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1 Motivation 

Deep learning algorithms and deep neural networks (DNNs) have become extremely 
popular due to their high-performance accuracy in complex fields, such as image and 
text classification, speech understanding, document segmentation, credit scoring, 
and facial recognition. As a result of the highly nonlinear structure of deep learning 
algorithms, these networks are hard to interpret; thus, it is not clear how the 
models reach their conclusions and therefore, they are often considered black-box 
models. The poor transparency of these models is a major drawback despite their 
effectiveness. In addition, recent regulations such as the General Data Protection 
Regulation (GDPR), require that, in many cases, an explanation will be provided 
whenever the learning model may affect a person’s life. For example, in autonomous 
vehicle applications, methods for visualizing, explaining, and interpreting deep 
learning models that analyze driver behavior and the road environment have become 
standard. Explainable artificial intelligence (XAI) or interpretable machine learning 
(IML) programs aim to enable a suite of methods and techniques that produce more 
explainable models while maintaining a high level of output accuracy [1–4]. These 
programs enable human users to better understand, trust, and manage the emerging 
generation of artificially intelligent systems [4]. 

Many people do not feel comfortable when blindly agreeing with an AI system’s 
decisions in various situations, without some understanding of the decision-making 
process used by such a system. To achieve trust in AI systems, detailed “explana-

A. Notovich · I. Ben-Gal (�) 
Department of Industrial Engineering, Tel Aviv University, Tel-Aviv, Israel 
e-mail: bengal@tauex.tau.ac.il 

H. Chalutz-Ben Gal 
School of Industrial Engineering and Management, Afeka Tel Aviv Academic College of 
Engineering, Tel Aviv, Israel 

© Springer Nature Switzerland AG 2023 
L. Rokach et al. (eds.), Machine Learning for Data Science Handbook, 
https://doi.org/10.1007/978-3-031-24628-9_41

971

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-24628-9protect T1	extunderscore 41&domain=pdf

 885
52970 a 885 52970 a
 
mailto:bengal@tauex.tau.ac.il
mailto:bengal@tauex.tau.ac.il
mailto:bengal@tauex.tau.ac.il
mailto:bengal@tauex.tau.ac.il
https://doi.org/10.1007/978-3-031-24628-9_41
https://doi.org/10.1007/978-3-031-24628-9_41
https://doi.org/10.1007/978-3-031-24628-9_41
https://doi.org/10.1007/978-3-031-24628-9_41
https://doi.org/10.1007/978-3-031-24628-9_41
https://doi.org/10.1007/978-3-031-24628-9_41
https://doi.org/10.1007/978-3-031-24628-9_41
https://doi.org/10.1007/978-3-031-24628-9_41
https://doi.org/10.1007/978-3-031-24628-9_41
https://doi.org/10.1007/978-3-031-24628-9_41
https://doi.org/10.1007/978-3-031-24628-9_41


972 A. Notovich et al.

tions” of AI system decisions seem necessary. Such explanations provide insights 
into and interpretability of the rationale of the applied AI algorithms and help users 
trust the system conclusions. As ML and AI modeling are increasingly involved in 
critical areas such as transportation, retail, insurance, medicine, criminal justice, and 
financial markets, it seems vital that these models become more easily understood 
[9]. 

The XAI-related concepts of explainability, interpretability, and accuracy are 
presented next, followed by segmentation of XAI methods. 

2 Explainability, Interpretability, and Related XAI Terms 

The definitions of both AI explainability and AI interpretability have multiple 
meanings and sometimes there is little to no consensus in the research community 
regarding these terms [1]. There are a few conflicting definitions that differ from 
each other in terms of theme and community. In particular, various AI-related 
communities approach the concept of explainability from different angles. The term 
explainable AI (XAI) has a double meaning itself. Sometimes it is used to represent 
methods that help explore the mechanisms of the AI methods or the AI systems 
themselves; for example, a researcher may seek an interpretation of how these 
methods or systems work or which features are important when making predictions. 
In other cases, the term XAI is related to explanations about particular inputs, 
outputs and examples, such as understanding how a record in a dataset was mapped 
to a specific segment or recommendation. 

Lipton [9] addresses this ambiguity and claims that many XAI papers provide 
diverse and sometimes non-overlapping motivations for interpretability and offer 
myriad notions of what makes render models interpretable. Despite such ambiguity, 
many papers proclaim interpretability axiomatically, absent further explanation. 

Explainability and interpretability are closely related concepts in the literature. 
Sometimes, the term “explainability” refers to “why” a recommendation has been 
made, while the term “interpretability” refers to “how” that recommendation was 
obtained [2]. Accordingly, it has been claimed that interpretability is one of the 
approaches that achieves explainability [3]. Explainable AI (XAI) aims to develop 
tools that are able to explain AI model decisions to inexpert users. To do so, the 
model might be either interpretable or non-interpretable. Interpretable models try 
to develop models whose decision mechanism is locally or globally transparent. 
Therefore, the model outputs are usually naturally explainable. 

Other approaches claim that “Explainability” and “Interpretability” are two 
related, yet distinct, concepts when referring to AI systems. 

“AI Explainability” refers to the ability of an AI or ML model to provide un-
derstandable and clear explanations for its predictions or decisions. An explainable 
model should be able to articulate the reasons behind the model outputs in an easy 
and comprehended way by human users. For example, explainability is particularly 
important in domains where the impact of AI decisions can have legal, ethical,
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or societal consequences (e.g., healthcare, finance, and autonomous vehicles). An 
explainable model contributes to trust the model’s decision-making process. 

“AI Interpretability,” on the other hand, refers to the ability of a model to 
be understood by humans in terms of its internal robustness or how it arrives at 
its outputs. An interpretable model is one that can be explained in terms of its 
feature importance, decision rules, or other transparent representations, which allow 
humans to understand how the model arrives at its predictions. Interpretability is 
often used interchangeably with explainability, but it can also refer specifically to 
the technical characteristics of a model that make it transparent and understandable. 

Even though interpretability and explainability have been used interchangeably, 
Došilović et al. [4] claim it is important to distinguish between them. As such, 
explainable models are interpretable by default, but the reverse is not always true. 
However, interpretability is not the only way to achieve explainability. There are 
models that reveal their internal decision mechanisms for explanation purposes and 
use complex explanation techniques, such as neural attention mechanisms [3]. 

According to Došilović et al. [4], interpretability alone is insufficient. To increase 
human trust in black-box methods, it is necessary to develop explainability models 
that summarize the reasons for the model output. The authors assume that, while 
both mechanisms are important, interpretability is a substantial first step that 
provides the capacity to defend model actions and recommendations, provide 
relevant responses to questions, and be audited. 

Interpretable models encompass much of the present work in explainable AI [1]. 
The main reason is the increased usage of deep neural networks that are so hard 
to interpret. However, it is still challenging to formulate a line of reasoning that 
explains a model’s decision-making process to the user while relying on human-
understandable features of the input data. Nonetheless, reasoning is a critical step 
when formulating an explanation about why or how an AI-based recommendation 
has been made. 

To summarize the above discussion, despite the inherent inconsistency that one 
can find in the literature, the following list presents some of the common terms and 
their popular explanation in the XAI community. The list is mainly based on [2–4] 
that provide an excellent overview on the topic. 

• Interpretability – users should be able to understand and reason about the 
model output. 

• Model Transparency – defined in terms of simulatability, decomposability, and 
algorithmic transparency. 

• Simulatability – whether a human can use the input data together with the 
model to reproduce every calculation necessary to make the prediction. 

• Decomposability – whether there is an intuitive explanation of all the model 
parameters. 

• Algorithmic Transparency – an ability to explain how the learning algorithm 
works. 

• Model Functionality – defined in terms of textual description, visualization, 
and local explanation.
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• Textual Description – a semantically meaningful description of the model 
output. 

• Visualization – a method for explaining a model through visualization of its 
output and its parameters. 

• Local Explanation – rather than explaining the mapping of an entire model, 
local changes are introduced using specific input vectors for a given output 
class. Explanation is provided on specific use cases or instances. 

• Global Interpretability – understanding the entire ML model behavior, holistic 
reasoning that leads to all different possible outcomes. 

• Local Interpretability – understanding a single model prediction. 
• Activation Maximization – generation of an input image that maximizes the 

filter output activations. 
• Anchor – rule that sufficiently “anchors” the prediction locally such that 

changes to the rest of the instance’s feature values do not matter. 
• Surrogate Model – a simple model on top of (or besides) a complex model, 

trained based on the same input and the same predictions of the original 
complex model in order to mimic a better explanation and interpretation. 

• Partial Dependence Plot (PDP) – a graphical representation that helps visual-
ize the average partial relationship between one or more input variables and the 
predictions of a complex model. 

• Individual Conditional Expectation (ICE) – a graphical representation that 
reveals interactions and individual differences by separating the PDP output. 

• Knowledge Extraction – the task of extracting explanations/knowledge from 
the complex model during training and encoding that knowledge as an internal 
representation of a complex model. 

• Influence Methods – several techniques that carefully modify the inputs and 
measure how much the prediction changed according to each modification. 

• Example-Based Explanation – selection of specific data points to explain the 
behavior of machine learning models. 

3 Accuracy and Explainability 

A conventional statement is that there is an inherent trade-off between model 
explainability and model effectiveness, thus stating that one can either achieve high 
explainability with simpler models or high accuracy with more complex models, 
which are generally harder to interpret [3]. Figure 1 presents a possible schematic 
view of the trade-off between the model explainability and the model effectiveness. 
Similar graphs can be found in many papers, with the same message.

This belief raises a common dilemma among practitioners regarding whether to 
choose an understandable/explainable simple algorithm, while sacrificing prediction 
accuracy or to choose an accurate latent factorization modeling approach, while 
sacrificing explainability [5]. However, there is also a belief that these two goals
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Fig. 1 The inherent trade-off between model performance to model interpretability

do not necessarily contradict each other [6], which claims that this assumption is 
primarily relevant for cases related to structured data with meaningful features. 

Extensive research has focused on state-of-the-art techniques, such as deep 
learning approaches, which emphasize a model design that is both effective and 
explainable. Developing explainable deep models is thus an attractive direction in 
the broader AI community, leading to progress in essential explainable machine 
learning problems [3]. 

4 Segmentation of XAI Approaches 

There are several ways to classify and segment the different XAI approaches [1, 2, 
4]. Adadi and Berrada [3] propose a categorization for XAI methods that considers 
the model’s complexity of interpretability, scope of interpretability, and level of 
dependency. In the next sections, we follow earlier surveys by Chakraborty [2], as 
well as Adadi and Berrada [3]. 

4.1 Complexity-Related Methods 

Many works in the literature assume that model complexity is directly related 
to interpretability. Thus, simpler models are easier to interpret. Accordingly, to 
better interpret complex models, there is a need to introduce a simpler surrogate 
model or an algorithm for interpretability. Several works following this direction 
are described in this section.
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Xu et al. [8] consider the task of automatically generating image captions as 
a goal that is central to scene understanding. The authors introduce an attention-
based image caption model that automatically learns how to describe image content. 
They train the attention model using standard backpropagation techniques over deep 
neural networks and by maximizing a variational lower bound. The proposed model 
gains insight and interpretation by visualizing “where” and “what” the attention is 
focused on. Relying on visualization and benchmark datasets, they demonstrate how 
their model is able to interpret the images. 

Caruana et al. [7] deal with pneumonia risk prediction by applying generalized 
additive models with pairwise interactions (GA2Ms). The proposed model achieves 
state-of-the-art accuracy and is able to uncover surprising patterns in the data that 
previously challenged researchers and prevented the implementation of complex 
machine learning models in this domain. The model is used to identify and remove 
such patterns to obtain a better performance. 

Letham et al. [6] propose a method based on decision trees called Bayesian 
Rule Lists (BRL), which produces a predictive model that is not only accurate 
but also interpretable to human experts. This model generates conditional “if/then” 
statements (e.g., “if high blood pressure, then stroke”) that discretize a high-
dimensional, multivariate feature space into a series of simple, readily interpretable 
decision statements. Such an outcome is highly interpretable and provides concise 
and convincing capabilities that are able to gain the trust of domain experts. 

Lipton [9] proposes following a post hoc explanation approach with two stages. 
This approach first allows complex, uninterpretable black-box models to generate 
high-performance outputs, and then it applies a separate set of techniques to obtain 
explainability and interoperability over the outputs. Such an approach views the 
interpretability task as a reverse engineering process that provides the required 
explanations without altering or even knowing the inner works of the original black-
box model. 

4.2 Global and Local Interpretability Approaches 

There are two primary approaches when seeking explainability and interpretability 
for AI and ML models. The first is the global interpretability approach, which aims 
to provide a systematic view and general understanding of the AI system in use. 
Thus, the global interpretability approach seeks a complete view of the decisions and 
operations of the entire AI model. For example, this approach focuses on explaining 
the overall model analysis using a set of rules and measures that determine the global 
feature importance and explain the model outcomes. Such explainability could be 
used for example by technical experts to obtain a better modeling decision. 

The second is the local interpretability approach, which is focused on approx-
imating and explaining individual predictions and case-by-case outcomes. Thus, 
unlike global interpretability, it does not seek to explain the whole model but rather 
the specific outcomes of the AI system under different feature values and conditions.
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For example, local interpretability can be used to explain and justify an AI system 
recommendation that a specific client is not entitled to a bank loan due to his income 
level and previous loans or other personal financial conditions. As such, global 
interpretability is often better for non-technical users. 

Note that some studies aim to combine global and local interpretability; examples 
of this approach include Guidotti et al. [21] and Linsley et al. [22]. 

Global Interpretability 
As indicated, the goal of the global XAI approach is to understand the entire logic of 
a model and the entire pattern of reasoning that leads to different possible outcomes. 
This approach is most relevant in situations that require a high level of accountability 
and justification, such as AI applications in medical domains [1]. In these cases, a 
global effect estimate is often more helpful than many separate explanations for 
different possible predictions. Some examples that imply such an approach are as 
follows. 

Nguyen et al. [12] aim to study what each of a DNN’s neurons is learning to 
detect. They use activation maximization (AM), which synthesizes an input (e.g., 
an image) that highly activates a neuron. The proposed method generates synthetic 
images and reveals the features learned by each neuron in an interpretable way. 

Valenzuela-Escárcega et al. [11] propose a supervised approach for information 
extraction, which combines bootstrapping with representation learning. The pro-
posed algorithm iteratively learns custom embeddings for multi-word entities and 
their matched patterns from example entities for each classification category. This 
approach outputs a globally interpretable model consisting of a decision list that acts 
as an interpretation of the model. 

Yang et al. [10] propose a method that interprets black-box machine learning 
models globally using a binary interpretation tree. The interpretation tree explicitly 
represents the most important decision rules that are implicitly contained in the 
black-box machine learning models. The proposed learning algorithm partitions the 
input variable space by maximizing the difference between the average contributions 
of the split variable over the divided spaces. This method results in a contribution 
matrix that consists of the contributions of input variables to the predicted scores for 
each single prediction. The authors demonstrate the effectiveness of their method for 
diagnosing machine learning models over multiple tasks as well as for analyzing the 
models in terms of human understanding. 

Local Interpretability 
The goal of local interpretability is to explain the reasons for a specific decision 
or single prediction that the ML model has made. Here, we discuss research works 
focused on this type of interpretability. 

Ribeiro et al. [13] proposed a novel technique to explain the predictions of a 
classifier in an interpretable and faithful manner, by locally learning an interpretable 
model based on individual predictions. They called it the local interpretable model-
agnostic explanation (LIME). The method, which is formulated as a submodular
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optimization problem, approximates a black-box model locally in the neighborhood 
of any prediction. 

Ribeiro et al. [14] extend LIME using decision rules called “anchors”. An anchor 
explanation is a rule that sufficiently “anchors” the prediction locally, such that 
changes to the rest of an instance’s feature values do not affect the AI system 
recommendation. 

A similar approach was used in a series of studies [15–19] that analyzed image 
classification by a family of ML models. In particular, the analyses identified 
image regions (pixels) that were found to be particularly influential on the final 
classification. Several names were given to this approach, including sensitivity maps, 
saliency maps, or  pixel attribution maps. These techniques assign an “importance” 
score to individual pixels, which is meant to reflect their influence on the final 
classification of the image. A similar yet opposing concept is applied in adversarial 
learning, which aims to find and modify these specific pixels as a means to distort 
and change the correct classification [40]. 

Lundberg and Lee [20] present a unified framework for interpreting predictions, 
named SHAP (SHapley Additive exPlanations). SHAP assigns each particular 
prediction’s features an importance value. Its novel components include (i) the 
identification of a new class of additive feature importance measures and (ii) 
theoretical results showing that there is a unique solution in this class with a set of 
desirable properties. Additionally, the authors show that by using different kernels, 
SHAP can be model agnostic. 

According to surveys by Chakraborty et al. [2] and by Adadi and Berrada [3], 
local explanations are the most commonly used explanation methods in XAI and 
are particularly applied to DNN models. 

4.3 Model-Related Methods 

Another popular way to classify model interpretability techniques is according to 
whether they are model agnostic or model-specific; model-agnostic methods can 
be applied to any model type, while model-specific methods work only for specific 
models. 

Model-Specific Interpretability 
As model-specific techniques are limited to a particular model; according to [2, 
3], they are less popular than model-agnostic interpretability methods, which often 
generate more interest. 

Model-Agnostic Interpretability 
According to Mary [4], a specific class of model-agnostic methods is related to 
those that can be applied primarily to black box models’ inputs and outputs. The 
usability and popularity of these methods can be found by examining a variety 
of use cases [5]. This class of methods addresses prediction tasks and explanation 
tasks separately. Model-agnostic interpretations are usually post hoc, i.e., they are
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generally applied to interpret DNNs and could be either local or global interpretable 
models [3]. Herein, we present an overview of the studies focused on model-
agnostic interpretability, grouped by the applied techniques. In particular, one can 
find four primary technique types: visualization, knowledge extraction, influence 
methods, and example-based explanation [3]. 

4.3.1 Visualization 

One way to illustrate and better understand an ML model output, especially a 
DNN, is to represent it visually; for example, researchers have previously explored 
hidden patterns within a segment of the neural network (including a single neural 
unit). Many visualization techniques are applied to supervised learning models 
in which the active neurons and pixels can be highlighted per labeled class. The 
literature contains three primary types of explainability techniques that are related 
to visualization: Surrogate models, Partial Dependence Plots (PDP), and Individual 
Conditional Expectation (ICE) [3]. 

Surrogate Models 

Surrogate modeling refers to building a simple model (e.g., a linear model or 
decision tree) to approximate a more complex model (e.g., a DNN) to help explain 
how the complex model reaches its decisions. To build a surrogate model, one 
should often train the simpler model based on the inputs and the outputs of the 
more complex original model. In many cases, the simpler model’s output can be 
visualized to further highlight the important features on the model output. This 
technique is sometimes useful; however, there is no theoretical guarantee that this 
technique will produce a clean and effective explanation for the complex model. 

LIME [13] is a popular method for constructing local surrogate models around 
subsets of observations. Bastani et al. [23] built such a surrogate model approach by 
extracting a decision tree that represents a complex model’s behavior. Thiagarajan 
et al. [24] proposed an approach for building the “TreeView” representation using a 
surrogate model that performs hierarchical partitioning of the feature space. This 
surrogate model reveals the iterative rejection of unlikely class labels until the 
correct association is predicted. 

Partial Dependence Plot (PDP) 

The partial dependence plot is another graphical representation that helps visualize 
the average partial relationship between one or more input variables and a complex 
model’s predictions. PDP has been used in several studies to understand the 
relationship between predictors and inputs under several conditions (e.g., [25–27]).
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Individual Conditional Expectation (ICE) 

Individual conditional expectation (ICE) can be considered an extension of PDP. 
ICE plots reveal interactions and individual differences by separating the PDP 
output. ICE has been used in several studies (e.g., [28, 29]), in which the advantage 
of ICE over PDP has been demonstrated and analyzed. 

4.3.2 Knowledge Extraction 

Knowledge extraction (KE) refers to the task of extracting explanations and 
knowledge from a complex model during the training phase and encoding it as 
an internal representation of a complex model. In the literature, two primary KE 
techniques include rule extraction and model distillation [3]. 

Rule Extraction 

Rule extraction (RE) aims to find rules that provide approximation of the decision-
making process for a more complex model. In a sense, it is similar to the 
association rules that were used in data-mining tasks to extract simple rules from 
ML classification models. 

Using RE, one can obtain a better description of the knowledge learned by the 
complex model during training. Several studies have implemented rule extraction 
(e.g., [30, 31]). 

Model Distillation 

Model distillation (MD) is based on model compression techniques. MD was 
originally proposed to reduce the computational cost of a model at runtime but was 
later targeted at interpretability. Distillation is a model compression that transfers 
information from deep networks to shallow networks in the form of “teacher to 
student” [32]. Several studies have implemented model distillation (e.g., [33, 34]). 

4.3.3 Influence Methods 

Influence methods refer to several techniques that systematically modify a model’s 
inputs and then measure how much the prediction changed according to each 
modification. In this way, a relevance score for each feature is computed. According 
to [3], the literature describes three alternative methods for obtaining the input 
variable’s relevance: sensitivity analysis, layer-wise relevance propagation, and 
feature importance. These approaches are discussed next.
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Sensitivity Analysis 

Zhang and Wallace [35] introduce a sensitivity measure that determines how a 
complex model’s output is influenced by its input and/or weight perturbations. In 
particular, they conducted a sensitivity analysis examining one-layer convolutional 
neural networks (CNNs) to explore the effect of architecture components on model 
performance; their aim was to distinguish between important and comparatively 
inconsequential design decisions for sentence classification. 

Sensitivity analysis (SA) is widely used to verify whether model outputs remain 
stable when the data are changing and to support robustness verification in general. 
Cortez and Embrechts [36] proposed a global SA (GSA) method, which extends 
the applicability of previous SA methods and several visualization techniques 
when assessing input relevance and effects on the model’s responses. The authors 
demonstrate the GSA method’s capabilities by conducting several experiments 
using an NN ensemble and SVM model and including both synthetic and real-
world datasets. It is worth mentioning, however, that this approach produces an 
explanation only over the variation of the function values but not the function itself. 

Layer-Wise Relevance Propagation (LRP) 

Bach et al. [37] proposed a pixel-wise decomposition for nonlinear classifiers. 
This technique provides visualization of the contributions of single pixels to the 
predictions of kernel-based classifiers, which can be visualized using heat maps. 
The proposed technique focuses the analysis on regions of potential interest while 
tracing backward from the prediction to the input layer. Unlike sensitivity analysis, 
this technique explains the predictions relative to the state of maximum uncertainty. 

Feature Importance 

Feature importance provides a score for each input feature that represents its 
contribution to the predictions of a complex ML model. Basically, this technique 
generates a permutation of the input features and measures the corresponding model 
error. Features with high importance increase the model error more significantly 
when permutated than a feature with low importance. Fisher et al. [38] proposed 
a technique called model class reliance (MCR), which sets the range of feature 
importance values across several models for a pre-specified class. Casalicchio et 
al. [29] used SHAP values to generate a feature importance score for every input 
feature.
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4.3.4 Example-Based Explanation 

Example-based explanations (EBEs) are techniques that select particular data points 
from the dataset to explain the behavior of the ML/AI model. In the reviewed 
literature, the two primary EBE techniques are prototypes and criticisms and 
counterfactual explanations [3]. 

Prototypes and Criticisms 

To avoid overfitting the learning model, a strong representation for the data points 
must be selected. Kim et al. [39] claim that although example-based explanations 
are often used to interpret highly complex distributions, prototypes alone rarely 
sufficiently represent the essence of the model complexity. Motivated by the 
Bayesian model criticism framework, they develop the MMD-critic, which effi-
ciently learns prototypes and criticism designed to aid human interpretability. The 
authors evaluate the prototypes selected by MMD-critic using a nearest prototype 
classifier, demonstrating competitive performance when compared to baselines. 

Counterfactual Explanations 

Counterfactual explanations attempt to find the boundary at which the learning 
model will change its decision or recommendation with minimum conditions. This 
outcome is achieved without the need to describe the algorithm’s full logic. Yuan 
et al. [40] noted that ML models are vulnerable to well-designed input samples, 
called adversarial examples. Adversarial examples may be invisible to humans but 
can fool a complex ML model and alter their decision with minimal change to the 
input. The authors review recent findings related to adversarial examples for deep 
neural networks, summarize the methods that generate adversarial examples, and 
propose a taxonomy for these methods. 

5 Final Remark 

Adadi and Berrada [3] provide an excellent summary of different XAI methods. In a 
summary taxonomy table, they classify various XAI models and techniques by an-
alyzing whether they are intrinsic/post hoc, global/local, and model specific/model 
agnostic. 

As claimed by the authors, XAI is a vital interdisciplinary research direction 
and a major building block in the AI ecosystem. The potential impact of XAI can 
affect various new applications in areas such as transportation, healthcare, military, 
retail, legal, finance, and well-being. Yet, despite its importance, XAI research is 
still unstructured, and the human aspects in it can be further studied.
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