
This article was downloaded by: [132.66.11.213] On: 18 July 2023, At: 05:04
Publisher: Institute for Operations Research and the Management Sciences (INFORMS)
INFORMS is located in Maryland, USA

INFORMS Journal on Data Science

Publication details, including instructions for authors and subscription information:
http://pubsonline.informs.org

A Nonparametric Subspace Analysis Approach with
Application to Anomaly Detection Ensembles
Irad Ben-Gal, Marcelo Bacher, Morris Amara, Erez Shmueli

To cite this article:
Irad Ben-Gal, Marcelo Bacher, Morris Amara, Erez Shmueli (2023) A Nonparametric Subspace Analysis Approach with
Application to Anomaly Detection Ensembles. INFORMS Journal on Data Science

Published online in Articles in Advance 13 Apr 2023

. https://doi.org/10.1287/ijds.2023.0027

Full terms and conditions of use: https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-
Conditions

This article may be used only for the purposes of research, teaching, and/or private study. Commercial use
or systematic downloading (by robots or other automatic processes) is prohibited without explicit Publisher
approval, unless otherwise noted. For more information, contact permissions@informs.org.

The Publisher does not warrant or guarantee the article’s accuracy, completeness, merchantability, fitness
for a particular purpose, or non-infringement. Descriptions of, or references to, products or publications, or
inclusion of an advertisement in this article, neither constitutes nor implies a guarantee, endorsement, or
support of claims made of that product, publication, or service.

Copyright © 2023, INFORMS

Please scroll down for article—it is on subsequent pages

With 12,500 members from nearly 90 countries, INFORMS is the largest international association of operations research (O.R.)
and analytics professionals and students. INFORMS provides unique networking and learning opportunities for individual
professionals, and organizations of all types and sizes, to better understand and use O.R. and analytics tools and methods to
transform strategic visions and achieve better outcomes.
For more information on INFORMS, its publications, membership, or meetings visit http://www.informs.org

http://pubsonline.informs.org
https://doi.org/10.1287/ijds.2023.0027
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
https://pubsonline.informs.org/Publications/Librarians-Portal/PubsOnLine-Terms-and-Conditions
http://www.informs.org


A Nonparametric Subspace Analysis Approach with 
Application to Anomaly Detection Ensembles
Irad Ben-Gal,a Marcelo Bacher,a Morris Amara,a Erez Shmuelia,* 
a Department of Industrial Engineering, Tel Aviv University, 69978 Tel Aviv, Israel 
*Corresponding author 
Contact: bengal@tauex.tau.ac.il (IB-G); marcelo.bacher@web.de (MB); morris.amara@gmail.com (MA); shmueli@tau.ac.il, 

https://orcid.org/0000-0003-3193-5768 (ES) 

Received: February 5, 2021 
Revised: June 8, 2021; August 28, 2022 
Accepted: February 13, 2023 
Published Online in Articles in Advance: 
April 13, 2023 

https://doi.org/10.1287/ijds.2023.0027 

Copyright: © 2023 INFORMS

Abstract. Identifying anomalies in multidimensional data sets is an important yet chal-
lenging task in many real-world applications. A special case arises when anomalies are 
occluded in a small subset of attributes. We propose a new subspace analysis approach, 
called agglomerative attribute grouping (AAG), that searches for subspaces composed of 
highly correlative (in the general sense) attributes. Such correlations among attributes can 
better reflect the behavior of normal observations and hence, can be used to improve the 
identification of abnormal data samples. The proposed AAG algorithm relies on a general-
ized multiattribute measure (derived from information theory measures over attributes’ 
partitions) for evaluating the “information distance” among various subsets of attributes. 
To determine the set of subspaces, AAG applies a variation of the well-known agglomera-
tive clustering algorithm with the proposed measure as the underlying distance function, 
whereas in contrast to existing methods, AAG does not require any tuning of parameters. 
Finally, the set of informative subspaces can be used to improve subspace-based analytical 
tasks, such as anomaly detection, novelty detection, forecasting, and clustering. Extensive 
evaluation over real-world data sets demonstrates that (i) in the vast majority of cases, 
AAG outperforms both classical and state-of-the-art subspace analysis methods when 
used in anomaly and novelty detection ensembles; (ii) it often generates fewer subspaces 
with fewer attributes each, thus resulting in faster training times for the anomaly and nov-
elty detection ensemble; and (iii) the generated subspaces can also be useful in other analyt-
ical tasks, such as clustering and forecasting.
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Supplemental Material: The online appendix is available at https://doi.org/10.1287/ijds.2023.0027. 
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1. Introduction
Anomaly detection refers to the problem of finding pat-
terns in data that do not conform to an expected norm 
behavior. These nonconforming data points or patterns 
are often referred to as anomalies, outliers, novelties, dis-
cordant observations, exceptions, aberrations, surprises, 
peculiarities, or contaminants, depending on the applica-
tion domain (Chandola et al. 2007). Algorithms for detect-
ing anomalies are extensively used in a wide variety of 
application domains, such as machinery monitoring 
(Ben-Gal et al. 2003, Ge and Song 2012, Bacher et al. 2017, 
Kenett and Zacks 2021), sensor networks (Bajovic et al. 
2011), intrusion detection in data networks (Jyothsna et al. 
2011), healthcare (Tarassenko et al. 2005), and social net-
works (Aggarwal and Subbian 2012). A major reason for 
their widespread use is the fact that anomalies can often 
be translated directly to actionable recommendations 

based on either “good” or “bad” deviations from the 
norm (Chandola et al. 2007).

In a typical anomaly detection setting, only normal or 
expected observations are available, and consequently, 
some assumptions regarding the distribution of anoma-
lies must be made to discriminate normal from ano-
malous observations (Steinwart et al. 2005). Traditional 
approaches for anomaly detection (see, e.g., Ben-Gal 
2010, Pimentel et al. 2014) often assume that anomalies 
occur sporadically and are well separated from the nor-
mal data observations or that anomalies are uniformly 
distributed around the normal observations. However, 
in complex environments, such assumptions may not 
hold. For instance, consider the case of a complex system 
and a diagnosis module that continuously monitors 
the functionality of the system by analyzing multiattri-
bute (we use the terms attribute, variable, and feature 
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interchangeably) data generated from a set of sensors. If 
only one of the system’s modules breaks down or alter-
natively, if only a few of the monitoring sensors fail to 
function normally, only some of the data attributes will 
be affected. Thus, from a data analysis perspective, these 
malfunctions can be seen as an addition of noise or devi-
ation with respect to a subset of the attributes. Conse-
quently, anomalies in the system’s generated data might 
be noticeable only in some projections of the data into 
a lower-dimensional subspace and not necessarily in 
the entire data space, as often assumed by classical ap-
proaches. This phenomenon is also known in the litera-
ture as “sparse change.” As another motivating example, 
consider a case where anomalies represent a new (previ-
ously unknown) class of data observations, commonly 
called novelties (Chandola et al. 2007). Similar to the mal-
functions example, deviations from the original data 
observations might only be visible along a subset of attri-
butes. However, these attributes are often correlated in 
some sense and therefore, cannot be treated as additive 
noise.

Based on these concepts, ensembles were proposed 
as a more effective paradigm for anomaly detection 
(Aggarwal and Yu 2001). Ensembles for anomaly detec-
tion typically follow three general steps (Lazarevic and 
Kumar 2005). First, a set of subspaces is generated— 
often by randomly selecting subsets of attributes. This 
step is commonly referred to as subspace analysis. Then, 
classical anomaly detection algorithms are applied on 
each subspace to compute local anomaly scores. Finally, 
these local scores are aggregated to derive a global 
anomaly score (e.g., using majority voting). In this work, 
we focus on the subspace analysis stage, which aims to 
find a representative set of subspaces among a very large 
number of possible subspace combinations, such that 
anomalies can be identified effectively and efficiently.

Several methods for subspace analysis have been pro-
posed in the literature. These methods can be classified 
into three broad approaches. The most basic one is based 
on a random selection of attributes (e.g., Lazarevic and 
Kumar 2005). Other methods search for subspaces by 
giving anomality grades to data samples, thus coupling 
the search for meaningful subspaces with the anomaly 
detection algorithm (see, e.g., Müller et al. 2010, Ha et al. 
2015). Recent methods search for subspaces composed 
of highly correlative attributes (e.g., Nguyen et al. 2014). 
These methods rely on the assumption that, in such sub-
spaces, the correlations among attributes represent a sys-
tematic interaction among the attributes that can better 
reflect the behavior of normal observations and hence, 
can be used to better identify those deviating abnormal 
cases. However, all of the methods suffer from one or 
more of the following limitations. (i) Relevant attributes 
might not be included in the generated set of subspaces. 
This might impact the effectiveness of the ensemble 
because anomalies might occur anywhere in the data 

space. (ii) The set of generated subspaces might contain 
thousands and even millions of subspaces, which may 
make the training and operation phases of the ensemble 
computationally prohibitive. (iii) These approaches often 
require us, prior to their execution, to set the values of 
parameters, such as the number of subspaces, the maxi-
mal size of each subspace, or the number of clusters— 
parameters that are typically hard to predefine or tune 
at such a stage. For a more comprehensive review of 
existing subspace analysis methods, the reader is refer-
red to Online Appendix 1.

To address the challenges mentioned, we propose 
the agglomerative attribute grouping method (AAG) for 
subspace analysis. Motivated by previous works, AAG 
searches for subspaces that are composed of highly cor-
relative attributes. As a general measure for attribute 
association, AAG applies an information theory measure 
over attributes’ partitions (see, e.g., Simovici 2007, Kagan 
and Ben-Gal 2014). In particular, AAG introduces a gen-
eralized Rokhlin distance (Rokhlin 1967) as a multiattri-
bute measure to find subspaces with small distances (i.e., 
distances that reflect high information content among 
the attributes in those subsets). Finally, AAG applies a 
variation of the well-known agglomerative clustering 
algorithm, where subspaces are greedily searched by 
minimizing the multiattribute measure. AAG also con-
tains a pruning mechanism that aims at improving the 
convergence time of the algorithm while limiting the size 
of the generated subspaces.

Several important characteristics differentiate AAG 
from existing state-of-the-art approaches. First, because of 
the used agglomerative scheme in the subspace search, 
none of the data attributes are discarded, and attributes 
are combined in an effective manner to generate the set of 
subspaces. Second, the set of subspaces that AAG gener-
ates is relatively “compact” in comparison with existing 
methods for two main reasons; the use of the agglomera-
tive approach results in a relatively small number of sub-
spaces, and the pruning mechanism results in a relatively 
small number of attributes in each subspace. Finally, as a 
result of combining the agglomerative approach with the 
minimization of the suggested measure, AAG does not 
require any tuning of parameters.

To evaluate the proposed AAG method, we conducted 
extensive experiments on 25 publicly available data sets 
while using eight different classical and state-of-the-art 
subspace analysis methods as benchmarks. The evalua-
tion results show that an AAG-based ensemble for anom-
aly detection (i) outperforms the benchmark methods in 
cases where anomalies occur in relatively small subsets of 
the available attributes as well as in cases where ano-
malies represent a new class (i.e., novelties) and (ii) often 
generates fewer subspaces with a smaller (on average) 
number of attributes in comparison with the benchmark 
approaches, thus resulting in a faster training time for the 
anomaly detection ensemble. We also demonstrate how 
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these subspaces can be used for forecasting based on the 
exogenous variables in the subsets and evaluate this set-
ting using a real world retail data set.

It is important to note that, whereas subspace analysis 
for anomaly detection seems to be similar to attribute 
selection for supervised classification (Guyon et al. 2008) 
as well as to some ensemble-based classification methods 
(e.g., random forest in Breiman 2001), they differ greatly. 
The main difference between the two approaches stems 
from the type of data available in the training phase of the 
classification task versus the available data for the 
anomaly detection task. In the supervised classification 
task, information about each of the classes is usually 
available, whereas in anomaly detection tasks, informa-
tion about abnormal data samples is often missing, and 
only information about the normal observations is pro-
vided. Moreover, although the goal in the case of attri-
bute selection is to discard redundant attributes to 
improve accuracy and run time of the classifier, it is usu-
ally impossible to discard attributes at the training stage 
of anomaly detection tasks because they might be found 
to be extremely informative in the operational stage.

The contribution of this paper is twofold. First, it intro-
duces a new multiattribute information-theoretic mea-
sure, which can be seen as an extension to the Rokhlin 
metric. The proposed measure enables us to compute the 
expected information gain of potential subspaces, with 
the aim of identifying unexpected observations. The 
new measure has several appealing properties. (i) Unlike 
many other measures, such as Pearson correlation, it can 
be computed over a set of more than two variables. (ii) 
Unlike other measures that can handle numerical attri-
butes only, it can handle numerical as well as categorical 
variables. (iii) It enables us to expose high-order nonlinear 
dependencies among attributes, whereas simpler correla-
tion measures often reveal linear dependencies among 
the variables. To the best of our knowledge, this paper is 
the first one to apply the multiattribute extension of the 
Rokhlin distance in the context of subspace analysis.

Second, this paper introduces the AAG method, which 
is a novel algorithm for subspace analysis. The proposed 
AAG algorithm is unique in the sense that (i) it is non-
parametric, (ii) it outperforms other methods when used 
in anomaly and novelty detection ensembles, and (iii) it 
often generates more “compact” subspaces.

This work extends two earlier conference papers (Bacher 
et al. 2016, 2017) by (i) expanding the selection mecha-
nism of AAG to support a stability index (SI) for the 
selected subspaces; (ii) outlining properties of the pro-
posed multiattribute measure and proving them (e.g., 
Lemma 2); (iii) providing an extensive evaluation of the 
proposed approach, which now includes additional set-
tings, data sets, and benchmarks, including an analysis 
of a real-world forecasting use case; and (iv) elaborating 
on the statistical analyses of the obtained results.

The rest of the paper is organized as follows. Section 
2 proposes a novel measure (based on concepts of 
information theory over sets of partitions) that enables 
to evaluate the smallest “distance” among subspaces 
of attributes. Section 3 describes the proposed AAG 
approach. Section 4 presents an experimental evalua-
tion of AAG and the obtained results. Finally, Section 
5 summarizes this paper and discusses some future 
research directions.

2. Information Theory Measures 
for Partitions

This section discusses how to apply information-theoretic 
measures over partitions of a generic data set in order 
to compute the distances among various subsets of 
attributes. In particular, we review the Rokhlin distance 
(Rokhlin 1967) and its application for attributes’ associ-
ation following a partitioning of a data set. We then 
suggest an extension of the Rokhlin distance to a multi-
attribute measure for any number of attributes. To that 
end and to maintain a self-contained text, we start this 
section by providing a brief review of concepts of parti-
tions and their implementation to information theory 
while presenting the notation that is used throughout 
the paper.

2.1. Preliminaries
In this subsection, we follow Kagan and Ben-Gal (2014) 
and present some definitions of information-theoretic 
measures between partitions of a finite data set. Let D 
be a finite sample space composed of N observations 
and p attributes ({A1, A2, : : : , Ap}), and let χ�be a set of 
partitions of the sample space D as defined next. Each 
partition αi � {αi1,αi2, : : : ,αiK}, K ≤N, αij ∩ αim � ∅, ∀j, 
m � 1, 2, : : : , K, j ≠ m is defined by the values of its corre-
sponding attribute Ai, where αi1,αi2, : : : ,αiK are the sets 
of indices of identical values of the attribute Ai. For 
example, let attribute Ai contain the values {ai1, ai2, : : : , 
aiN}, such that ai1 � ai2 � ai3 and aij ≠ aik, ∀j, k � 3, 4, : : : , 
N, j ≠ k. Then, the partition of D generated by the attri-
bute Ai is {{ai1, ai2, ai3}, {ai4}, : : : , {aiN}}, which in terms of 
indices, is represented by αi � {αi1 � {1, 2, 3},αi2 � {4}, 
: : : ,αiN�2 � {N}}. Note that, by definition, the union of 
the partition elements is the set of all indices (i.e., ∪K

j�1 
αij � {1, 2, : : : , N}, ∀i).

To define the entropy and the informational mea-
sures between partitions rather than with the conven-
tional approach that defines them between random 
variables, it is necessary to specify a probability distri-
bution associated with a partition. For finite sets, the 
empirical probability distribution induced by a parti-
tion αi ∈ χ�is defined as follows (Simovici 2007):

pαi(αij) �
|αij |

N , 
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where | · | represents the cardinality of the set. Note 
that by definition, 

PK
j�1( |αij |=N) � 1. Thus, the partition 

αi induces a random variable Xi ∈ {αi1,αi2, : : : ,αiK}, 
with the probabilities pαi(αij) defined over the partition 
elements αij, j � 1, 2, : : : , K.

The Shannon entropy of the random variable Xi of 
the corresponding partition αi is then defined as H(Xi)

��
P
αij∈αi

pαi(αij)log2[pαi(αij)] (where by the usual con-
vention, 0 log20 � 0) and is denoted for simplicity by 
H(αi). Notice that the probabilities used in computing the 
entropy are obtained from the relative frequencies of the 
unique values of the attribute Ai regardless their order. 
Therefore, one can represent the Shannon entropy associ-
ated with attribute Ai, denoted by H(αi), by the entropy 
over the distribution of the partition elements in αi.

Let αi and αj be two partitions corresponding to the 
two attributes Ai and Aj, respectively. A new partition 
can be generated based the intersection between the 
two attributes’ partitions. For example, consider attri-
butes Ai and Aj, where attribute Ai contains the values 
{1, 1, 1, 2, 2, 2} and attribute Aj contains the values {1, 1, 
2, 2, 2, 3}. That is, αi � {αi1 � {1, 2, 3},αi2 � {4, 5, 6}} and 
αj � {αj1 � {1, 2},αj2 � {3, 4, 5},αj3 � {6}}. Then, the par-
tition of D generated by the two attributes Ai and Aj is 
the subsets of indices of identical values of the two attri-
butes together. In this example, the following partition 
is obtained: α �{αi1 ∩ αj1 � {1, 2}, {αi1 ∩ αj2 � {3}, {αi2 ∩
αj2 � {4, 5}, {αi2 ∩ αj3 � {6}}, where αim ∩ αjk is the in-
tersection of the two subsets (thus, the subset of all 
elements that are members of both the subsets (inter-
sections resulting in empty sets were omitted)). Such a 
partition, which is generated by two or more attributes, 
is often called a refinement of the partition generated by 
each of the individual attributes alone. It defines the 
joint probability distribution p(αi,αj) associated with 
the intersection between attribute Ai and Aj.

Considering the empirical probability distributions 
induced by the partitions (Simovici 2007, Kagan and 
Ben-Gal 2013), the conditional entropy of the partition 
αi with respect to the partition αj is defined as follows:

H(αi |αj) � �
X

αjk∈αj

X

αim∈αi

p(αim,αjk)log2[p(αim |αjk)], 

where p(αim,αjk) � p(αim ∩ αjk) and p(αim |αjk) � p(αim ∩

αjk)=p(αjk). In the example, αi1 ∩ αj1 � {1, 2}; p(αi1,αj1) �

2=6, whereas p(αi1 |αj1) � 2=6 : 2=6 � 1; and p(αi2,αj2) �

2=6, whereas p(αi1 |αj1) � 2=6 : 3=6 � 2=3. Similarly, p(αim |

αjk) is the conditional probability distribution defined over 
the partition elements in the intersection subset, given the 
conditioning subset as shown.

The Rokhlin distance between two partitions αi and 
αj is defined as the sum of conditional entropies of these 
partitions (Rokhlin 1967): that is,

dR(αi,αj) � H(αi |αj) +H(αj |αi): (1) 

For detailed consideration of the metric properties of 
this distance, see Sinai et al. (1976). Recall that the parti-
tions αi and αj are associated with attributes Ai and Aj, 
respectively. The scheme presented allows us to com-
pute the Shannon entropy of a partition αi by using the 
relative frequencies of the values of attribute Ai. Simi-
larly, the conditional entropy H(Ai |Aj) can be consid-
ered as the conditional entropy of partition αi given 
partition αj as seen. It follows that the Rokhlin distance 
can be computed equivalently for the attributes and 
their corresponding partitions:

dR(Ai, Aj) �H(Ai |Aj) +H(Aj |Ai) �H(αi |αj) +H(αj |αi)

� dR(αi,αj): (2) 

Note that the Rokhlin distance is directly related to 
Shannon’s mutual information as a measure of entropy 
reduction. Recall that I(Ai; Aj) �H(Ai)�H(Ai |Aj) and 
H(Ai) �H(Ai, Aj)�H(Aj |Ai) (Cover and Thomas 2006), 
where H(Ai, Aj) corresponds to the joint entropy of the 
two attributes derived by their joint probability distri-
bution p(αi,αj). Thus, dR(Ai, Aj) �H(Ai, Aj)� I(Ai; Aj).

Accordingly, the Rokhlin distance can be interpreted 
as a measure of mutual dependence between two attri-
butes. A small Rokhlin distance reflects a small condi-
tional entropy value and a high mutual information 
value between the attributes. A direct implementation of 
the Rokhlin distance as a formal informational metric 
between partitions has practical implications. For exam-
ple, it was used in Kagan and Ben-Gal (2013) for con-
structing a search algorithm and in Kagan and Ben-Gal 
(2014) for creating various testing trees. For an illus-
trative example of dR, the reader is referred to Online 
Appendix 2.1.

2.2. Multiattribute Measure, dMA
The informational distance measures between two attri-
butes are given in Equation (2). Subsequently, we now 
extend this concept to derive a similar notion of informa-
tional distance between a set of attributes while relying 
on the partitions associated with these attributes. Note 
that a partition can be generated by more than two attri-
butes by following the same concepts presented. Once a 
partition is established, it can be treated following the 
steps; thus, an empirical distribution can be generated to 
define its entropy as well as its conditional entropy 
given another partition (that could be generated by 
another set of attributes). The new multiattribute measure, 
denoted by dMA, is induced by sets of partitions some-
what similar to the symmetric difference between sets. 
The symmetric difference between two sets, which is also 
known as the disjunctive union, is defined as follows: 
Ai∆Aj � (Ai\Aj) ∪ (Aj\Ai). It considers the set of ele-
ments that are in either of the sets Ai and Aj but not in 
their intersection (see, e.g., Kuratowski 2014). Among 
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several properties of this measure, it is known that the 
symmetric difference is commutative and associative. That 
is, let Ai, Aj, and Ak be three different sets; then, Ai∆Aj∆Ak 
� (Ai∆Aj)∆Ak � Ai∆(Aj∆Ak). Correspondingly, the Ham-
ming distance between sets Ai and Aj is defined as the car-
dinality of the set Ai∆Aj, denoted by |Ai∆Aj | (see, e.g., 
Simovici 2007).

Following a similar analysis, the symmetric difference 
of three attributes Ai, Aj, and Ak (and their corresponding 
partitions αi, βj, and λk, respectively) is presented by the 
Venn diagram in Figure 1, where the gray areas repre-
sent the union of the attributes without their successive 
intersections.

Namely, H(Ai), H(Aj), and H(Ak) denote, respecti-
vely, the Shannon entropies of the attributes Ai, Aj, and 
Ak, whereas H(Ai |Aj), for example, denotes the condi-
tional entropy of Ai given Aj. I(Ai; Aj) is the mutual infor-
mation between attributes Ai and Aj, and I(Ai; Aj |Ak) �

H(Ai |Ak)�H(Ai |Aj, Ak) is the conditional mutual infor-
mation between attributes Ai and Aj, given attribute Ak 
(see Cover and Thomas 2006). Finally, II(Ai; Aj; Ak) de-
notes the multivariate mutual information among the three 
attributes that was introduced in the seminal work of 
McGill (1954) as a measure of the higher-order inter-
action among random variables, where II(Ai; Aj; Ak) �

I(Ai; Aj)� I(Ai; Aj |Ak). It can be shown that the mul-
tivariate mutual information is bounded from above 
by II(Ai; Aj; Ak) ≤min{I(Ai; Aj |Ak), I(Ai; Ak |Aj), I(Aj; Ak |

Ai)} (McGill 1954).
We can now define the measure dMA involving three 

attributes as follows:

dMA(Ai, Aj, Ak) � H(Ai |Aj, Ak) +H(Aj |Ai, Ak)

+H(Ak |Ai, Aj) + II(Ai; Aj; Ak), (3) 

where the first three terms on the right side of Equation (3) 
represent the degree of uncertainty among attributes and 
the last term represents the shared information among 

them. As seen in Figure 1, the multiattribute measure, 
dMA, over three attributes measures how distant these 
attributes are from each other in a similar manner to the 
Rokhlin distance dR, which is defined in Equation (2) 
over two attributes.

The generalized dMA can be applied to a higher number 
of attributes. In particular, the extension of Equation (3) 
to p attributes is somewhat similar to the symmetric dif-
ference for p sets (see, e.g., Kuratowski 2014), and each set 
represents the partition of one or more attributes:

dMA(A) �
Xp

i�1
H(Ai |A\Ai) + II(A), (4) 

where A � {A1, A2, : : : , Ap} denotes a multiset of attri-
butes in D, Ai ∈ A. Note that A can also represent the 
symmetric difference of two or more sets of attributes 
(e.g., for A � A1∆A2, dMA(A) � dMA(A1∆A2) � dMA(A1, 
A2)), where the (conditional) entropy of such union of 
attributes is defined by the partition associated with 
this multiset as seen. Recall that the term II(A) is the 
multivariate mutual information defined for p > 2 in 
McGill (1954). In Jakulin (2005), the multivariate mutual 
information was extended as the recursive computation 
II(A1, A2, : : : , Ap) � II(A1, A2, : : : , Ap�1) � II(A1, A2, : : : , 
Ap�1 |Ap). The latter definition reflects that the multivar-
iate mutual information is the intersection of all parti-
tions produced by the p attributes. This explains why 
for large p, the intersection of all partitions often results 
in a fully refined partition. Note that in the case of p � 2, 
the term II(·) is defined as zero. Thus, Equation (4) 
reduces to the Rokhlin distance between two partitions. 
For an illustrative example of dMA, the reader is referred 
to Online Appendix 2.2.

There are several benefits of using the proposed mea-
sure to analyze subspaces as detailed next. First, minimiz-
ing the proposed multiattribute measure corresponds to 
the selection of informative subspaces that are composed 
of highly correlated attributes. Thus, providing an inter-
pretable and explainable outcome.

Second, unlike classical and state-of-the-art approaches 
(such as ENCLUS (Cheng et al. 1999), 4S (Nguyen et al. 
2014), and CMI (Nguyen et al. 2013)), the proposed sub-
space search algorithm minimizes the dMA rather than 
maximizing other information measures, such as the total 
correlation (TC) (Watanabe 1960). This proposed proce-
dure does not require us to select a priori some para-
meters (e.g., an information threshold parameter) and is 
shown to yield better empirical results over various data 
sets, as seen in later sections.

Third, the minimization of the proposed multiat-
tribute measure tends to delegate the combination of 
attributes with low information content (for example, 
attributes with large numbers of uniformly distribu-
ted symbols) to later stages of the search, where their 
effects on the information measure over all the subsets 

Figure 1. The Symmetric Difference of Three Nonempty Sets is 
Represented by the Gray Areas Together with the Information- 
Theoretic Relationships Among the Corresponding Attributes 
Ai, Aj, and Ak 

Ben-Gal et al.: A Nonparametric Subspace Analysis Approach 
INFORMS Journal on Data Science, Articles in Advance, pp. 1–17, © 2023 INFORMS 5 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

66
.1

1.
21

3]
 o

n 
18

 J
ul

y 
20

23
, a

t 0
5:

04
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



structure are less critical. Consequently, the first summa-
tion term in Equation (4) approaches the sum of the 
Shannon entropy of the individual attributes, which by 
definition, yields a higher value than that of the condi-
tional entropy (Cover and Thomas 2006). Thus, using 
the proposed method results in adding more informa-
tive attributes to the generated subspaces.

Finally, later sections empirically show that minimiza-
tion of the proposed measure tends to generate, on aver-
age, a smaller set of subspaces than other approaches, 
especially in the case of data sets whose attributes have a 
considerably high number of unique values. A direct 
consequence of this characteristic is a reduced training 
time, on average, of the ensemble models.

2.3. Properties of dMA
In this section, we describe two properties of the multi-
attribute measure, dMA, that are used by the proposed 
AAG algorithm for a search after informative subsets. 
The first property describes an approximation of dMA 
when the number of attributes is high, whereas the sec-
ond property indicates that for a high number of inde-
pendent attributes, dMA can be used as a pseudometric 
to find informative subsets.

As the number of attributes p grows, the probability 
distributions induced by their partitions are becoming 
higher dimensional, and hence, the estimation of the 
multiattribute measure dMA becomes more computa-
tionally demanding. To address this challenge, we make 
use of the following claim on dMA given two sets of attri-
butes Ai and Aj, where the latter is a subset of the first.

Lemma 1. Aj ⊆ Ai⇒ dMA(Aj) ≥ dMA(Ai).

Proof. Refer to Online Appendix 3.1. w

An immediate result of Lemma 1 is the following 
approximation scheme. Namely, given a set of subsets 
of A denoted by Ã, then dMA(A) ≤minAj∈Ã{dMA(Aj)}. 
Thus, minAj∈Ã{dMA(Aj)} can be used as an upper-bound 
approximation of dMA(A), and this bound gets tighter as 
the subset’s cardinality increases and approaches the 
cardinality of the entire set, as demonstrated in Online 
Appendix 4.2. In Section 4, an approximation of dMA is 
applied to evaluate the information “distance” between 
candidate subspaces in a search for highly correlative 
subspaces. In our experiments, we found that calculat-
ing dMA over sets with a high number of attributes can 
result in intractable computations. Therefore, we used 
an approximation based on subsets of three attributes 
that empirically led to informative subspaces and rela-
tively good run time. Refer to Online Appendix 4.2 for 
further numerical analysis of the proposed approxima-
tion of dMA.

Lemma 2. The multiattribute measure dMA is a pseudo-
metric when the input set contains a high number of inde-
pendent attributes.

Proof. Refer to Online Appendix 3.2. w

3. Agglomerative Attribute Grouping
In this section, we present the proposed subspace analy-
sis method, which is named the AAG. Similar to the sub-
space analysis methods described in Online Appendices 
1.2 and 1.3, AAG generates a set of subspaces with 
highly correlated attributes by applying a variation of 
the well-known agglomerative clustering algorithm and 
using the proposed dMA measure as the underlying dis-
tance function. The combination of this measure and the 
agglomerative strategy can be used to find subspace 
combinations without setting any parameter value (such 
as the number of subspaces) in advance. This is one of 
the differences in comparison with other conventional 
methods (e.g., ENCLUS (Cheng et al. 1999), FB (Lazare-
vic and Kumar 2005), HiCS (Keller et al. 2012), CMI 
(Nguyen et al. 2013), and 4S (Nguyen et al. 2014)).

The pseudocode of the proposed AAG method is 
shown in Algorithm 1, and a running illustrative exam-
ple of it is provided in Online Appendix 2.3. The algo-
rithm receives as input a data set D composed of N 
observations and p attributes. The algorithm returns as 
output a set of subspaces with highly correlated attri-
butes denoted by T. The algorithm begins by initializing 
the result set of subspaces T to be the empty set (line 1). 
Then, in line 2, the algorithm generates a set of n sub-
spaces, each of which is composed of a single attribute. 
This set constitutes the first agglomeration level and is 
denoted by S(t), t � 1 (lines 2 and 3). Then, the algorithm 
iteratively generates the subspaces of agglomeration 
level t + 1 denoted by S(t+1) by combining subspaces 
from the previous agglomeration level, S(t) (lines 4–27). 
Each such iteration begins with updating the result set 
T to also contain the subspaces from the previous 
agglomeration level (line 5). Then, in line 6, we initialize 
the set of subspaces of the next agglomeration level to 
be the empty set. Next, in line 7, we maintain a copy of 
the previous agglomeration level, denoted by S(t)0 . This is 
required to allow attributes to appear in different sub-
spaces. Notice that S(t)0 , S(t), and S(t+1), as well as T, con-
tain the indices of the data attributes in the subspaces, 
whereas for example, Ai denotes the projection of data 
samples.

The algorithm continues by searching for two sub-
sets in the current agglomeration level that have the 
lowest dMA value (line 8) and adds the unified set to the 
next agglomeration level instead of the two individual 
subsets (lines 9). In lines 10–12 (and also, later in lines 
18–20), the algorithm can choose not to add the result-
ing set; we refer to this stage as the pruning stage and 
describe it in detail in Section 3.1. In lines 13–25, the 
algorithm continues to combine subspaces iteratively 
until there are no more subsets left in S(t). However, 
now, the algorithm checks whether it is better to unify 
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a subset from S(t) and a subset from S(t+1), denoted by 
Ai and Aj, or two subsets from S(t).1 The motivation 
behind this stage is to avoid merging only a single pair 
of subspaces in each agglomeration level and to allow 
the merging of multiple subspaces. In doing so, we 
avoid the permanent selection of subspaces with a 
higher number of attributes to be combined.

Once all subspaces have been assigned at an agglom-
eration level t, the algorithm proceeds with subsequent 
levels of agglomeration (lines 4–27) until no subspace 
combination is further required (line 4). The AAG algo-
rithm ends by returning the set of subspaces T in line 28.

The normalized multiattribute measure, denoted by 
d̃(·) as used in lines 8 and 14–16, is defined as

d̃(Ai, Aj) �
dMA(Ai, Aj)

H(Ai ∪ Aj)
, (5) 

where dMA(Ai, Aj) was defined in (4) and H(Ai ∪ Aj)

denotes the join entropy after unifying the subspaces Ai 
and Aj. The normalization factor, H(Ai ∪ Aj), allows a 
comparison between subspaces with different numbers 
of attributes. We used the results from Yianilos (2002) 
that showed that this normalization factor does not 
change the measure characteristics of (4). In the general 
case, the computation of the measure is obtained based 
on Lemma 1, where we select a fixed size number of 
attributes (e.g., three or four) and calculate the mini-
mum value over all subsets of this given size.

The run-time complexity of AAG is given in Lemma 3.

Lemma 3. The run-time complexity of AAG is O(Np3 log p), 
where N is the number of instances and p is the number of 
attributes.

Proof. Refer to Online Appendix 3.3. w

Algorithm 1 (Agglomerative Attribute Grouping)
Input: A data set D with N observations and p 

attributes
Output: A set of subspaces T 

1. T←∅
2. S(1) ← {{A1}, {A2}, : : : , {Ap}}

3. t← 1
4. while (S(t) ≠ ∅) do
5. T← T ∪ S(t)
6. S(t+1) ← ∅
7. S(t)0 ← S(t)

8. {Ai, Aj} � arg minAi ,Aj∈S(t) d̃(Ai, Aj)

9. S(t) ← S(t) \ {Ai, Aj}

10. if t ≤ 2 OR (TC(Ai ∪ Aj) ≥ νiTC(Ai) + νjTC(Aj)) 
then

11. S(t+1) ← S(t+1) ∪ {Ai ∪Aj}

12. end if
13. while S(t) ≠ ∅ do
14. {Ai, Aj} � arg minAi∈S(t),Aj∈S(t+1) d̃(Ai, Aj)

15. Sk � arg minAk∈S(t)0 \Ai
d̃(Ak, Ai)

16. if (d̃(Ai, Ak) ≤ d̃(Ai, Aj)) then
17. S(t) ← S(t) \ {Ai, Ak}
18. if t ≤ 2 OR (TC(Ai ∪ Aj) ≥ νiTC(Ai) + νj 

TC(Aj)) then
19. S(t+1) ← S(t+1) ∪ {Ai ∪Ak}

20. end if
21. else
22. S(t) ← S(t) \Ai
23. Sj←{Ai ∪Aj}

24. end if
25. end while
26. t← t+ 1
27. end while
28. return T

3.1. Pruning Stage
The agglomerative approach used in the previous sec-
tion has an inherent property that the number of attri-
butes in subspaces grows with the agglomeration level. 
This property has two major limitations. (i) It may have 
a great impact on the efficiency of the anomaly detec-
tion ensemble, and (ii) recall that the Lemma 1 approxi-
mation to Equation (4) becomes less accurate when the 
number of attributes grows considerably. To overcome 
these limitations, we propose a simple rule to deter-
mine whether to proceed with unifying two subspaces 
or not. This rule is embedded in the AAG algorithm in 
lines 10–12 and 18–20. According to this rule, two can-
didate subspaces are unified only if their union does 
not considerably reduce the subspace’s quality with 
respect to the two individual subspace candidates. 
More specifically, we evaluate the TC (Watanabe 1960) 
of the two individual subspaces Ai and Aj and compare 
their sum with the TC of their union Ai ∪ Aj:

TC(Ai ∪ Aj) ≥ νiTC(Ai) + νjTC(Aj), (6) 

where νi � J(Ai; Ai ∪ Aj) and νj � J(Aj; Ai ∪ Aj) serve as 
soft thresholds and J(·) is the well-known Jaccard index. 
If the condition is satisfied (the sum of individual TCs 
is lower than the TC of their union), the two subspaces 
are combined. Note that the proposed rule does not 
require any tuning of parameters. Moreover, its usage 
by AAG does not lead to discarded attributes because 
all attributes are already combined in the previous level 
of agglomeration. As noted, this is an important prop-
erty in anomaly (and novelty) detection applications 
where all attributes are required.

In some special cases, it is possible to speed up the 
evaluation of the rule by avoiding the computation of 
the different TCs. For example, if Ai ∩ Aj � ∅, the follow-
ing lemma indicates that it is legitimate to unify the two 
subspaces.

Lemma 4. Given two subspaces Ai and Aj such that |Ai |

≥ 2, |Aj | ≥ 2, and Ai ∩ Aj � ∅, then necessarily, TC(Ai ∪

Aj) ≥ TC(Ai) +TC(Aj).
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Proof. Refer to Online Appendix 3.4. w

Note that, for Ai ∩ Aj � ∅, the soft thresholds result in 
νi ≤ δ�and νj ≤ 1� δ, where δ ∈ (0, 0:5) is to be com-
puted. Furthermore, it can be shown that, if Ai ⊆ Aj (or 
Aj ⊆ Ai), then TC(Ai ∪ Aj) � TC(Aj) ≤ νiTC(Ai) +TC(Aj)

(because νj � 1 and νi > 0). Therefore, in such cases, the 
two subspaces should not be unified.

Also, note that although TC is not a formal metric, it 
can still be used for comparison (i.e., testing whether 
one set is “better” than the other), as implemented in 
Equation (6).

4. Evaluation
In this section, we compare the quality of the subspaces 
generated by AAG against eight other benchmark algo-
rithms when used in ensembles for anomaly and novelty 
detection. Additionally, we include a demonstration of 
how subspaces generated by AAG can improve forecast-
ing accuracy and clustering inner information in Online 
Appendix 4.5.

4.1. Experimental Settings
Our empirical study is based on the experimental set-
tings used in Cheng et al. (1999), Keller et al. (2012), and 
Nguyen et al. (2013). All of our experiments were con-
ducted on 25 real-world data sets (see Table 4 in Online 
Appendix 4.1) taken from the UCI repository (Bache 
and Lichman 2013). Although these data sets are usu-
ally used in the context of classification tasks, previous 
studies (Aggarwal and Yu 2001; Lazarevic and Kumar 
2005; Keller et al. 2012; Nguyen et al. 2013, 2014) have 
also used them in the context of anomaly and novelty 
detection. In Section 4.1.1, we describe in detail how 
normal and abnormal observations for each data set 
were generated and how the training and test sets were 
obtained. In general, we considered four different set-
tings. We focus on two of them; one is related to anom-
aly detection, and the second is related to novelty 
detection. A third setting, which is also related to 
anomaly detection, is described in Online Appendix 
4.3. A fourth setting, which deals with forecasting and 
clustering, is presented in Online Appendix 4.5.

The following evaluation procedure was used for 
AAG as well as for the eight benchmark algorithms 
(see Section 4.1.2). Stated differently, the only differ-
ence between the evaluation procedure of the various 
methods was the subspace analysis algorithm used.

First, each subspace analysis algorithm was learned 
over the training set. Then, the same training set was 
used to train the anomaly detection algorithm (we used 
minimum volume set (MV set); more details are provided 
in Section 4.1.3) in each one of the obtained subspaces.

The missing values in each attribute of the training 
data set were replaced by the mean value in case of non-
categorical values attributes and by the most frequent 

symbol in case of categorical values attributes (see, e.g., 
Bishop and Nasrabadi 2006). The missing values in the 
test data set were accordingly replaced by the mean 
and most frequent values computed from the training 
data set. Because AAG, ENCLUS, and 4S make use of 
elements of information theory to combine subspaces, 
we discretized the continuous-valued attributes in the 
training set using the equally frequency technique fol-
lowing the recommendations by Garcia et al. (2012).

After training the anomaly detection algorithm over 
each subspace, a weighting factor was computed to 
aggregate the ensemble elements at the test stage. To 
this purpose, we followed the recommendations of 
Menahem et al. (2013). More specifically, the training 
data were split randomly into a new training data set, 
which was used to generate the subspaces as well as to 
train the MV set model in each subspace, and into a val-
idation data set, which was used to estimate the gener-
alization error of each trained model. That is, the 
validation data (i.e., majority class) were used to com-
pute the weighting factors as the average error of the 
MV set in each subspace to be used as a “belief factor” 
of how good each trained model represents the normal 
data in each subspace. Note that because the validation 
data contain only normal observations, only one type 
of error is considered (i.e., normal observations that 
were classified as anomalies). The aggregation of the 
ensemble elements was incorporated by summing up 
the weighted factors of the subspaces as follows. Given 
an observation x from the validation data set, we com-
puted ŷ �

PM
i�1 wigi(x) ≥ ρ, where ŷ ∈ {0, 1} denotes if 

the observation is normal (i.e., ŷ � 1); wi denotes the 
weighting factor of subspace i � 1, 2, : : : , |T | ; |T | de-
notes the total number of subspaces; gi(x) represents 
the MV set model trained on subspace I; and ρ�denotes 
a threshold computed as the weighted number of sub-
spaces that guaranteed at maximum α�error rate on the 
validation data set. As default, we used α � 0:05, as it is 
typically used in many academic and industrial appli-
cations. It is important to emphasize that, in all of our 
experiments, we only used the normal observations to 
find subspaces and to train the ensemble for anomaly 
detection because only this information is assumed to 
be available at the training stage. In other words, our 
training set did not contain any abnormal observations 
at all.

Finally, the trained ensemble for anomaly detection 
was evaluated over the test set (containing both normal 
and abnormal observations).

As measures of performance, we examined the F1 
score, the run time in seconds, and the SI (see Section 
4.1.4).

The F1 score is calculated as F1 � 2TP=(2TP+ FN 
+FP), where TP, FP, and FN denote, respectively, the 
number of true positives (true anomaly samples), the 
number of false positives (the number of normal samples 
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classified as anomalies), and the number of false nega-
tives (the number of anomalies classified as normal 
samples).

All experiments were executed 20 times, where in 
each repetition, the data set was resplit randomly into 
training and test sets. The reported results are averages 
over the 20 different repetitions.

All of the experiments were conducted on a standard 
MacBook Pro running Mac OS X version 10.6.8 with a 
2.53-GHz Intel Core 2 Duo processor and 8 GB of 
DRAM.

4.1.1. The Considered Settings. As explained, we con-
sidered four different experimental settings. Two of 
them are described, a third setting is described in Online 
Appendix 4.3, and a fourth setting is given in Online 
Appendix 4.5.

4.1.1.1. Setting 1—Anomaly Detection (Adding Gau-
ssian Noise). In this setting, we simulated a case where 
anomalies were generated by adding zero-mean Gauss-
ian noise to normal observations, but only over a subset 
of the attributes and not over the entire data space. More 
specifically, we first identified the majority class for each 
one of the data sets. Then, we sampled 70% of the obser-
vations associated with the majority class. These obser-
vations were considered as normal observations and 
served as the training set. The remaining 30% of the 
observations associated with the majority class were 
split into two equally sized data sets. One of the newly 
split sets was kept as is, representing normal observa-
tions in the test set. For the other split, we randomly 
selected K attributes from the entire data space and 
added zero-mean Gaussian noise on the projected sub-
space of these attributes, representing anomalies in the 
test set. The variance-covariance matrix of the Gaussian 
noise was set to be diagonal, where the diagonal ele-
ments are the variances of the K attributes in the selected 
subspace. The described procedure was repeated with 
different percentages of perturbed attributes (i.e., 1%, 
3%, 5%, 7%, and 10%–100% with steps of 10%).

4.1.1.2. Setting 2—Novelty Detection. In this setting, 
we simulated a case where the abnormal observations 
represent a previously unseen class (i.e., novelties as 
defined in the literature). For this purpose, we used the 
approach that was applied in several previous studies 
(see, e.g., Aggarwal and Yu 2001; Lazarevic and Kumar 
2005; Keller et al. 2012; Nguyen et al. 2013, 2014). Simi-
lar to the first setting described, we first sampled 70% 
of the observations associated with the majority class. 
These observations represented normal observations 
and served as the training set. The remaining 30% of 
the observations associated with the majority class 
represented normal observations in the test set. Finally, 
10% of the observations associated with the remaining 

classes (i.e., not with the majority class) represented 
novelties in the test.

Table 5 in Online Appendix 4.1 shows the number of 
normal and abnormal instances for each one of the data 
sets for each one of the settings.

4.1.2. Benchmark Algorithms for Subspace Analysis. As 
benchmark methods against the proposed AAG me-
thod, we selected eight classical and state-of-the-art 
algorithms, representing a wide range of techniques. 
Specifically, FB (Lazarevic and Kumar 2005) and isola-
tion forest (iForest) (Liu et al. 2008) were selected to rep-
resent the random selection of attributes. HiCS was 
selected to represent the a priori-based technique (Kel-
ler et al. 2012). ENCLUS (Cheng et al. 1999), EWKM 
(Jing et al. 2007), and AFG k-means (Gan and Ng 2015) 
were selected to represent the clustering-based techni-
ques. Finally, CMI (Nguyen et al. 2013) and 4S (Nguyen 
et al. 2014) were selected to represent a category of algo-
rithms that search for subspaces based on information- 
theoretic measures.

With regard to AAG, subsets of three attributes were 
used to approximate the evaluation of Equation (4) and 
appear to generate a good trade-off between highly 
informative subspaces and a reasonable run time. Our 
implementation of FB sampled attributes from a uni-
form distribution over the range [p=2, p] as suggested 
in Lazarevic and Kumar (2005). The total number of 
subspaces (i.e., ensemble size) was set to 20 according 
to the authors’ suggestion.

Our implementation of the iForest algorithm tightly 
followed the work published in Liu et al. (2008). iForest 
generates and ensembles decision trees, where attributes 
and splits are randomly selected. Each tree, denoted as 
an isolation tree, is built recursively by partitioning the 
given feature space until samples are isolated. The 
height (node depth) of each sample is mapped to a score. 
Normal samples are then expected to be associated 
leaves of average height, whereas abnormal samples are 
expected to be associated leaves with lower height.

The HiCS algorithm was executed with its default 
parameters, and we selected the first 400 subspaces ob-
tained by the algorithm according to Keller et al. (2012). As 
for ENCLUS, we implemented the version ENCLUS_SIG 
as described in Cheng et al. (1999) because it is the faster 
variant of the algorithm. We also included the pruning 
option described by the authors to speed up the sub-
space analysis. The tuning of the parameters required in 
ENCLUS resulted in an extensive grid search over the 
parameter space for each data set used in the experi-
ments. Regarding the clustering algorithms EWKM and 
AFG k-means, we applied the well-known technique 
proposed in Sugar and James (2003) to set the number of 
clusters. In particular, for AFG k-means, we used the 
default parameters recommended in Gan and Ng (2015) 
and the group of features per cluster delivered by the 
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algorithm as the set of subspaces. For EWKM, we se-
lected the attributes in each cluster with the highest 
weighting factor, generating as many subspaces as the 
number of clusters. Finally, for 4S and CMI, we followed 
the default parameterization suggested in the original 
articles.

All algorithms, with the exception of HiCS, CMI, and 
4S, were implemented in MATLAB R2009b, whereas 
for HiCS, CMI, and 4S, we made use of the publicly 
available code.

4.1.3. The Anomaly Detection Algorithm. As explained, 
after executing the subspace analysis algorithm, an ano-
maly detection algorithm was trained on each one of 
the obtained subspaces. We used MV set as presented in 
Park et al. (2010) as the anomaly detection algorithm.

MV set, which is based on the plug-in estimator, pro-
vides asymptotically the smallest type II error (false-neg-
ative error) for a given fixed type I error (false-positive 
error). More specifically, the MV set aims at finding the 
minimal support of a distribution for which the proba-
bility of each element of the support is at least as high as 
a predefined minimal threshold. Accordingly, the anom-
aly detection rule reduces to the following principle; if a 
new sample belongs to the minimum volume, then the 
new sample is considered as normal observation. Other-
wise, it is labeled as abnormal. In our experiments, we 
used a fixed type I error of 0.05.

Park et al. (2010) used PCA to reduce the data di-
mensionality before applying kernel density estimation 
(see, e.g., Bishop and Nasrabadi 2006) to compute the 
empirical probability that was later used to find the 
minimum volume set. In the experiments, Park et al. 
(2010) selected two principal components as it is well 
known that higher dimensionality often worsens the 
performance of kernel density estimators (Scott 2015). 
We followed this approach but selected the principal 
components that describe 90% of the variance. If the 
mapped dimension of the data was found to be larger 
than two, then we used a Gaussian mixture model 
(GMM) (see, e.g., Bishop and Nasrabadi 2006) to com-
pute the supporting empirical distribution and applied 
it to estimate the MV set. The number of components in 
the GMM was set to obtain a minimal Akaike informa-
tion criterion.

We also applied another anomaly detection algo-
rithm in our experiments, namely OC-SVM (Schölkopf 
et al. 2005), as a classical anomaly detection algorithm, 
yet we found that in most cases, MV set achieved better 
performance, required fewer parameters to be tuned, 
and was faster to train on the same data.

4.1.4. The Stability Index SI. Often, domain experts 
prefer subspace analysis methods that obtain not only 
acceptable performance values in detecting anomalies 
but also, show stability in the set of subspaces. Although 

low stability does not necessarily imply low performance 
rates, in many cases, low stability follows from funda-
mental problems in the subspace search process (Somol 
and Novovičová 2010).

Derived from the work presented in Garcı́a-Torres 
et al. (2016), we propose a way to compute the stability 
index of subspace analysis methods. We denote a set of 
subspaces from one run of a subspace analysis method 
as Ti � {Si,m}

Mi
m�1, where i symbolizes the run index, Mi is 

the number of subspaces in the run i, and Si,m symbo-
lizes one of the Mi subspaces in the set Ti. We further 
denote the set of all subspaces from L algorithm runs 
of a subspace analysis method by S � {Si,m ∈ Ti, ∀m �
1, 2, : : : , Mi and i � 1, 2, : : : , L}. Additionally, we denote 
allsubspaces in S that contain k attributes by Λk (i.e., Λk 
� {Si, Sj ∈ S : |Si | � |Sj | � k, ∀i, j � 1, 2, : : : , |S | and i ≠ j}, 
where | · | denotes the cardinality of a set). Thus, |S | de-
notes the total number of subspaces obtained after L 
executions of the algorithm.

The approach for estimating the stability index SI(S)
for the set S consists of assessing the stability index for 
each set of equally sized subspaces (i.e., Λk) and then, 
averaging the latter values. Assuming that there are L sets 
of equally sized subspaces and each set l � 1, 2: : :L is 
denoted as Λk(l), where k(l) refers to the number of at-
tributes in the set l, then the stability index is defined as

SI(S) � 1
L
XL

l�1

2
Nl(Nl � 1)

XNl�1

i�1

XNl

j�i+1
J(Si,l; Sj,l), (7) 

where J is the Jaccard index, Nl is the number of sub-
spaces in the set Λk(l), and Si,l, Sj,l ∈ Λk(l). It is easy to see 
that 0 ≤ SI(S) ≤ 1:0, where values closer to 1.0 correspond 
to more stable solutions. Indeed, if all subspaces Si,l and 
Sj,l have the same result, the double-sum term on the 
right side of Equation (7) is equal to Nl(Nl � 1)=2. There-
fore, the first sum results in L, computing SI(S) � 1.

4.2. Results
The following subsections report the detection perfor-
mance results under the settings described in Section 
4.1.1. Based on the experimental evaluation, we provide 
a detailed comparison of the proposed AAG method 
versus the different benchmark methods. Finally, we 
report the run time that was required to train the various 
subspace analysis methods.

4.2.1. Setting 1—Anomaly Detection (Adding Gauss-
ian Noise). Figure 2 shows the resulting averaged F1 
scores as a function of the fraction of attributes syntheti-
cally perturbed by additive zero-mean Gaussian noise 
on 6 of the 25 considered data sets. In all cases, the max-
imum error rate α�was set to 0.05 (see Section 4.1 for 
more details). The x axis indicates the fraction of per-
turbed attributes with respect to the total number of 
attributes, and the y axis shows the averaged F1 scores 
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over 20 repetitions of the experiment. As seen in the 
figure, the proposed AAG method considerably out-
performs the other methods when the fraction of per-
turbed attributes is lower than ~ 0:3. When the fraction 
of perturbed attributes is higher than 0.3, AAG perfor-
mance remains stable and becomes comparable with 
that of HiCS. Furthermore, it seems that AAG’s perfor-
mance is less affected by the fraction of perturbed attri-
butes (note the lower variance in its F1 score values), 
whereas the other methods are more affected by these 
percentages.

Table 1 shows the averaged F1 scores obtained by 
the different subspace analysis methods, for all 25 data 
sets, when zero-mean Gaussian noise is added to 10% 
of the attributes. In each row (i.e., data set), the two 
highest average F1 score results, obtained by the two 
best-performing subspace analysis methods, are indi-
cated by bold numbers.

As seen from Table 1, in 18 of the 25 data sets, AAG 
is included in the two best-performing subspace analy-
sis methods. In most of these cases, when AAG is the 
second best, the difference from the best method is 
marginal and nonsignificant. On the other hand, in 
many of the cases that AAG is ranked as the best 
method, the difference from the second-best method is 
significant. In eight cases, ENCLUS is included in the 
two best-performing methods; in four of these cases, it 
outperforms AAG marginally, whereas in two of these 

cases, AAG outperforms it significantly. In eight cases, 
HiCS is included in the two best-performing methods; 
in four of these cases, it outperforms AAG marginally, 
whereas AAG outperforms it in most of the cases sig-
nificantly. CMI is included four times in the two best- 
performing methods, outperforming AAG in a single 
data set only (the cover data set), and outperformed by 
AAG all other cases. FB is included five times among 
the two best-performing methods, outperforming AAG 
in four of these cases, especially when the data set 
dimensionality is relatively small. All other methods 
are left way behind in terms of their performance.

Our evaluation shows that AAG performs well at 
detecting anomalies when they occur in relatively small 
subspaces. The superiority of AAG in such cases can be 
explained by three main directions. First, the use of the 
proposed multiattribute distance allows AAG to iden-
tify highly qualitative subspaces. Second, during the 
subspace combination process, AAG does not discard 
even a single attribute—attributes that might be neces-
sary in the testing phase to identify anomalies that are 
not available for training. Third, all other benchmark 
methods require some tuning of parameters, where 
among them, one can find the number of subspaces to 
generate that is extremely critical. Determining the 
right number of subspaces is, in general, a nontrivial 
task, which is usually achieved by validating the frame-
work on test data. Such a procedure may result in 

Figure 2. Setting 1—Averaged F1 Score as a Function of the Fraction of Attributes Synthetically Perturbed by Additive Zero- 
Mean Gaussian Noise for Different Subspace Analysis Methods 

Notes. (a) Thyroid data set. (b) Features Kar data set. (c) Arrhythmia data set. (d) Breast data set. (e) Fourier data set. (f) Faults data set.
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discarding subspaces as a result of some criterion dur-
ing the training stage that can impact the performance 
of the anomaly detection ensemble during the testing 
phase, when new unseen data samples arrive.

Our findings were found to be statistically significant 
as described in Online Appendix 4.4.1.

4.2.2. Setting 2—Novelty Detection. Table 2 shows the 
averaged F1 scores obtained in the novelty detection set-
ting. As seen from Table 2, in 15 of the 25 data sets, AAG 
is included among the two best-performing subspace 
analysis methods; in six cases, it achieves the best perfor-
mance. CMI seems to be the second-best method in the 
novelty detection setting, being included nine times 
among the two best-performing methods, whereas in six 
of these cases, it is either very close to AAG or underper-
forms it. AFG k-means comes next, being included six 
times among the two best-performing methods, with 
a relatively close performance of AAG in three of these 
cases. HiCS follows next, being included five times 
among the two best-performing methods, with a rela-
tively close performance of AAG in three of these 
cases. ENCLUS, iForest, and EWKM were found to be 
less effective in detecting novelties and were included 
among the two best-performing methods five, four, 
and four times, respectively.

Our findings were found to be statistically significant 
as described in Online Appendix 4.4.2.

4.2.3. Detailed Comparison. The rest of this subsection 
provides a more detailed comparison of AAG against 
the other benchmark methods.

With respect to the FB subspace method, the results 
obtained in all three settings were of relatively low per-
formance with respect to AAG. In the two anomaly 
detection settings, FB’s selection of subspaces obtained 
a better performance in detecting random perturba-
tions on the attribute space as well as in detecting sam-
ples when these came from combined anomaly classes. 
Nevertheless, in the novelty detection setting, FB’s per-
formance was even lower. A possible reason for this 
might be that random combinations, as done in FB, are 
less prone to detect inherent correlations among differ-
ent attributes that usually exhibit different data classes.

Unlike HiCS, AAG succeeds in finding a smaller num-
ber of subspaces that can be directly applied. The reason 
for this lies in the search strategy of HiCS, which is based 
on the a priori approach and on randomly permuted 
attributes to reduce the algorithm complexity. HiCS 
retrieves several hundreds of subspaces that afterward 
have to be filtered in some way. This can be observed 
from the obtained results in the anomaly detection eval-
uation where on average, the HiCS method misses find-
ing moderate deviations in the data set.

With respect to ENCLUS, although it does not require 
to set the number of generated subspaces in advance, it 
does require three other parameters as input, such that 
their tuning requires an extensive grid search over the 

Table 1. Setting 1—Averaged F1 Scores of the Nine Anomaly Detection Ensembles over the 25 UCI Repository Data Sets

Data set AAG FB HiCS ENCLUS EWKM AFG k-means CMI 4S iForest

KDDCup99 (http) 0.482 0.499 0.422 0.399 0.000 0.517 0.441 0.442 0.529
KDDCup99 (smpt) 0.044 0.036 0.041 0.029 0.000 0.045 0.038 0.034 0.039
Thyroid 0.803 0.252 0.000 0.289 0.236 0.591 0.663 0.603 0.254
Mammography 0.594 0.579 0.488 0.598 0.489 0.212 0.501 0.473 0.240
Glass 0.541 0.376 0.409 0.553 0.514 0.375 0.324 0.324 0.000
Breast cancer 0.797 0.344 0.498 0.532 0.573 0.449 0.441 0.445 0.096
Zoo 0.537 0.572 0.473 0.605 0.433 0.445 0.336 0.342 0.000
Cover 0.531 0.556 0.123 0.197 0.317 0.551 0.668 0.497 0.218
Wine 0.478 0.379 0.359 0.428 0.401 0.440 0.397 0.377 0.000
Pen digits 0.747 0.402 0.293 0.627 0.543 0.524 0.241 0.341 0.091
Letter 0.523 0.289 0.564 0.640 0.425 0.337 0.415 0.511 0.182
Waveform 1 0.228 0.468 0.548 0.000 0.433 0.431 0.442 0.440 0.139
Faults 0.747 0.484 0.424 0.564 0.448 0.550 0.594 0.494 0.104
Dermatology 0.702 0.401 0.580 0.610 0.436 0.564 0.566 0.568 0.094
Satimage 0.346 0.186 0.314 0.365 0.323 0.303 0.234 0.239 0.098
Waveform 2 0.268 0.637 0.513 0.573 0.585 0.513 0.398 0.387 0.135
Segmentation 0.720 0.577 0.733 0.658 0.608 0.514 0.605 0.625 0.000
Lung cancer 0.753 0.421 0.704 0.660 0.448 0.378 0.627 0.627 0.000
Sonar 0.430 0.246 0.499 0.373 0.232 0.299 0.391 0.390 0.059
Features Pix 0.432 0.497 0.381 0.452 0.564 0.595 0.327 0.387 0.057
Audiology 0.712 0.485 0.674 0.000 0.370 0.000 0.492 0.397 0.000
Feature Fourier 0.635 0.256 0.370 0.294 0.147 0.207 0.238 0.230 0.067
MNIST 0.873 0.865 0.579 0.778 0.833 0.836 0.682 0.668 0.477
Features Kar 0.923 0.162 0.264 0.000 0.474 0.365 0.504 0.412 0.083
Arrhythmia 0.873 0.000 0.643 0.510 0.592 0.592 0.239 0.339 0.103

Note. The two highest averaged F1 scores are indicated by bold numbers.
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support of the parameters. In contrast to FB, one can see 
that ENCLUS often performs better in the case of anom-
aly detection applications, but its performance degrades 
as a subspace method for novelty detection ensembles. 
On the other hand, ENCLUS manages to generate a sta-
ble set of subspaces, mainly because of the a priori search 
mechanism. Such a search strategy enables ENCLUS to 
find thousands of subspaces with a relatively small num-
ber of attributes, where several subspaces might have 
redundant results. Yet, because of the high number of 
subspaces that ENCLUS generates, potential subspaces 
that may find abnormal data samples are downgraded in 
the averaging computation of the scores. An interesting 
research direction might be then to evaluate different sub-
space combinations when the number of ensemble sub-
spaces is high.

CMI resulted in lower performance than the pro-
posed AAG algorithm both for novelty detection and 
for anomaly detection. Nevertheless, CMI showed bet-
ter results in the novelty detection setting. It seems that 
its subspace generation managed to combine relevant 
subspaces that captured the correlation among impor-
tant attributes. On the other hand, 4S was not included 
among the two best-performing subspace methods. 
The 4S method requires us to a priori set the maximal 
number of attributes, which turns out to be critical for 
finding highly qualitative subspaces. This is manifested 
in the obtained results for all three examined settings.

The subspace clustering methods EWKM and AFG k- 
means follow AAG, FB, HiCS, and ENCLUS in terms of 
their performance. The poorer performance with respect 
to all other methods is because of the fact that attributes 
are discarded from the set of subspaces. Consequently, 
neither novel nor abnormal samples can be efficiently 
identified. Additionally, we found that it was not trivial 
to set the number of clusters—a critical parameter for 
both methods. In both subspace-clustering methods, the 
number of clusters has a major impact on the selected 
subspaces when optimizing the extended k-means cost 
objective.

Finally, the iForest method achieved a poorer perfor-
mance than the proposed AAG method in settings where 
the model is trained using only normal data and then 
applied to abnormal samples. Often, the iForest method 
is applied to outlier detection problems: that is, when 
abnormal and normal data samples coexist in the training 
data set. It seems that only in cases where the unexpected 
data samples are well separated from the normal data, 
iForest manages to obtain a good representation of the 
normal data. This may be the case when abnormal sam-
ples are almost homogeneously distributed among the 
subspaces that were obtained during the random training 
of the iForest ensemble. Nevertheless, in common real- 
world cases, the tree depth used to compute the threshold 
as anomaly score is not significant enough to generalize 
to unseen abnormal samples.

Table 2. Setting 2—Averaged F1 Scores of the Nine Anomaly Detection Ensembles over the 25 UCI Repository Data Sets

Data set AAG FB HiCS ENCLUS EWKM AFG k-means CMI 4S iForest

KDDCup99 (http) 0.492 0.301 0.301 0.330 0.000 0.407 0.291 0.288 0.495
KDDCup99 (smtp) 0.041 0.020 0.044 0.029 0.000 0.041 0.024 0.018 0.038
Thyroid 0.687 0.339 0.587 0.357 0.501 0.201 0.597 0.537 0.566
Mammography 0.522 0.379 0.404 0.505 0.389 0.218 0.330 0.395 0.610
Glass 0.550 0.441 0.333 0.504 0.283 0.575 0.457 0.412 0.160
Breast cancer 0.902 0.396 0.616 0.655 0.857 0.891 0.904 0.901 0.229
Zoo 0.581 0.526 0.460 0.576 0.527 0.522 0.161 0.361 0.167
Cover 0.514 0.442 0.091 0.122 0.290 0.219 0.598 0.480 0.588
Wine 0.570 0.424 0.400 0.456 0.561 0.583 0.523 0.353 0.192
Pen digits 0.827 0.387 0.637 0.579 0.743 0.770 0.875 0.340 0.249
Letter 0.173 0.337 0.553 0.630 0.275 0.181 0.169 0.435 0.407
Waveform 1 0.634 0.508 0.602 0.533 0.746 0.712 0.728 0.449 0.299
Faults 0.377 0.573 0.448 0.488 0.394 0.247 0.236 0.595 0.291
Dermatology 0.834 0.578 0.517 0.460 0.812 0.770 0.782 0.619 0.262
Satimage 0.810 0.337 0.363 0.411 0.804 0.797 0.801 0.272 0.236
Waveform 2 0.201 0.455 0.516 0.663 0.516 0.538 0.298 0.426 0.297
Segmentation 0.813 0.758 0.599 0.631 0.845 0.826 0.746 0.561 0.000
Lung cancer 0.694 0.529 0.705 0.659 0.385 0.270 0.736 0.625 0.000
Sonar 0.236 0.305 0.417 0.349 0.385 0.453 0.221 0.393 0.215
Features Pix 0.855 0.378 0.432 0.572 0.531 0.474 0.792 0.415 0.233
Audiology 0.743 0.675 0.698 0.378 0.410 0.387 0.521 0.469 0.229
Feature Fourier 0.846 0.413 0.375 0.277 0.692 0.715 0.844 0.278 0.196
MNIST 0.661 0.677 0.420 0.441 0.722 0.735 0.595 0.600 0.744
Features Kar 0.846 0.277 0.204 0.484 0.577 0.731 0.794 0.503 0.262
Arrhythmia 0.468 0.572 0.495 0.592 0.495 0.495 0.431 0.289 0.240

Note. The two highest averaged F1 scores are indicated by bold numbers.
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Nevertheless, it is important to acknowledge AAG’s 
limitations. First, as noted in Lemma 3, AAG’s run-time 
complexity is proportional to p3, where p is the number 
of attributes. This property can impose a serious limita-
tion for data sets with a very large number of attributes. 
Second, AAG’s superiority stems from its inherent 
assumption that anomalies are occluded around a rela-
tively small number of attributes, and in some cases, 
this assumption may not hold.

4.2.4. Run-Time Evaluation. We evaluated the time 
taken to train each of the ensemble methods over the 25 
data sets considered in this study. Because the run 
times obtained did not differ significantly among the 
three settings, we show in Table 3 only the run times 
for setting 1.

As seen in Table 3, in none of the 25 studied cases, 
AAG’s run time was the lowest one among the nine 
compared methods. HiCS and ENCLUS were found to 
be faster than AAG in 60% and 80% of the cases, respec-
tively. A possible reason for this is that HiCS uses ran-
dom selection of attributes to cope with the run-time 
requirement of the original a priori strategy. ENCLUS 
requires as a parameter a limit to the number of attri-
butes in each subspace, and therefore, it finishes the 
execution even if the selected subspaces are far from 
optimal. As expected, FB and iForest were found to be 

faster than AAG in 80% and 92% of the cases, respec-
tively, mainly because of their random selection of attri-
butes. Additionally, iForest does not require building 
an anomaly detection model over the selected sub-
spaces, as FB does. Therefore, in most cases, iForest out-
performed FB in terms of run time.

Additional run-time analyses are reported in Online 
Appendix 4.6.

4.2.5. Stability Analysis. We computed the stability 
index SI(S) for the proposed AAG method as well as 
for all benchmark subspaces analysis methods using 
the 25 data sets considered in this study. The results 
shown in Table 4 are obtained for setting 1 (similar 
results were obtained for settings 2 and 3) after execut-
ing the corresponding subspace analysis method 20 
times, where the best two results are indicated with 
bold numbers.

From Table 4, we can see that, on average, the pro-
posed AAG method, as well as the benchmark methods 
HiCS, ENCLUS, CMI, and 4S, achieve relatively stable 
solutions, whereas FB, EWKM, and AFG k-means achie-
ved less robust sets of subspaces.

A possible explanation for the lower stability of FB is 
in the fact that subspaces are randomly selected. There-
fore, for each algorithm run, a different set of subspaces 
is generated, leading to a poorer stability index. EWKM 

Table 3. Averaged Run Times (in Seconds) for Executing the Subspace Analysis Method and Training the Ensembles for 
Each One of the Nine Subspace Analysis Methods over the 25 Studied UCI Repository Data Sets

Data set AAG FB HiCS ENCLUS EWKM AFG k-means CMI 4S iForest

KDDCup99 (http) 131.41 29.31 304.63 92.25 111.13 102.02 142.81 256.52 56.53
KDDCup99 (smtp) 14.88 5.42 142.76 11.32 12.03 10.65 87.03 131.92 22.40
Thyroid 6.82 2.55 68.75 0.23 2.06 1.16 13.45 22.21 2.27
Mammography 25.18 21.77 43.94 0.11 1.48 4.25 22.03 39.38 4.97
Glass 1.62 4.16 1.13 0.35 0.33 0.47 0.42 0.71 0.40
Breast cancer 0.45 4.02 3.42 0.07 0.33 0.50 0.68 0.90 0.53
Zoo 0.48 0.06 0.80 3.31 0.32 0.58 0.26 0.28 0.22
Cover 3,999.70 0.11 52.86 103.58 244.67 402.39 31.43 36.41 124.21
Wine 1.67 3.35 4.60 2.98 0.56 0.63 0.77 0.86 0.27
Pen digits 115.22 23.92 32.98 0.88 1.72 3.47 8.26 11.98 7.92
Letter 12.44 4.35 42.47 3.91 0.82 1.56 7.13 7.25 6.81
Waveform 1 148.51 8.25 23.99 30.00 1.74 2.53 5.24 5.73 3.62
Faults 31.83 2.78 4.58 36.23 0.51 1.25 2.99 4.07 2.52
Dermatology 7.14 3.43 3.57 0.46 0.38 0.55 1.14 1.68 0.83
Satimage 84.55 26.74 28.35 10.01 3.59 5.77 19.24 31.35 4.80
Waveform 2 545.14 15.57 29.39 179.17 3.10 4.40 9.41 16.33 3.63
Segmentation 0.83 2.07 94.07 0.69 0.47 0.56 23.08 37.33 0.27
Lung cancer 6.79 2.71 1.17 1.03 0.66 0.57 0.65 0.67 0.25
Sonar 37.60 2.49 11.88 84.55 0.25 0.41 2.24 3.41 0.27
Features Pix 215.06 7.43 18.98 18.41 1.28 1.86 13.13 20.91 3.19
Audiology 1.09 2.77 19.74 0.26 0.33 0.60 10.42 14.71 0.19
Feature Fourier 225.56 3.40 35.78 291.33 0.79 1.12 5.78 9.21 2.84
MNIST 704.04 72.77 135.85 37.21 12.93 21.94 23.10 28.06 5.12
Kar 334.53 5.43 57.29 100.25 2.85 3.35 19.49 31.48 6.25
Arrhythmia 2,638.30 293.42 43.52 1,086.12 2.27 2.05 8.76 10.62 0.40

Note. The two best (lowest) run times are indicated with bold numbers.
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and AFG k-means select subspaces by minimizing a 
distortion function that involves the Euclidean dis-
tance. Thus, changes in the data set produced by the 
shuffling process have higher impact than their compe-
titors, leading to a relatively lower stability in the gen-
erated subspaces.

Methods based on inherent information within the 
data set suffer less from variations in the data set. In par-
ticular, for the methods HiCS and ENCLUS, we found 
that the high number of selected subspaces contributes to 
the stability index. Specifically, both methods are based 
on the a priori mechanism, and henceforth, both methods 
tend to select several hundred subspaces, where a small 
portion of attributes differs among subspaces.

Nevertheless, HiCS results are less robust than ENCLUS 
because of two reasons. First, it includes a random per-
mutation of attributes to overcome the time-consuming 
a priori search. Second, only the first few hundred gener-
ated subspaces are usually selected, negatively impact-
ing the overall stability index. CMI and 4S were more 
robust to changes in the data set with respect to the pre-
viously mentioned algorithms but still fall behind the 
proposed AAG method in stability. Recall that CMI 
applies the k-means clustering to compute the condi-
tional mutual information, and therefore, the random 
data set shuffling produces deterioration in the stability 
index. The 4S method, for its part, selects a specific num-
ber of attributes after computing the total correlation, 

and henceforth, the stability index shrinks. The pseudo-
metric used in the search for subspaces in AAG was less 
influenced by the shuffling mechanism, leading to sub-
spaces comprising almost the same attributes.

5. Summary and Future Work
In this paper, we introduced the AAG subspace analysis 
algorithm that aims at finding highly informative sub-
spaces for anomaly detection ensembles as well as other 
analytics tasks. Similar to other state-of-the-art methods 
for subspace analysis, AAG searches for subspaces with 
highly correlated attributes. In order to assess how cor-
relative a subset of attributes is, AAG proposes a new 
informational measure, which was derived from previ-
ous information theory measures over sets of partitions. 
We then suggest a method to approximate the proposed 
measure in cases where the number of attributes is large. 
Relying on the newly suggested measure, AAG applies 
a variation of the well-known agglomerative algorithm 
to search for highly correlated subspaces. Our variation 
of the agglomerative algorithm also applies a pruning 
rule that reduces the potential redundancy in the final 
set of subspaces.

As a result of combining the agglomerative approach 
with the suggested measure, AAG avoids any tuning of 
parameters when generating the subspaces. Moreover, 
based on an extensive empirical study, we show that AAG 
outperforms other classical and state-of-the-art subspace 

Table 4. Averaged Stability Index SI(S) for Each One of the Eight Subspace Analysis Methods over the 25 Studied UCI 
Repository Data Sets

Data set AAG FB HiCS ENCLUS EWKM AFG k-means CMI 4S

KDDCup99 (http) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
KDDCup99 (smtp) 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
Thyroid 0.651 0.369 0.367 0.537 0.423 0.466 0.611 0.601
Mammography 0.821 0.766 0.801 0.799 1.000 1.000 0.876 0.812
Glass 0.653 0.478 0.667 0.655 0.309 0.291 0.622 0.631
Breast cancer 0.501 0.166 0.449 0.477 0.422 0.466 0.498 0.487
Zoo 0.713 0.685 0.691 0.685 0.408 0.419 0.644 0.635
Cover 0.823 0.732 0.804 0.813 0.987 0.998 0.798 0.809
Wine 0.617 0.693 0.583 0.621 0.289 0.313 0.587 0.601
Pen digits 0.618 0.580 0.694 0.622 0.422 0.458 0.602 0.611
Letter 0.549 0.467 0.488 0.550 0.340 0.411 0.610 0.590
Waveform 1 0.526 0.423 0.490 0.443 0.211 0.190 0.429 0.511
Faults 0.595 0.269 0.475 0.521 0.201 0.383 0.588 0.570
Dermatology 0.652 0.269 0.521 0.589 0.267 0.390 0.499 0.511
Satimage 0.581 0.289 0.510 0.577 0.402 0.431 0.544 0.561
Waveform 2 0.579 0.353 0.504 0.561 0.166 0.207 0.522 0.535
Segmentation 0.598 0.152 0.447 0.554 0.338 0.298 0.590 0.578
Lung cancer 0.507 0.303 0.407 0.487 0.479 0.471 0.402 0.446
Sonar 0.527 0.297 0.388 0.601 0.332 0.378 0.611 0.612
Features Pix 0.691 0.106 0.359 0.609 0.231 0.233 0.579 0.591
Audiology 0.477 0.290 0.391 0.522 0.112 0.134 0.378 0.401
Feature Fourier 0.541 0.210 0.466 0.476 0.129 0.142 0.489 0.493
MNIST 0.609 0.123 0.434 0.655 0.589 0.609 0.590 0.612
Features Kar 0.509 0.151 0.472 0.510 0.148 0.201 0.465 0.490
Arrhythmia 0.573 0.237 0.583 0.576 0.281 0.229 0.579 0.565

Note. The two best results are indicated with bold numbers.

Ben-Gal et al.: A Nonparametric Subspace Analysis Approach 
INFORMS Journal on Data Science, Articles in Advance, pp. 1–17, © 2023 INFORMS 15 

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
2.

66
.1

1.
21

3]
 o

n 
18

 J
ul

y 
20

23
, a

t 0
5:

04
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



analysis algorithms, specifically when it was used for 
ensemble-based anomaly detection (settings 1 and 3). In 
this case, we found that AAG training time is lower and 
that it can better distinguish between normal and abnor-
mal observations. AAG also outperformed other sub-
space analysis methods when it was used for ensemble- 
based novelty detection (setting 2): that is, when new 
classes that were not present during the training stage 
of the ensemble arise in the testing stage. Finally, we 
demonstrated how the obtained subspaces can be used 
in other analytical tasks, such as forecasting based on 
exogenous variables and clustering by analyzing a real- 
world retail data set (setting 4). Thus, the subspaces 
generated by AAG can be used in various applications, 
such as anomaly detection, novelty detection, forecast-
ing, and clustering.

Although in some cases, AAG demonstrated a faster 
training time than other state-of-the-art algorithms, its 
run-time complexity is proportional to p3, where p is 
the number of attributes. In principle, this property can 
impose a serious limitation for data sets with a very 
large number of attributes. Nevertheless, it is important 
to note that (i) executing AAG is performed once (and 
typically, in an offline procedure); (ii) the run-time 
complexity can be improved considerably using paral-
lelization, as explained in Online Appendix 3.3; (iii) the 
run-time complexity can further be improved by prede-
composition of the feature set (e.g., by applying simpler 
correlation measures or even randomization); and (iv) 
using AAG can reduce considerably the time spent dur-
ing the training and/or inference phases of the learning 
algorithm used on top of it (see Online Appendix 4.6).

In the first anomaly detection setting (setting 1), where 
random noise was added to normal observations, AAG 
obtained considerably better results than the other ben-
chmark methods, specifically when noise was added to 
a relatively small number of attributes. However, when 
the noise was added to the entire data space, AAG lost 
its superiority. Thus, in cases where noise is spread 
sporadically over all attributes, it could be better to use 
simpler anomaly detection algorithms (not necessarily 
ensembles) to gain faster run times.

Recall that AAG searches for highly correlated sub-
spaces, but it does not necessarily find the optimal set of 
subspaces for two main reasons. (i) The computed mea-
sure for a subset is approximated, and (ii) the agglomera-
tive algorithm is inherently a greedy one. It would be 
interesting to analyze the optimality boundaries obtained 
by AAG and explore whether certain variations of it may 
result in better performance boundaries.

When preparing the data sets for the novelty detec-
tion task (setting 2), we randomly sampled 10% of the 
minority classes that were only added to the test set. It 
would be interesting to experiment with other sample 
percentages as well as their relative quantity compared 

with the majority class in order to analyze their impact 
on the detection performance of the trained ensembles.

AAG addresses the case where no separation is 
made between normal observations (i.e., there exists 
only one normal class). More specifically, in settings 1 
and 2, all normal observations are taken from a single 
class. In setting 3, although the normal observations 
can be taken from multiple classes, they are unified into 
a single normal class, and the separation between the 
underlying classes is not transparent to the algorithm. 
In future work, we aim to extend AAG’s usage to data 
sets with multiclass normal observations. Although the 
trivial way of doing so is to apply AAG on each one of 
the normal classes separately (and unify the sets of sub-
spaces), we would like to utilize jointly the information 
available in the different classes to find higher-quality 
subspaces.

Finally, another research direction is extending AAG 
to find subspaces in dynamic environments, where the 
probability distribution of the normal observations may 
change over time. Under such a scenario, we intend to 
first find a base set of subspaces and then, to update this 
set incrementally when new normal observations become 
available.

Endnote
1 Note that in order to reduce run-time complexity considerably, we 
do not iterate over all pairs of subsets in S(t) but only on pairs that 
include Ai and another subset (i.e., Ak) from S0, denoted by Ai and Ak.

References
Aggarwal CC, Subbian K (2012) Event detection in social streams. 

Ghosh J, Liu H, Davidson I, Domeniconi C, Kamath C, eds. 
Proc. 2012 SIAM Internat. Conf. Data Mining (SIAM, Philadel-
phia), 624–635.

Aggarwal CC, Yu PS (2001) Outlier detection for high dimensional 
data. Sellis T, Mehrotra S, eds. Proc. 2001 ACM SIGMOD Inter-
nat. Conf. Management Data (ACM, New York), 37–46.

Bache K, Lichman M (2013) UCI Machine Learning Repository (Uni-
versity of California School of Information and Computer Sci-
ence, Irvine, CA).

Bacher M, Ben-Gal I, Shmueli E (2016) Subspace selection for anom-
aly detection: An information theory approach. 2016 IEEE Inter-
nat. Conf. Sci. Electr. Engrg. (ICSEE) (IEEE, Piscataway, NJ), 1–5.

Bacher M, Ben-Gal I, Shmueli E (2017) An information theory subspace 
analysis approach with application to anomaly detection ensem-
bles. Fred ALN, Filipe J, eds. Proc. 9th Internat. Joint Conf. Knowledge 
Discovery Knowledge Engrg Knowledge Management—KDIR (SciTe-
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information-theoretic contrast measure for enhancing subspace 
cluster and outlier detection. Proc. 2013 SIAM Internat. Conf. 
Data Mining (SIAM, Philadelphia), 198–206.

Park C, Huang JZ, Ding Y (2010) A computable plug-in estimator of 
minimum volume sets for novelty detection. Oper. Res. 58(5): 
1469–1480.

Pimentel MA, Clifton DA, Clifton L, Tarassenko L (2014) A review 
of novelty detection. Signal Processing 99:215–249.

Rokhlin VA (1967) Lectures on the entropy theory of measure- 
preserving transformations. Russian Math. Surveys 22(5):1–52.

Schölkopf B, Smola A, Müller KR (2005) Kernel principal compo-
nent analysis. Artificial Neural Networks—ICANN’97: 7th Internat. 
Conf. Proc. (Springer, Berlin), 583–588.

Scott DW (2015) Multivariate Density Estimation: Theory, Practice, and 
Visualization (John Wiley & Sons, Hoboken, NJ).

Simovici D (2007) On generalized entropy and entropic metrics. J. 
Multiple-Valued Logic Soft Comput. 13(4/6):295–320.

Sinai IG, Sinaj JG, Sinai YG (1976) Introduction to Ergodic Theory, 
vol. 18 (Princeton University Press, Princeton, NJ).
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