level α, we evaluate the p-value of the sample;743

the probability to attain the observed MI (or greater than744

it) under the null hypothesis. Unfortunately, we do not have745

an analytical expression for the null distribution. Therefore,746

we simulate it by additional shuffled draws, such that the747

samples are independent. Then, we compute the p-value as the748

quantile of the (numerically evaluated) distribution, and reject749

the null if the quantile is smaller than α. Fig. 5 demonstrates750

the results we achieve for different values of n and d , as a751

function of the rotation angle γ , for α = 0.05. We expect a752

decrease in the acceptance rate of H0 as γ increases, where753

the ideal estimator would accept H0 only for γ = 0 and754

reject it otherwise. The top row of Fig. 5 shows the results for755

d = 1. In this case, the RKHS-based method [39] outperforms756

our method, as it provides a grater rejection rate. This is757

not quite surprising, since our method is mainly designed for758

problems of larger dimensions. The bottom of row of Fig. 5759

demonstrates such a regime. Specifically, it is shown that for760

d = 5, NJEE outperforms [39] as it introduces a greater761

rejection rate for all n and γ > 0.762

D. Conditional Independence Test763

We now study the proposed method in conditional indepen-764

dent testing (CIT). CIT is a basic task in statistics with appli-765

cations to a variety of domains, such as Bayesian networks and766

causality analysis [66], [67], [68]. In this experiment, we use767

a flow-cytometry dataset [69]. This dataset describes the768

connections between eleven proteins in different experimental769

setups. Sachs et al. [69] introduced a consensus Bayesian770

network (see Fig. 3 in their work) that is considered the771

ground truth of the connections mapping among the proteins.772

The flow-cytometry dataset was extensively studied in several773

works. Mukherjee et al. [42] introduced a CIT method that774

incorporates a two-sampled classifier and generative models.775

In [67], a KNN bootstrap and binary classifier procedure was776

proposed to perform the CIT.777

Before we describe the results of the experiment, we provide778

some preliminaries on Bayesian networks that are used for this779

Fig. 6. ROC curve and the AUC values of C-NJEE based estimation,
CCIT [67] and CCMI [42] for conditional independence testing task on the
flow-cytometry dataset. The dashed line denotes a random model.

experiment. In a Bayesian network, features are represented by 780

nodes, and their dependencies are represented by edges [70]. 781

Node A is a parent of node B if there is a directed edge from 782

A to B, and B is considered a child of A. Y is conditionally 783

independent of X , when there exists a subset of features Z , 784

which holds all the available information about Y . Using the 785

Bayesian networks convention described above, Z includes 786

the parents of Y , its children and the parents of its children 787

(Markov Blanket [71]). Based on these notations, one can 788

choose multiple combinations of dependent and conditionally 789

independent triplet sets of variables. Following the procedures 790

proposed in [42] and [67], 50 dependent and 50 conditionally 791

independent triplets (X , Y, Z ) are randomly chosen and their 792

CMI is estimated using În(X; Y |Z). For every triplet, we have 793

the ground truth (dependent/independent), and its correspond- 794

ing estimate În(X ; Y |Z). Since the estimates În(X; Y |Z) are 795

continuous (nonnegative) numbers, we may set a decision 796

threshold. Specifically, we say that a triplet is conditionally 797

independent if its În(X ; Y |Z) value is lower than a decision 798

threshold ε (and vice versa). Thus, one could construct an ROC 799

curve where every point in the curve represents a value of the 800

threshold ε, the value of the false positive rate (the horizontal 801

axis) and the true positive rate (the vertical axis). Fig. 6 802

illustrates the ROC curve and the area under the curve (AUC) 803

values of the independence test performed with În(X ; Y |Z) 804

and with the benchmarks as reported in [42]. As shown, 805

În(X ; Y |Z) outperforms the alternative methods. 806

E. Estimating TE on Financial Dataset 807

Finally, we apply C-NJEE to TE estimation. For this exper- 808

iment, we study a financial dataset that contains the daily 809

closing prices of the Dow-Jones Index (DJI - the stock index 810

of 30 large companies in the U.S. stock exchange) and the 811

Hang Seng Index (HSI - the stock index of 50 large com- 812

panies in the Hong-Kong stock exchange) between 1990 and 813

2011. As the DJI index is considered more influential than 814

the HSI on the world’s financial markets, we expect the 815

TE TEDJI→HSI to be significantly greater than TEHSI→DJI. 816

Additionally, we expect to see changes in the TE that are 817

coordinated with related economic events (e.g., significant 818

financial crises). 819
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Fig. 7. TE and daily closing prices of the DJI and the HSI. The top chart
demonstrates the 30-day moving average of the TE estimated by the C-NJEE
of DJI to HSI (DIJ → HSI) and in the opposite direction (HSI → DJI).
The bottom chart demonstrates the original closing prices of the two time
series. Periods of financial stress with a significant decrease in the index
prices are defined between a pair of dotted lines of the same color: the green
lines represent the beginning and end of the Asian financial crisis, the red
lines represent the beginning and end of the dot-com crisis, and the black lines
represent the beginning and end of the 2008 global financial crisis.

To estimate the TE, we reproduce the preprocessing used in820

[45] and [46], and bin the data to three levels of daily price821

change. A negative change of more than −0.8% is denoted822

by −1, an absolute change that is below 0.8% is denoted by 0,823

and a change that is greater than 0.8% is denoted by +1. Then,824

the C-NJEE algorithm is applied with a recurrent neural net-825

work that has the following structure: an input layer, followed826

by an LSTM cell [72] with 50 nodes, a fully connected layer827

with 50 nodes with ReLU activation and an output softmax828

layer. This time, a recurrent neural network (RNN) architecture829

with LSTM cell is chosen, since it is designed for sequential830

data. The input data to the LSTM network are divided into831

windows of length five (i.e., five consecutive trading days, the832

length of a business week). That is, k = l = 5 in (8). The833

optimization procedure includes an ADAM optimizer [57],834

with the following parameters: lr = 0.001, β1 = 0.9,835

β2 = 0.999.836

To obtain an average TE over a predefined period of time837

(e.g., the last 30 days), we first calculate the daily TE. On each838

day, the TE is estimated using an input window to the model839

of five days preceding this day. Then, we obtain a series of840

daily TEs, for which we can calculate the moving average.841

The upper chart of Fig. 7 illustrates the 30 day mov-842

ing average of TEDJI→HSI and TEHSI→DJI, as measured by843

C-NJEE. As expected, the information flow from DJI to HSI844

exceeds that of the opposite direction. Compared to the real 845

prices in the lower chart of Fig. 7, a relatively sharp increase 846

in TEDJI→HSI is observed in times of financial stress where 847

prices are decreasing sharply, such as in the Asian financial 848

crisis (1997–1998), the dot-com crisis (2000–2002), and the 849

2008–2009 financial turmoil [73]. This phenomenon is well 850

known in the financial literature (e.g., [26]). 851

Comparing the results of the proposed method to the 852

CTW-based approach [46] and ITENE [45], we observe 853

that these methods also found that the information flow from 854

DJI to HSI is much larger than in the opposite direction. 855

However, they did not clearly determine a connection between 856

information values and the world’s financial timeline. The 857

reason might be their limited capacity to dynamically analyze 858

complex events in sequential data. E.g., ITENE does not con- 859

sider the sequential characteristics of the data. The CTW-based 860

approach [46] is limited by expressive power of the CTW 861

algorithm, when compared to more advanced class of models 862

such as neural networks. 863

VI. CONCLUSION 864

In this work, we introduce a NJEE. The proposed estimator 865

is based on minimizing the CE using neural networks. Expand- 866

ing earlier works, we show that NJEE is strongly consistent 867

and provide a simple algorithmic implementation that is based 868

on a classification procedure. 869

We apply the proposed approach to entropy estimation of 870

random variables, specifically those with a large alphabet, 871

using a simple binary transformation. Further, we introduce the 872

C-NJEE, which is an estimator for conditional joint entropy. 873

We use NJEE and C-NJEE to estimate both MI and CMI. 874

We demonstrate the performance of the proposed schemes 875

in synthetic and real-world experiments. NJEE achieves a 876

lower RMSE on various simulated setups of random vari- 877

ables with large alphabets and relatively small sample size. 878

Moreover, the proposed MI estimator exhibits lower bias 879

and variance compared to newly-proposed variational lower 880

bounds methods. This result is specifically evident in large MI 881

values. The proposed MI estimator is utilized for independence 882

test applications as well, demonstrating better results than 883

the benchmark method when the dimension of the problem 884

increases. The CMI estimator is further used to execute 885

conditional independence tests. Again, the proposed estimator 886

yields larger AUC value than other existing methods. Finally, 887

we demonstrate the abilities of C-NJEE in estimating the 888

TE. We investigate the dynamics of information flow among 889

financial time series and show their correlation with significant 890

economic events. Certain important characteristics of these 891

dynamics are not captured by other estimation methods that 892

were implemented on the same dataset. 893

We further emphasize that the theoretical arguments regard- 894

ing the existence of neural network-based estimator for the 895

measures discussed in this article, are essentially to justify 896

the use of neural network to estimate information theo- 897

retic measures. Additionally, it is important to indicate that 898

cross-entropy minimization is a preferable way to achieve 899

this goal. Unfortunately, there is no guarantee for a specific 900
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network structure that would demonstrate the best results.901

However, guidelines to the use of neural network as an esti-902

mator are provided in detail and can be easily followed. That903

includes, the use of a specific loss function (cross-entropy),904

were its input should be softmax layer. Then, classification905

optimization procedure should be applied, aiming to provide906

the best classification results using a common hyperparameters907

search. This way, we compare among several estimators, argu-908

ing that the one with the lowest cross-entropy loss is the best909

entropy estimator. In other words, one may adjust his choice910

of neural network, considering the data at hand. We believe911

that future research will use the proposed entropy estimators912

to develop advanced compression schemes for various types of913

datasets. Additionally, the MI and CMI estimation capabilities914

can be used to improve the understanding of complex systems915

and deep learning frameworks.916
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