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Abstract— Estimating the entropy of a discrete random vari-
able is a fundamental problem in information theory and related
fields. This problem has many applications in various domains,
including machine learning, statistics, and data compression.
Over the years, a variety of estimation schemes have been
suggested. However, despite significant progress, most methods
still struggle when the sample is small, compared to the variable’s
alphabet size. In this work, we introduce a practical solution
to this problem, which extends the work of McAllester and
Statos. The proposed scheme uses the generalization abilities
of cross-entropy estimation in deep neural networks (DNNs) to
introduce improved entropy estimation accuracy. Furthermore,
we introduce a family of estimators for related information-
theoretic measures, such as conditional entropy and mutual
information (MI). We show that these estimators are strongly
consistent and demonstrate their performance in a variety of
use cases. First, we consider large alphabet entropy estimation.
Then, we extend the scope to MI estimation. Next, we apply the
proposed scheme to conditional MI estimation, as we focus on
independence testing tasks. Finally, we study a transfer entropy
(TE) estimation problem. The proposed estimators demonstrate
improved performance compared to existing methods in all of
these setups.

Index Terms— Cross-entropy, joint entropy, mutual informa-
tion (MI), neural networks, transfer entropy (TE).

I. INTRODUCTION

NTROPY is one of the basic building blocks of informa-

tion theory [1]. It quantifies the minimum average number
of bits required to represent an event that follows a given prob-
ability distribution rule. Many important information-theoretic
measures such as mutual information (MI) and conditional
MI (CMI) include marginal, conditional, and joint entropies.
These measures have many applications in machine learning,
such as feature selection [2], [3], representation learning [4],
[5], and analyses of the learning mechanism [6], [7].

One of the first entropy estimation methods is the classic
plug-in scheme. In this scheme, an empirical distribution
replaces the true (unknown) probability rule, and the corre-
sponding empirical entropy is the estimated entropy. In addi-
tion to its simplicity, the plug-in scheme enjoys several
favorable properties (consistent, asymptotically unbiased, and
others (see [8] and references therein). Unfortunately, it does
not scale well as the dimension of the problem increases [9].
A variety of parametric and nonparametric methods have
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been proposed to improve entropy estimation, such as in [9],
[10], and [11]. Recently, a neural network-based method was
proposed to estimate entropy by minimizing the cross-entropy
(CE) loss [12] as an upper bound of the entropy. The CE
measures the average number of bits required to represent an
event that is generated from a probability distribution P by a
different probability distribution Q. CE achieves its minimum
when P = Q. Thus, minimizing CE implies searching for
a Q that is as similar as possible in a log-loss [13], [14]
sense to P. This approach has several advantages. First, it uses
the generalization power of neural networks and their univer-
sality [15], [16], [17]. Second, CE is less prone to negative
bias and high variance in large entropy values [12]. However,
this approach has certain limitations. First, it requires prior
assumptions on the true underlying distribution, as discussed
in Section III. Second, the statistical properties of this CE
estimator are currently unexplored. Therefore, the existence of
a neural network-based estimator that can provide an accurate
estimation of entropy is not guaranteed.

These challenges in entropy estimation are also related to
other information-theoretic measures. For example, one of
the most common MI estimation schemes is the K-nearest
neighbor (KNN) estimator [18]. This estimator was shown
to introduce a significant negative bias in setups with high
dependencies between the variables, resulting in large MI val-
ues [19]. Neural-network-based approaches have been recently
proposed to overcome this problem using variational bound
optimization [19], [20], [21]. Although a significant improve-
ment in the MI estimation has been achieved, the results are
not yet satisfying and suffer from theoretical limitations that
are primarily manifested in large MI values [12], [20]. There
is also a large body of work on fundamental estimation bounds
for different information-theoretic measures (see [9], [22] and
related work).

In this article, we address the inherent estimation challenges
discussed above. The proposed estimation scheme focuses
on joint entropy estimation. This problem is similar to the
standard entropy estimation problem as any discrete univariate
random vector may be represented, for example, as a binary
multivariate vector. In particular, we combine the chain rule
with the CE loss minimization procedure using neural net-
works to obtain a more accurate joint entropy estimation.
We denote this estimation procedure as the neural joint entropy
estimator (NJEE). We study the properties of NJEE and show
that it is strongly consistent. In a similar manner, we obtain
the conditional NJEE (C-NJEE), as an estimator for the
joint conditional entropy between two or more multivariate
variables.

Having these two estimators, we can use the difference
between the marginal entropy of one random variable and
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the conditional entropy of this variable given another to
estimate the MI among these variables. Adding a second
conditioning variable results in the CMI estimator. Addition-
ally, we apply the proposed scheme to transfer entropy (TE)
estimation. Given two time series, the TE is defined as the
CMI between the “past” of the first series and the “future”
of the second series given its “past.” TE is used to explore
the information flow and causality among time-dependent
data in neuroscience [23], [24], finance [25], [26], process
control [27], [28], and many other applications. We show
that using an autoregressive neural network model, such as
a recurrent neural network, C-NJEE can be used for efficient
TE estimation.

The advantages of the estimators proposed in this article are
demonstrated in various use cases. First, we study the entropy
estimation of a discrete random variable with a large alphabet
size. Applying NJEE to this problem, we outperform existing
methods when the sample size is much smaller than the
alphabet size. Further, we focus on MI estimation between two
multivariate variables. A commonly used toy problem is used
for this task. The performance of the proposed MI estimator
demonstrates improved results in terms of lower bias and vari-
ance, compared to existing methods. This result is specifically
manifested in larger values of MI. Next, we demonstrate the
performance of the suggested CMI estimator, as we focus
on conditional independence tests. We study a real protein
dataset where dependencies among the variables (protein ele-
ments) are known. Here to, the proposed estimation scheme
demonstrates better results than existing methods. Finally, the
CMI estimator is applied to a TE estimation task. Specifically,
we study a real financial dataset of stock index prices and show
that the C-NJEE-based estimation provides additional insights
on the information flow between the time series that are not
discovered by the other methods. These insights are in line
with domain knowledge and the world financial timeline.

To summarize, the contributions of this article are threefold.
First, we extend the work of [12] and introduce strongly
consistent estimators for joint entropy and conditional joint
entropy. The proposed estimators, NJEE and C-NJEE, are
based on minimization of the CE loss while applying the
entropy chain rule property. Second, we apply these estimators
to obtain estimators for related measures such as MI, CMI,
and TE. Third, we propose a practical implementation scheme
of these estimators that demonstrates better performance than
existing methods on various tasks and datasets.

The remainder of this article is organized as follows.
Related works on entropy, MI, CMI, and TE estimation
are discussed in Section II. In Section III, definitions and
related mathematical overview are given to support the scheme
and ideas proposed in this article. The primary results are
shown in Section IV. An empirical study of various tasks and
comparisons with different benchmark methods are provided
in Section V. We conclude this article in Section VI.

II. RELATED WORK

Estimating information-theoretic measures is a well-studied
problem. We refer the reader to [9], [11], [18], [20], [29], [30]
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for a comprehensive review of these measures. The following
literature review focuses on estimators that are relevant for this
work.

A. Entropy Estimation in Large Alphabet

As mentioned in Section I, the simplest method for estimat-
ing the entropy of a discrete random variable is the so-called
plug-in estimator [1]. The Miller-Madow (MM) estimator [31]
adds a bias correction to the plug-in estimator. This correction
depends on the ratio between the number of symbols from
the alphabet that appear at least once in the sample and the
sample size.

More recently, the Chao—Shen (CS) estimator [10] was
proposed to estimate the entropy of species in a commu-
nity (in this biological context, the entropy is called the
diversity index), where the number of species (alphabet
size) is large and unknown. This estimator is based on
the Horvitz—Thompson estimator for population size and the
Good-Turing estimator for the probability of unseen events.
In [9], an entropy estimator is obtained using a polynomial
approximation for the terms in the entropy sum that involve
small probabilities with respect to log k, where k is the alpha-
bet size. For larger probabilities, an unbiased plug-in estimator
is used that is similar to the MM estimator. Thus, improved
results are demonstrated on simulated data of discrete random
variables with large alphabet sizes where many symbols have
relatively low probability.

B. MI and CMI Estimation

In this section, we provide a brief review of MI and
Ml-related estimators for both discrete and continuous
variables.

The KNN-based KSG estimator [18], uses KNN-based
density estimation over a shared space of the marginal and con-
ditional entropy. Using the connection between MI and entropy
(see Section III-B), the entropies’ bias terms are subtracted to
provide a more accurate MI estimation. This estimator is also
shown to be consistent. However, it underestimates the MI
when the true MI is large [19], [32]. An intuitive explanation
is that the KSG estimator approximates the probability density
in a k nearest neighbors ball or max-norm rectangle, under
the assumption that in this local neighborhood, the density
is uniform. If strong correlations exist, the density in the
shared space will be more singular, hence the uniform density
assumption becomes problematic [32]. Another drawback of
the KSG estimator is that there is no clear way to choose
the most appropriate value of k, since this is an unsupervised
estimation procedure [33].

The recent advances in deep learning motivated various
researchers to address the dimensionality problem by estimat-
ing the MI with neural networks. This is usually obtained
by finding variational lower bound for the MI (typically,
a differentiable function that is called a critic, which its
supremum is the MI). These functions are approximated by
neural networks to maximize the lower bound [19], [20], [21].
These methods yield improved results compared to the KNN-
based estimators. However, they are quite limited in cases
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where the MI increases, since their estimation complexity
increases exponentially with the number of samples [12], [20].

A different MI estimation approach, which also utilizes
neural network CE minimization, is proposed in [12]. There,
a MI estimate is obtained by subtracting the estimated con-
ditional entropy from the estimated marginal entropy. This
approach motivates our proposed estimation scheme as dis-
cussed in further detail in Section III-C. A similar approach for
MI estimation using the softmax function (e.g., as the output
layer in a neural network), is suggested in [34]. However,
this scheme is limited to the case where the input variable
is multivariate, while the target variable is univariate.

An additional important approach utilizes an embedding
of the data to reproducing kernel Hilbert spaces (RKHS)
for estimating the Rényi’s entropy. Rényi’s quadratic entropy
is the log function of the statistical mean embedding of
the projected data in RKHS [35]. Let x and y be samples
from two Borel measures P and Q. Since the embedding is
injective, transforming the respective samples to a RKHS (with
a corresponding kernel G(-,-)) implies that E(G(x,.)) =
E(G(y,.) if P = Q [36], [37], [38]. This shows that one
does not need to explicitly define functional approximators to
estimate information descriptors in this framework. To obtain
the estimated value, all is needed is to compute the mean
value of the projected samples using the kernel trick and apply
a log function. Note that this can be extended to any value
o of Rényi’s entropy, which includes Shannon entropy for
o — 1. In a more recent result, Giraldo et al. [39] utilizes the
eigenvalues of the normalized Gram matrix to estimate MI,
which is more flexible than the statistical embedding.

Additional approaches using RKHS were recently proposed.
The kernel KL divergence estimator (KKLE) [40] is a nonpara-
metric method which is suggested to reduce the optimization
problem of searching a tight lower bound to the MI to a
convex problem. It is also shown that this estimator is strongly
consistent. However, as noted by Ahuja [40], this approach
still suffers from a large estimation error in cases where
the dimensions of the variables increase. Sreekar et al. [41]
proposed to optimize the variational lower bound, such as
those described earlier, while limiting the search for functions
in the RKHS, thus controlling the complexity of the hypothesis
space. This regularization is applied by an automated spectral
kernel learning (ASKL) to learn the appropriate kernel. It is
shown that using ASKL, MI estimations with lower bias and
variance are obtained, specifically in larger values of MI.

As for the CMI estimation problem, a classifier based
conditional MI (CCMI) is proposed in [42]. A two-sample
classifier is used to distinguish between samples from the
joint distribution and samples from the marginal distribution.
Combining conditional generative models [e.g., conditional
generative adversarial networks (CGANs) or conditional vari-
ational autoencoders (CVAEs)], an estimator for the CMI was
developed. This approach introduced a significant improve-
ment over other recently proposed methods.

C. TE Estimation
The TE is defined as a form of CMI between time series.
SPCCiﬁcally, TE(Yfuture: Xpast) =  CMI(Ytuwre» Xpasl | Ypasl)

(see a formal definition of TE in Section III-B). There are
two primary approaches for TE estimation. The first approach
considers every variable in every timestamp as a separate
variable, and uses any MI or CMI estimator to estimate the
TE [43], [44], [45]. The second approach applies a sequential
model that considers the time dependencies among different
time lags to extract an estimator for the TE and its related
measures [46], [47]. As a representative of the first approach,
a recently proposed estimator [45] called the intrinsic transfer
entropy neural estimator (ITENE) applies a neural network
two-sample classifier to estimate the TE. Using the second
approach, the context tree weighting (CTW) algorithm [48] is
utilized in [46] for directed information estimation (a closely
related measure to TE [49]). Both works investigate a financial
time series of index prices to evaluate their estimators. We use
the same dataset to evaluate the proposed method.

III. BACKGROUND
A. Notations

The following notations are used throughout this article.
A univariate discrete random variable is denoted by an
upper-case letter (e.g., X), that obtains values x from the
alphabet A, = {1,...,a,}. A multivariate variable with
dimensions d, is denoted by an underline, (e.g., X), where its
values are denoted by underlined lower-case letter x. The mth
component of X is denoted as X,,, which obtains values x,,
from the alphabet A, = {l,...,a,,} which can be different
for different values of m. The vector of the first X components
of X is denoted by X*.

We denote ﬁn(X ) as the estimator of X’s entropy given a
sample S = {...}/_,, where it is implied from the text that S
is a collection of n samples of X. This notation holds for other
estimators as well. For example, Z,@; Y|Z) is an estimator
of the CMI between X and Y given Z, from a collection of n
samples from the joint distribution of X, Y and Z. To avoid
an overload of notation, we denote x; as the ith sample in S,
while X,, is the mth component of the random vector X.

For the time notation, a multivariate variable in time ¢
is represented by a bracket index, e.g., X, and a matrix
that represents its past [ time lags is represented by X 8 =
(X o5 Xyl

B. Definitions

Let X be a discrete random variable that follows a proba-
bility distribution P(X). Shannon’s entropy is defined as

The entropy (1) can be represented by the chain rule
H(X)=H(X,Xs,...,Xa)

dy
= ZH(Xm|X,n_1,...,X1) 2)

m=1
where H (X|X() abbreviates H (X).
The CE between any two distribution functions P(X) and
Q(X) is defined as

CE(Q(X)) = —Ep)[log 0(X)] 3)
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where the expectation is over the distribution of X, namely,

P(X).

The following inequality holds for every pair of distributions

P(X) and Q(X):

CE(Q(X)) = H (X) @)

where an equality is obtained for Q(X) = P(X).
A related measure to CE is the Kullback—Leibler divergence
(Dk1) between P(X) and Q(X)

P(X)
DxL(P(X)]10(X)) =Epx |:10g — :| (5)
“1 o)
The Dgp is a nonnegative measure and equals zero iff

P(X) = 0(X).
The MI, denoted as 7(X; Y), quantifies in bits the entropy
reduction in X given the knowledge obtained from another

random variable Y, that is,
[(X;Y)=H(X) - HX|Y). (6)

Another important measure that is represented by the dif-
ference of entropies is conditional MI (CMI)

I(X;Y|Z)=H(X|Z) - HY|X, Z). (7
CMI is also used to evaluate the TE, which is defined in [50]
TExy = 1(X{: Y0 1X). ®)

Assuming discrete time, the TEy_,y is the CMI between
the past k time lags of X and Y at time ¢ + 1 given the past
[ time lags of Y.

C. CE-Based Entropy

Let P(X) be the distribution function of X. Let Tp(X) be
a neural network that approximates it. In [12], the following
upper bound for the entropy of X was proposed:

Ho(X) = inf CE(T5(X)) ©)

and He(X) = H(X) iff P(X) = Typ(X). Given a sample S of
size n, the sample mean is used to estimate the CE

g l n
CEA(Tp(X)) = = > log Ty x,). (10)
i=1
This estimator is shown to be unbiased under the conditions
of the uniform law of large numbers, which are described in
Section IV.
Next, an estimator of the entropy is obtained by

H,(X) = inf CE,(Ty(X)). (11)

McAllester and Stratos [12] suggest an entropy estimator
based on the above. However, they require a prior knowledge
of P(X). The reason for this requirement is that [12] treat (11)
as a maximum likelihood optimization problem, where the
parameters @ of the function 7 are obtained by a training
procedure given samples from X. As such, one should define
in advance what is the family of functions for which 7" belongs
to, and optimize its parameters accordingly.
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IV. MEASURING THE JOINT ENTROPY
WITH NEURAL NETWORKS

In this section we discuss the primary concepts of this
article. First, the neural network classifier and its respective
CE are formally defined. Then, the NJEE is introduced.
Next, we define a strongly consistent estimator and show
that the proposed joint entropy estimator satisfies this prop-
erty. We also provide an algorithmic implementation of the
proposed estimator and discuss practical aspects of its imple-
mentation. Next, estimator for the joint conditional entropy is
provided with the corresponding algorithmic implementation.
Using the estimators of the joint entropy and the conditional
joint entropy, estimators for MI, CMI, and TE are obtained.

Throughout this work we focus on measures that are
continuous functions in an n-dimensional space, unless explic-
itly stated otherwise. We also use continuously differentiable
activation functions, such that the conditions for the universal
approximation theorem holds [15], [51].

A. Neural Network Classifier and Classification CE

The following basic definitions are used throughout this
section.

Definition 1 (Neural Network Classifier): Let Go(Y|X) be
a neural network model with a random variable input X and
parameters € in a compact domain ® € R*. The outputs of
Gy(Y|X) are defined over the probability simplex: {Gy(y|x) €
R® : 30 Go(ylx) = 1, Go(ylx) > 0}, where ¥ € A, =
{1,...,ay}, a, = 2.
Intuitively, a neural network classifier provides a mapping
from an input X to an output Y. This output is the probability
to obtain every symbol in the alphabet of Y given the input
X. For example, mapping a vector of pixel values to prob-
abilities over possible image classes in image classification
task. In practice, the probability distribution of Y is obtained
by a softmax layer with number of nodes that is equal to the
alphabet size of Y (see [52], Section IV for more details).

Next, we define the CE of this classifier.

Definition 2 (Classifier CE): Let Gy(y|x) be a neural net-
work classifier. The CE of this classifier is defined as

CE(Gy(Y1X)) = —Ep(x,v)log Go(y|x).

We assume that —log(Gy(y|x)) < # for all x € X
and for all @ € R, for any value of Y. Practically, this
assumption is used in many model training procedures to avoid
an unbounded loss [14]. The empirical estimator of this CE is
given in [53], namely

12)

- I
CEA(Go(Y|X)) = —— > log(Go(yilx)).  (13)
i=1
Note that under these definitions, the input X is not neces-
sarily discrete. However, the proposed entropy estimator that is
introduced in the following section assumes that X is discrete

as well.

B. Neural Joint Entropy Estimation

Given (2) and Definitions 1 and 2, we define the estimator
of the joint entropy.
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Definition 3 NJEE: Let fl,,(X 1) be an estimated marginal
entropy of the first components in X and let Gy, (X X™ 1
be a neural network classifier. Then, NJEE is defined as

dy
H,(X) = H,(X)) + > CE,(Gg,(Xu|X")). (14
m=2

In words, the joint entropy estimator consists of a marginal
estimator for the first component, followed by estimators for
the conditional entropies H(X,,,IX’""), form=2,...,d,.

The main difference between the NJEE and the estimator
defined in (11) is the use of the chain rule, which enables
a self-supervised procedure, where the input to the neural
network is composed from the first m — 1 components of X,
and the target goal is to infer the class of component m of
X. Thus, it does not require any prior knowledge about the
underlying distribution of either X or Y.

Definition 4 [Strong Consistency (Following [19])]: The
estimator ﬁn (X) is strongly consistent if for all €, > 0 and a
constant C > 0, there exists a positive integer N and a choice
of a neural network such that

Va>N, |[HX)—H,X)|< C-e+0, ae.

Theorem 1: NJEE is strongly consistent.

C. Proof of Strong Consistency Property

In this section we follow the scheme shown in [19] to prove
Theorem 1. This proof includes the following main steps.

1) Connecting the true CE of a classifier-based neural net-
work and the conditional entropy H (Y |X) (Lemmas 1
and 2).

2) Showing the convergence of the empirical CE to the true
CE (Lemma 4).

3) Showing that the empirical CE can approximate with
high accuracy the conditional entropy (Lemma 5).

4) Applying the chain-rule property and the previous steps
to show that the proposed estimator of the joint entropy
is strongly consistent.

We begin with the first step. Formally, since neural networks
are universal approximation functions [15], [16], [17], the
following holds.

Lemma 1: For any € > 0, and any conditional distribution
function P(Y|X) that is continuous over its support, there
exists a neural network Gy(Y|X) such that

D (P(Y|X)||Go(Y|X)) < g ae. (15)

That is, it is possible to find a neural network that can
approximates P(Y|X) in any desired approximation level.

The next Lemma states that the CE can be used to estimate
the conditional entropy.

Lemma 2: Let P(Y|X) be a conditional distribution and let
H (Y |X) be the entropy associated with this distribution. Then,
for any € > 0, there exists a neural network Gy(Y|X) such
that

ICE(Go(Y|X)) —H(Y|X)| < 5, ae. (16)

€
29

The proof of this lemma follows the ideas shown in [12]

1
H(Y|X) = EP XY IOg
ED TSP

1 Go(ylx)
Go(ylx) P(ylx)

— DxL(P(y[X)1Go(y]x))

= Ep(x,v) log

= Branloe Erons

> CE(G(Y1X) - 5 a7

where the last line follows Lemma 1. As shown in (4), we have
that

CE(Go(Y]X)) - H(Y|X) =0 (18)

therefore
€
ICE(Go(Y1X)) = HY1X)| = 5.

The empirical estimator for this classifier CE is obtained
from (13). The conditions for the convergence of this estimator
are defined by the uniform law of large numbers.

Lemma 3: The uniform law of large numbers [54]. Let ®
be a compact set of parameters. Let fy(x;) be a continuous
function at each @ € ® and x; € X. Assume there exists an
upper bound #(X) such that || f (x)|| < n(x) for all § € ® and
E[#(X)] < co. Then, E[ fp(X)] is continuous and
0.

sup (19)

0ec®

> )~ ELAHO)

i=1

Using Lemma 3, the convergence of the classifier CE is
obtained
Lemma 4: For any € > 0 and V6 € O, there exists a
positive integer n > N such that
€

P(ICE.(Go(Y 1)) — CEGo(Y X)) = 5) = 1. 0)

The proof of this Lemma is an immediate application of (13)
with
Jo((x;, yi)) = —1og(Go(yilx;))
since —log(Go(yilx;)) = n, then fy((x;,yi)) =< #n and
Lemma 3 holds.
Lemma 5: The estimator CE,(Gy(Y|X)) is strongly con-

sistent. That is, for all € > 0, there exists a positive integer
n > N and a choice of neural network such that

21

|H(Y|X) — CE,(Go(Y|X))| < €, ae. (22)

This lemma is obtained using the triangular inequality with
Lemmas 2 and 4

|H(Y|X) — CE,(Go(Y|X))|
< ICE(Go(Y|X)) — H(Y|X)|

+ICE(Go(Y|X)) — CE(Gy(Y|X))| <e.  (23)
Restating (2)
dy
HX)=H(X)+ D HX,X"). (24)
m=2

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on July 18,2023 at 12:15:11 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Suppose there exists d, — 1 neural networks that approximate
each term in the sum with an € accuracy. Then, the total error
of the sum expression is € - (d, — 1). The marginal entropy
H (X)) is estimated with an estimator ﬁn (X1) that guarantees
an error that is not larger than certain 0 > 0. Several estimators
can provide such a guarantee, e.g., [9], [11]. In this case

|H(X) — H,(X)|

m=2

dy
= ‘H(Xl) - ﬁn(Xl) + Z H(anllmfl)

dy
- Z CEn (Gé’m (Xm |X’1171)
m=2
< |H(X1) — Hy(X1)]

d,
+ (D HXu X"

m=2

<54+C-e (25)
where C =d, — 1. U

dy
— > CE.(Gy, (Xl X"

m=2

D. Algorithmic Implementation of NJEE

The implementation of the NJEE estimator is described in
Algorithm 1.

Algorithm 1 NJEE

1: input: Sample S = {x;}/_, from P(X)
chy, <0, form={1,...,d}

: hl < ﬁn(Xl)

: Initialize {6,,)%_,

:for min2tod, do__

hyw < Minimize CE, (Gy, (X X™ 1))
: end for

: Hn@) <~ hl + z,dyfzz hm

: return: fl,,(X )

Practically, Algorithm 1 can be implemented in parallel per
each value of m. Another approach is to use a recurrent neural
network (RNN) that replaces the d, — 1 networks. In this
case, the sequential input to the RNN is the components
vector of X (e.g., see distribution estimation with RNN
in [55]). Then, the estimated entropy would be the sum of
all the CE losses in every time step. The empirical results
of this implementation demonstrate similar performance to
Algorithm 1.

We also note that using the CE loss, it is possible to replace
the neural network model with any other classifier to estimate
the entropy. However, in this case, Lemma 1 may not apply,
and strong consistency is not guaranteed.

E. Conditional-Neural Joint Entropy Estimation

The conditional entropy of two multivariate random vari-
ables X and Y is

dy
= > H(XuY, X" ™).

m=1

H(X[Y) (26)
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To estimate (26), a slight change is made to NJEE, where
all components in the proposed estimator are neural networks
[c.f. (14)].

Definition 5: C-NJEE. Let Gg, (XY, X™ ") be a neural
network classifier with inputs ¥ and X"~!. Then C-NJEE is
defined as

d
H,(X|Y) = > CE,(Gg,(Xnl¥, X" 7). 27)
m=1
Corollary 1: C-NJEE is strongly consistent
dx
|H@|x> — D CEu(Gy, (XulL. X" <di-e, ae.
m=1
(28)

The proof of Corollary 1 is straightforward. Notice that
every conditional entropy in the sum expression of (26) can
be estimated by a classifier CE with € estimation error.
Since there are d, conditional entropies estimators, the total
estimation error of H (X]Y) is d, - €. The implementation of
C-NJEE is described in Algorithm 2.

Algorithm 2 C-NJEE

1 input: Sample § = {x;, y }i_,
chy, <0, form_{l,...,dx}
: Initialize {0, }m ]

: for m in 1 to d, do

hy < Minimize CE,(Gg, (Xu|Y, X"™1))
: end for

CH(X]Y) < S

: return: ﬁ,,(&lx)

from P(X,Y)

® NN A W

We now apply NJEE and C-NJEE to introduce an estimator
for the MI

dx
L(X: Y) = H(X)) + D CE,(Gg, (Xl X"

m=2

dx
— > CE,(Go, (XnlY, X"1)).  (29)

m=1

Similarly, given a variable Z, an estimator for the CMI (7)
can be obtained

dy
L(X;Y|Z) = > CE(G(Xu|Z, X" "))

m=1

dx
— > CE,(G(Xn|Z, Y, X" ).

m=1

(30)

Again, since all models are trained independently, the worst
case error of these estimators is the sum of the errors of
NJEE and C-NJEE, thus these estimators are also strongly
consistent. Note that unlike the entropy estimator, /I;(X 1Y)
and Z,@; Y|Z) are well defined also in cases where X is
discrete while Y and/or Z are continuous. This important class
of MI estimation problems is discussed in detail in [56].
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Fig. 1.

Sample Size

RMSE (log scale) of entropy estimations versus the log of the sample size for NJEE and the benchmark methods from Section II-A (Polynomial [9],

CS [10], MM [31], and plug-in [11]), in different simulated studies. The results are the average of 100 measurements per each sample size and distribution
type. The standard deviation of the RMSE is negligible with respect to its average value for each estimator.

V. EXPERIMENTS

In this section, we demonstrate the performance of the
proposed estimators in various estimation tasks. A python
implementation of the code, including the presented experi-
ments, is located in https://github.com/YuvalShalev/NJEE.

To apply these estimators, we train a set of neural networks.
Unless stated otherwise, the following basic network structure
is considered throughout these experiments: an input layer,
two fully connected layers with 50 nodes, a ReLU activation
function, and an output softmax layer. The loss is optimized
with the ADAM [57] optimizer with the following parameters
(Ir =0.001, g = 0.9, > = 0.999).

A. Entropy Estimation With Large Alphabet

We begin this experimental section with large alphabet
entropy estimation using NJEE. Prior to applying NJEE,
we change the univariate representation values of the alpha-
bet to their binary representation. Any other small alphabet
representation, such as ternary, is also valid. The evaluation is
preformed on six simulated studies, most of which were used
in previous works (e.g., [9]).

1) Uniform distribution.

2) Zipf’s law distribution with parameters a = 1, 2.

3) Geometric distribution with p = 1/10.

4) Symmetric mixture of a Zipf’s law distribution (a = 1)
and Geometric distribution (p = 2/10°).

5) Discrete Laplace (DL), where DL(X,0) x

(1/20)e=X/?) and ¢ = 1074,

The alphabet size of X is set to 10° (excluding the last experi-
ment where the alphabet is not limited, yet is approximated to
10° given the value of ¢). Every simulated study (defined by
a distribution type and a sample size) is repeated 100 times.

Fig. 1 demonstrates the root mean squared error (RMSE)
of the entropy estimation as a function of the sample size for
NJEE and other entropy estimators described in Section II-A.'

in
[58]

'The code of the polynomial method is provided by [9]
https://github.com/AlbusoO/entropy. See the Entropy R package in

for the implementation of the other benchmark methods.

As shown, NJEE demonstrates the lowest RMSE in most
cases. Specifically, NJEE demonstrates the lowest error in all
the experiments where n < 1000. This result should not be
surprising, since it was demonstrated that neural networks can
generalize well on small dataset [59].

B. Multivariate MI Estimation

In the following set of experiments we apply the proposed
scheme to a simple multivariate MI estimation problems.
This setup is commonly used to benchmark estimators of the
MI [19], [20], [21], [40], [41], [42].

The setup is defined as follows. Let X and Y be two random
vectors in RY such that

(X X]T ~ N(0, Zxy)

Lo pla
pla g |

Notice that the correlation between the pairs (X;, Y;) is p
when i = j and zero otherwise. Further, Cov(X) = Cov(Y) =

1;, and the MI between X and Y is thus simply

€1V

XXy

d
I(X;Y)= ~3 log(1 — p?).

In this study, samples are generated from the model above,
using different values of p (or equivalently, different values of
MI).

Our proposed scheme (Algorithm 1), is designed for dis-
crete variables. To apply our scheme to continuous variables,
we suggest to first quantize them. Binning of continuous
data for MI estimation has been extensively studied over
the years [12], [26], [44], [46], [60], [61]. Here, a simple
(heuristic) binning scheme is applied. We start by binning the
data to a small number of equal-probability bins and estimate
the MI using NJEE. This procedure is repeated for increasing
number of bins, where larger number of bins results in larger
MI values. We continue until the change in the obtained MI
value as a function of the number of bins is below a predefined
threshold, that equals to 0.01 nats in this study. Note that this
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Fig. 2. MI estimation of the study in (31) with various values of p. IAn(l; Y)
is compared to the KNN (k = 3) method [18]. The dimensions of X and Y are
20. The results are obtained from ten repetitions of the simulation with 50000
samples each. Bin number for the NJEE-based estimator is 60. The variance
of the RMSE is small with respect to its average value for each estimator.

binning scheme cannot be applied for entropy estimation of
continuous data.

In Fig. 2, the NJEE-based algorithms are compared to the
KNN MI estimation method [18]. With small absolute values
of p, the two methods yield accurate results with variance
of 0.01 bits. As p increases (and thus the MI increases),
the KNN estimator significantly deviates from the true value,
as demonstrated in [19]. This verifies the results obtained
in [32], where it is stated that the KNN estimator requires
exponential number of samples in the value of MI to provide
accurate estimation. On the other hand, NJEE yields better
results for greater MI, similar to [12], yet without a prior
assumption on the characteristics of the underlying distribution
(e.g., normal distribution function). Although not presented
here, a similar experiment with low dimensions (d < 6)
and small correlations p < 0.5, demonstrates comparable
performance of the KNN estimator to NJEE and other neural
network-based estimators. To conclude, in problems with low
dimensional space and expected small MI, the KNN estimator
is a good choice. Otherwise, in possibly more challenging
setups, a neural network-based approach should be considered.

Let us now compare NJEE to alternative neural-network-
based estimation schemes. Here, we focus on the experimental
setup of [19].

Again, we draw samples from the model described in (31).
In this experiment, we begin with p = 0 and draw a
total of 4000 batches with 64 samples in each batch. Then,
we estimate the MI from the drawn samples. We increase
p and repeat the previous step. We terminate at p = 1.
a@; Y) is compared to the recently proposed variational
methods.? As demonstrated in Fig. 3, the results achieved by
the proposed estimator exhibits lower bias and variance with
respect to the variational benchmark methods. The upper rows

2Poole et al. [20] for providing us with the implementation code for the
variational methods.
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TABLE I
BEST RESULTS OF EVERY ESTIMATOR FOLLOWING A HYPERPARAMETER
GRID SEARCH FOR THE GAUSSIAN SETUP (31) (UPPER ROWS) AND ITS
CUBIC TRANSFORMATION (LOWER ROWS). THE TRUE MI VALUES ARE
SHOWN IN THE FIRST ROW. THE RESULTS OF THE BENCHMARK
METHODS FOR 2 TO 10 NATS ARE ALSO REPORTED IN [20]. THE
RESULTS FOR THE NJEE-BASED APPROACH ARE OBTAINED
WHEN THE DATA IS QUANTIZED TO 250 BINS, USING
THE BINNING SCHEME AS DESCRIBED ABOVE

TRUE MUTUAL INFORMATION

| 20 40 60 8.0 100 20.0
GAUSSIAN SETUP
NJEE 22 41 59 178 9.6 19.6
@ 1.9 38 57 74 8.8 11.7
JS 1.2 3.0 48 6.5 8.1 15.5
NWJ 1.6 35 52 67 8 10.8
InfoNCE 1.9 36 49 57 6 6.2
CUBIC SETUP
NJEE 22 41 59 78 9.6 188
a 1.7 3.6 54 69 8.2 -
JS 1 2.8 45 6.1 7.6 -
NWIJ 1.5 32 47 59 69 -
InfoNCE 1.7 32 41 46 48 -

of Table I demonstrate the best estimation results for each
method obtained by hyperparameter grid search. The proposed
NJEE scheme yields better results for most MI values ranging
from 2 to 20.

These results are in line with [12], [20], who discuss the
limitations of lower bound estimators in large values of MI.
Specifically, in [12], it is shown that the MINE-based lower
bound estimator [19] involves a negative exponential term of
the critic. In this case, the bound is dominated by large values
of the critic. The probability of extreme events (defined as
extreme values that do not appear in a sample) are proven to
be large enough to show that such a high confidence lower
bound cannot be higher than log N. There, it also shown that
this statement is true for any high confidence lower bound.
Otherwise, in possibly more challenging problems, a CE-based
estimators (11) and NJEE, do not have a lower bound. In fact,
when bounding the CE loss, estimating the MI reduces to a
problem of standard sample mean estimator of the expectation
of a bounded variable [12].

Let us now study the estimators’ sensitivity to invertible
transformation, in which we do not expect any change in the
MI under such transformations [1], [63]. The cubic transforma-
tion y = z = (Wy)? is chosen for this experiment, where W is
an invertible d x d matrix with the entries w;; ~ N(0, 1). The
lower rows of Table I summarize the results. As shown, the
proposed MI estimator yields identical results to the original
problem, while the alternative methods yield lower estimates.
Due to stability issues in the benchmark methods, we could
not obtain estimates for the cubic transformation when the true
MI equals 20.0 nats.

We now study the robustness of NJEE to a change in the
dimensions of the random variables. We compare the perfor-
mance of NJEE to recently proposed RKHS-based methods,
namely the KKLE and the ASKL-based approaches. In the
following experiment, we use the same scheme (31), but this
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Fig. 3.

MI estimation with NJEE versus recently proposed variational methods from [20]. Samples from two multivariate random variables in d = 20 are

generated according to (31) with an increasing p every 4000 batches. The estimated MI in every batch appears in light blue, the moving average of the MI
over a rolling window of 200 batches is shown in dark blue and the true MI value is represented by the black line. The variational bounds shown in this
figure are further discussed in the literature (see NWJ [62], InfoNCE [5], Jensen-Shannon lower bound (JS), and the interpolated bound between NWJ and

NCE with a = 0.01 and a = 0.99 [20]).

Bias (nats)
Variance (nats)

20 E) 0 50 &0 20 30 “ 50 &0
d a

— NJEE ASKL-NW|  —— ASKL-|S —— ASKL-MINE —— ASKL-SMILE

Fig. 4. Bias (left) and the variance (right) of MI estimation of (31), as a
function of the variables dimensions d. NJEE is compared to the ASKL-based
approach [41] that limits the critic’s hypothesis space to RKHS. As in the
original article, this approach is applied on the following variational lower
bounds: NWJ [62], JS [20], MINE [19], and SMILE [21].

time we change the MI by gradually increasing the features
dimensions d, while holding constant the value of p. In this
specific experiment, we use 20 < d < 60 and p = 0.9. Using
publicly available code implementation of KKLE provided by
Ahuja [40],> we were not able to obtain MI estimation in
such values of d, due to convergence issues. This result is in
line with the results obtained in [40], where KKLE introduced
a large estimation error when d = 5. In Fig. 4, the bias
and the variance of the NJEE-based and the ASKL-based
approaches [41], are compared.*

As demonstrated, the NJEE-based approach provides signif-
icantly lower bias and variance in all values of d, specifically
in larger values, where the ASKL-based approach demonstrates
large bias and variance values.

3https://github.com/ahujak/KKLE
“The code implementation of the ASKL-based approach is provided by its
authors in https://github.com/blackPython/mi_estimator

C. Independence Test

Two random variables are independent if and only if the
MI between them equals zero [64]. Therefore, we can apply
an independence test using MI estimation. We follow the
simulated experiment in [39] and [65] to compare between our
proposed method and RKHS-based schemes [39].> We begin
with sampling n examples from two independent univariate
random variables, each chosen at random from the following
list.

Y

2)

3)

4)

5)

6)
For simplicity, we scale all the distributions to zero mean and
a unit variance. For example, in an arbitrary simulation run,
one set of samples is drawn from a uniform distribution while
the other is sampled from a Laplace distribution.

Next, the samples are mixed by a rotation matrix with an
angle 0 < y < (w/4). Notice that for y = 0, two inde-
pendent univariate samples are obtained, while the strongest
dependency is obtained for y = (x/4). To generate random
samples with a dimension d larger than one, we add a vector
of n samples from a standard normal distribution per each
additional dimension. Then, the samples are multiplied with
an arbitrary orthogonal matrix to obtain dependency across all
dimensions. We estimate the corresponding MI using our pro-
posed scheme and [39]. This experiment is repeated 100 times
for different pairs of n and y. Under the null hypothesis Hj,

Uniform.

Normal.

Student’s t with three degrees of freedom.
Student’s t with five degrees of freedom.
Laplace.

Exponential.

SThe code implementation of the method in [39] can be found at
https://github.com/jthoth/InfiniteDivisibleKernels.
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Fig. 5. Independence testing experiment. The acceptance rate of the null
hypothesis as a function of the rotation angle y . Top: Univariate case (d = 1).
Bottom: Multivariate case (d = 5).

the two set of samples are independent. To reject Hy with a
confidence level a, we evaluate the p-value of the sample;
the probability to attain the observed MI (or greater than
it) under the null hypothesis. Unfortunately, we do not have
an analytical expression for the null distribution. Therefore,
we simulate it by additional shuffled draws, such that the
samples are independent. Then, we compute the p-value as the
quantile of the (numerically evaluated) distribution, and reject
the null if the quantile is smaller than «. Fig. 5 demonstrates
the results we achieve for different values of n and d, as a
function of the rotation angle y, for & = 0.05. We expect a
decrease in the acceptance rate of Hp as y increases, where
the ideal estimator would accept Hy only for y = 0 and
reject it otherwise. The top row of Fig. 5 shows the results for
d = 1. In this case, the RKHS-based method [39] outperforms
our method, as it provides a grater rejection rate. This is
not quite surprising, since our method is mainly designed for
problems of larger dimensions. The bottom of row of Fig. 5
demonstrates such a regime. Specifically, it is shown that for
d = 5, NJEE outperforms [39] as it introduces a greater
rejection rate for all n and y > 0.

D. Conditional Independence Test

We now study the proposed method in conditional indepen-
dent testing (CIT). CIT is a basic task in statistics with appli-
cations to a variety of domains, such as Bayesian networks and
causality analysis [66], [67], [68]. In this experiment, we use
a flow-cytometry dataset [69]. This dataset describes the
connections between eleven proteins in different experimental
setups. Sachs et al. [69] introduced a consensus Bayesian
network (see Fig. 3 in their work) that is considered the
ground truth of the connections mapping among the proteins.
The flow-cytometry dataset was extensively studied in several
works. Mukherjee et al. [42] introduced a CIT method that
incorporates a two-sampled classifier and generative models.
In [67], a KNN bootstrap and binary classifier procedure was
proposed to perform the CIT.

Before we describe the results of the experiment, we provide
some preliminaries on Bayesian networks that are used for this
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Fig. 6. ROC curve and the AUC values of C-NJEE based estimation,
CCIT [67] and CCMI [42] for conditional independence testing task on the
flow-cytometry dataset. The dashed line denotes a random model.

experiment. In a Bayesian network, features are represented by
nodes, and their dependencies are represented by edges [70].
Node A is a parent of node B if there is a directed edge from
A to B, and B is considered a child of A. Y is conditionally
independent of X, when there exists a subset of features Z,
which holds all the available information about Y. Using the
Bayesian networks convention described above, Z includes
the parents of Y, its children and the parents of its children
(Markov Blanket [71]). Based on these notations, one can
choose multiple combinations of dependent and conditionally
independent triplet sets of variables. Following the procedures
proposed in [42] and [67], 50 dependent and 50 conditionally
independent triplets (X, Y, Z) are randomly chosen and their
CMI is estimated using E(X ; Y|Z). For every triplet, we have
the ground truth (dependent/independent), and its correspond-
ing estimate 7,(X; Y|Z). Since the estimates I,(X; Y|Z) are
continuous (nonnegative) numbers, we may set a decision
threshold. Specifically, we say that a triplet is conditionally
independent if its 1,(X; Y|Z) value is lower than a decision
threshold € (and vice versa). Thus, one could construct an ROC
curve where every point in the curve represents a value of the
threshold e, the value of the false positive rate (the horizontal
axis) and the true positive rate (the vertical axis). Fig. 6
illustrates the ROC curve and the area under the curve (AUC)
values of the independence test performed with E(X; Y|2)
and with the benchmarks as reported in [42]. As shown,
Z,@; Y|Z) outperforms the alternative methods.

E. Estimating TE on Financial Dataset

Finally, we apply C-NJEE to TE estimation. For this exper-
iment, we study a financial dataset that contains the daily
closing prices of the Dow-Jones Index (DJI - the stock index
of 30 large companies in the U.S. stock exchange) and the
Hang Seng Index (HSI - the stock index of 50 large com-
panies in the Hong-Kong stock exchange) between 1990 and
2011. As the DIJI index is considered more influential than
the HSI on the world’s financial markets, we expect the
TE TEpj_pust to be significantly greater than TEpsi—pj.
Additionally, we expect to see changes in the TE that are
coordinated with related economic events (e.g., significant
financial crises).
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Fig. 7. TE and daily closing prices of the DJI and the HSI. The top chart

demonstrates the 30-day moving average of the TE estimated by the C-NJEE
of DJI to HSI (DIJ — HSI) and in the opposite direction (HSI — DIJI).
The bottom chart demonstrates the original closing prices of the two time
series. Periods of financial stress with a significant decrease in the index
prices are defined between a pair of dotted lines of the same color: the green
lines represent the beginning and end of the Asian financial crisis, the red
lines represent the beginning and end of the dot-com crisis, and the black lines
represent the beginning and end of the 2008 global financial crisis.

To estimate the TE, we reproduce the preprocessing used in
[45] and [46], and bin the data to three levels of daily price
change. A negative change of more than —0.8% is denoted
by —1, an absolute change that is below 0.8% is denoted by 0,
and a change that is greater than 0.8% is denoted by +1. Then,
the C-NJEE algorithm is applied with a recurrent neural net-
work that has the following structure: an input layer, followed
by an LSTM cell [72] with 50 nodes, a fully connected layer
with 50 nodes with ReLLU activation and an output softmax
layer. This time, a recurrent neural network (RNN) architecture
with LSTM cell is chosen, since it is designed for sequential
data. The input data to the LSTM network are divided into
windows of length five (i.e., five consecutive trading days, the
length of a business week). That is, k =/ = 5 in (8). The
optimization procedure includes an ADAM optimizer [57],
with the following parameters: [r = 0.001,5, = 0.9,
S = 0.999.

To obtain an average TE over a predefined period of time
(e.g., the last 30 days), we first calculate the daily TE. On each
day, the TE is estimated using an input window to the model
of five days preceding this day. Then, we obtain a series of
daily TEs, for which we can calculate the moving average.

The upper chart of Fig. 7 illustrates the 30 day mov-
ing average of TEpj_psi and TEpsipy, as measured by
C-NJEE. As expected, the information flow from DJI to HSI

11

exceeds that of the opposite direction. Compared to the real
prices in the lower chart of Fig. 7, a relatively sharp increase
in TEpj_pus1 is observed in times of financial stress where
prices are decreasing sharply, such as in the Asian financial
crisis (1997-1998), the dot-com crisis (2000-2002), and the
2008-2009 financial turmoil [73]. This phenomenon is well
known in the financial literature (e.g., [26]).

Comparing the results of the proposed method to the
CTW-based approach [46] and ITENE [45], we observe
that these methods also found that the information flow from
DIJI to HSI is much larger than in the opposite direction.
However, they did not clearly determine a connection between
information values and the world’s financial timeline. The
reason might be their limited capacity to dynamically analyze
complex events in sequential data. E.g., ITENE does not con-
sider the sequential characteristics of the data. The CTW-based
approach [46] is limited by expressive power of the CTW
algorithm, when compared to more advanced class of models
such as neural networks.

VI. CONCLUSION

In this work, we introduce a NJEE. The proposed estimator
is based on minimizing the CE using neural networks. Expand-
ing earlier works, we show that NJEE is strongly consistent
and provide a simple algorithmic implementation that is based
on a classification procedure.

We apply the proposed approach to entropy estimation of
random variables, specifically those with a large alphabet,
using a simple binary transformation. Further, we introduce the
C-NJEE, which is an estimator for conditional joint entropy.
We use NJEE and C-NJEE to estimate both MI and CML.

We demonstrate the performance of the proposed schemes
in synthetic and real-world experiments. NJEE achieves a
lower RMSE on various simulated setups of random vari-
ables with large alphabets and relatively small sample size.
Moreover, the proposed MI estimator exhibits lower bias
and variance compared to newly-proposed variational lower
bounds methods. This result is specifically evident in large MI
values. The proposed MI estimator is utilized for independence
test applications as well, demonstrating better results than
the benchmark method when the dimension of the problem
increases. The CMI estimator is further used to execute
conditional independence tests. Again, the proposed estimator
yields larger AUC value than other existing methods. Finally,
we demonstrate the abilities of C-NJEE in estimating the
TE. We investigate the dynamics of information flow among
financial time series and show their correlation with significant
economic events. Certain important characteristics of these
dynamics are not captured by other estimation methods that
were implemented on the same dataset.

We further emphasize that the theoretical arguments regard-
ing the existence of neural network-based estimator for the
measures discussed in this article, are essentially to justify
the use of neural network to estimate information theo-
retic measures. Additionally, it is important to indicate that
cross-entropy minimization is a preferable way to achieve
this goal. Unfortunately, there is no guarantee for a specific
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network structure that would demonstrate the best results.
However, guidelines to the use of neural network as an esti-
mator are provided in detail and can be easily followed. That
includes, the use of a specific loss function (cross-entropy),
were its input should be softmax layer. Then, classification
optimization procedure should be applied, aiming to provide
the best classification results using a common hyperparameters
search. This way, we compare among several estimators, argu-
ing that the one with the lowest cross-entropy loss is the best
entropy estimator. In other words, one may adjust his choice
of neural network, considering the data at hand. We believe
that future research will use the proposed entropy estimators
to develop advanced compression schemes for various types of
datasets. Additionally, the MI and CMI estimation capabilities
can be used to improve the understanding of complex systems
and deep learning frameworks.
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