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a b s t r a c t 

Malicious software (malware) is a challenging cybersecurity threat, as it is often bundled 

with legitimate software and downloaded by naïv e users. A significant source of malware 

downloads is via crack websites that are used to circumvent copyright protection mecha- 

nisms. Crack websites often change URLs and IPs to avoid automatic detection; however, in 

many cases, they preserve specific visual designs that signal the website’s function to poten- 

tial users (such as particular colors, text fonts, shapes, and sizes.). Website design features 

are numerous, have high dimensionality and complicated interactions, making categoriza- 

tion challenging. This study shows that straightforward machine learning models for cate- 

gorizing Crack and Malicious websites can considerably benefit from using design features. 

We report on two experiments based on unbalanced datasets and show that classification 

by using design features can reach a categorization accuracy of over 90% with an F1-score 

over 77% in some instances. Finally, we discuss the results in the context of developing in- 

telligent security mechanisms. 

© 2021 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction and background 

Humans are notorious for being the weakest link in cyber-
security ( Pfleeger et al., 2014 ). Human factors influence how
individuals interact with cybersecurity systems and are the
cause of many successful cyberattacks. For example, 73% of
technology professionals perceive user errors to be one of the
top three information security threats ( Deloitte, 2013 ). Human
vulnerability to cyberattacks can expose large, medium, and
small organizations to risks by installing malware and letting
unauthorized software inside the organization’s network. Var-
ious advanced approaches, such as automating dynamic mal-
ware analysis tools ( Shahegh et al., 2017 ), detecting attempted
attacks ( Carlini and Wagner, 2017 ), and identifying phishing
websites based on suspicious webpage features ( Moghimi and
Varjani, 2016 ), have been developed to protect users from
potentially harmful websites. Additionally, efficient privacy-
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preserving tools, such as Sharemind ( Bogdanov et al., 2012 ),
intrusion detection systems ( Hadžiosmanovi ́c et al., 2012 ), and
website vulnerability detection systems ( Yue and Wang 2013 ),
have been developed to secure organizational data and pro-
cesses. 

Despite cybersecurity efforts, one of the most popular ways
to spread malware is through crack websites, which allow
users to download free software that circumvents antipiracy
mechanisms ( Krebs, 2011 ]. A crack website is defined as a
website that disrupts a client’s computer operations, gath-
ers sensitive information, or is used to gain access to pri-
vate computer systems. This broad definition covers websites
that aim to attack browsers through JavaScript vulnerabilities
( Heiderich et al., 2011 ), phishing users ( Zhang et al., 2014 ), and
so forth. 

Crack websites attract visitors by offering free software,
games, movies, or music and then redirecting naïve users
to malicious sites ( Zhuge et al., 2009 ). If successful, malware
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s often installed on the users’ machines. Software cracking 
ools are heavily used by cyber criminals to spread malware 
nd that existing virus scanners cannot fully protect users 
rom these threats, as users often circumvent those scanners 
 Kammerstetter et al., 2012 ). The authors also found that more 
han 50% of crack websites included a certain type of mali- 
ious software (malware). Crack websites thus pose a serious 
hallenge to cybersecurity. The malicious software from crack 
ebsites is actively and directly downloaded by users, making 

t more difficult for automatic network and computer security 
racking mechanisms to provide efficient protection against 

alware damage. 
Various methods have been suggested to identify ma- 

icious websites: sdetecting mobile malicious webpages 
 Amrutkar et al., 2017 , Cimino et al., 2020 ), analyzing ma- 
icious URLs ( Ma et al., 2011 , Kim et al., 2018 , Chiba et al.,
018 ), analyzing the properties of software linked to the 
ebsite ( Egele et al., 2008 , Liu et al., 2020 , Fang et al.,

020 ), capturing user navigation paths ( Shahabi et al., 1997 ; 
piliopoulou et al. 1998 ), propagating trust of the web- 
ite ( Zhang et al., 2014 ) or detecting attacking attempts 
 Heiderich et al., 2011 ). However, crack websites change their 
RLs and hosting services frequently, relying on both general 
nd dedicated search engines to attract visitors. Therefore,
RL detection methods and malware directories are in a con- 
tant “arms race” with those websites, never catching up with 

hese threats. Also, because crack websites are continuously 
hanging ( Motoyama et al., 2011 , Samtani et al., 2015 ), it is dif-
cult to identify them and to protect organizations and users 
gainst these threats. Indeed, no single method was found 

o identify all crack websites; therefore, a battery of tools are 
sed to improve these websites’ detection. This study aims to 

mprove the identification of cracks and malicious websites 
n particular and websites’ categorization in general by using 
ebsite design features that are often retained across multi- 
le iterations of a given crack website, as explained below. 

Protecting against malware and malicious software is 
 critical task in supporting business service processes 
 Knight et al., 2007 ). However, in many cases, the protection 

f the software itself is vulnerable and prone to attacks, for 
xample, by overloading antivirus tools ( Al-Saleh et al., 2015 ).
he threat of phishing attacks has drawn much attention, and 

everal studies have tried to identify URLs, suspicious links,
TML structures, or visual design characteristics that are typ- 

cally associated with phishing websites ( Lakshmi and Vijaya 
012 ; He et al., 2011 ; Aburrous et al., 2010 ; Chen et al., 2014 ).
owever, the relevance of these studies to identify crack web- 

ites is questionable. Phishing website detection relies primar- 
ly on the fact that these websites try to imitate legitimate 
ebsites (e.g., e-banking or commerce sites) using similar URL 
nd HTML structures. This is not necessarily the case for crack 
ebsites, which are seemingly “normal” websites that often 

ontain malicious software. 
An important observation that can be used to improve 

rack website detection is that these websites must bal- 
nce two opposing requirements to successfully function: 
scaping malware detection tools and attracting visitors 
 Kammerstetter et al., 2012 ). When analyzing this question 

rom the perspective of crack website operators, one can ask 
ow a website can signal potential visitors that it is distribut- 
ng cracks while avoiding exposing similar signals to cyberse- 
urity tracking tools. Signaling theory has been used to iden- 
ify and understand the cues (i.e., signals) people use to assess 
 website’s functions when they are provided with limited in- 
ormation about the website ( Pavlou et al., 2007 ). Specifically,
isual design was a strong signal of the way visitors perceive 
 website’s quality ( Wells et al., 2011 ) and security functional- 
ties ( Pavlou et al., 2007 ). 

Visual design factors are important in establishing a 
elationship between websites and users. The design 

trongly affects visitors’ trust in websites ( Pelet and Pa- 
adopoulou, 2011 ), frames the expectations of the website’s 
unction ( Cebi 2013 ) and triggers visitors’ selections and 

urfing patterns ( Bonnardel et al., 2011 ). Concurrently, these 
esign factors might also represent unseen visual elements,
hich are elements that cannot be seen by users but can be 

ound in the website’s code. One example of an unseen visual 
lement is text words surrounded by a background that is the 
ame color, which hides links that lead to malicious content.
yr et al. (2010 )) showed that websites’ coloring could affect 

he factors of trust and satisfaction across different users 
rom different cultures. The authors also found significant 
ultural differences in the way that users interact with 

ifferent websites ( Cyr 2008 ; Cyr and Trevor-Smith 2004 ). A 

ebsite’s visual design and aesthetics primarily use a rela- 
ively small number of styles, which differ between domains 
nd follow different trends ( Golander et al. 2012 ). Accordingly,
e claim that the visual design of a website can serve as a
ual-purpose signal. People can easily identify and detect the 
isual properties of these websites based on intuition (e.g.,
hen examining four different crack website examples in 

ig. 1 ). However, identifying and analyzing websites’ visual 
esign is a relatively difficult task for computer algorithms 
 Cai et al., 2003 ). Because it is critical for crack websites to be
ecognizable by users ( Motoyama et al., 2011 ), this study hy- 
othesizes that the visual design of crack websites have their 
wn visual characteristics and signatures and are similar 
cross different websites. Although there is no guarantee that 
rack websites will not use the visual designs of legitimate 
ites that are easily implementable, these design features 
ring traffic to the websites, and that traffic might be reduced 

f the design features are modified. 
Signaling the functionality of crack websites through their 

isual design is an assumption we rely on when using ma- 
hine learning procedures, even simple ones such as clas- 
ification and regression trees (CART) ( Breiman et al., 1984 ),
or the modeling and analysis of visual features that enable 
he automatic identification of cracks and malicious websites.
ART modeling is known to be a straightforward machine 

earning model that is ideally suited to generate various log- 
cal decision rules. CART modeling is often effective at un- 
overing hidden interactions among predictors (website de- 
ign features in this case), which may be difficult to identify 
hen using traditional multivariate techniques ( Lewis 2000 ,
teinberg and Colla 2009 ). 

In this study, we propose a method that is based on 

he abovementioned assumptions and evaluates whether the 
lassification of websites’ visual elements can be used to pre- 
ict crack websites or even to classify website categories. Ex- 
loring this question requires formal definition and extraction 
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Fig. 1 – Screenshots of four examples of crack websites that have been detected by the proposed algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of website design elements as potentially relevant features,
and the design of a web-mining method that can use these
features for identification purposes. For this task, we propose
an efficient algorithm that scrape the websites’ design and
style elements, processes the elements and stores relevant
features in an accessible dataset that can be used for learning
and identification. The stored information is then processed
while using standard classification techniques to classify the
website category, including crack websites. 

This study is focused on the extraction and use of new vi-
sual design features, which are often overlooked in the litera-
ture, although they are readily available and apparently highly
informative, to classify and identify websites. We purposely
relied on standard and widespread machine learning methods
that can be easily analyzed and translated to a straightforward
set of rules. In particular, these algorithms were selected as
representatives of simple and popular models in ML, namely,
Logistics Regression as a simple parametric model, KNN as the
most popular non-parametric ML model, Neural network as
a demonstrative model from a family of biologically-inspired
networks, AdaBoost as a pioneering ensemble-based model of
weak classifiers, and CART as one of the most popular clas-
sification and regression tree models. Finally, as part of this
study’s contributions, we publish a new dataset that contains
hundreds of thousands of website features. 

Several web-mining methods have been developed in re-
cent years to improve website personalization, provide secu-
rity, maximize sales, and analyze visitor use patterns. Some
studies provide a solid basis for addressing the technical as-
pects of analyzing website design, going beyond the docu-
ment object model (DOM) that is commonly used to represent
HTML-based web pages. Studies have demonstrated how to
combine DOM scraping with SimHash fingerprinting (hashing
technique) and agglomerative clustering ( Bernardini 2018 ) to
identify illicit websites. Sarhan et al. suggested a method for
the automatic classification of a website into a phishing or le-
gitimate website based on the aggregation of a set of prede-
termined features related to the site’s content ( Sarhan et al.,
2017 ). 

Wu et al. suggested learning methods based on summa-
rizing various visual features to assess the visual complex-
ity of a website ( Wu et al., 2013 ; 2016 ). Mesbah et al. demon-
strated that it is possible to analyze user interaction on web-
sites that use asynchronous JavaScript and XML (Ajax) for dy-
namic background HTTP calls ( Mesbah et al., 2012 ). All these
techniques have the potential to enhance the proposed iden-
tification method in this study. 

In this paper, we conduct two validation experiments. The
first experiment is based on a manually selected dataset of
450 websites and identifies known website categories, such as
“Crack”, “Shopping”, “Games”, “News” and “Search”. This ex-
periment aims to provide a proof of concept that verifies that
website design features can be used to identify general web-
site categories. Then, in the second experiment, which focuses
on identifying malicious websites, the algorithm is fine-tuned
to analyze a larger feature set. 

The remainder of this paper is organized as follows.
Section 2 describes the proposed method and explains how
it can be used to access, analyze and categorize websites
based on their design features. Section 3 describes the ex-
perimental settings and evaluation method of the study,
Section 4 presents the experimental results. Section 5 dis-
cusses the results (specifically within the framework of cyber-
security mechanisms,) and Section 6 concludes the paper. 
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Fig 2.1 – Feature extraction and learning process scheme used in Experiment 1. 

Fig 2.2 – Flow diagram of Experiment 2, which builds a robust algorithm to allow large-scale website collection. 
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. Proposed website assessment scheme 

his section describes the proposed scheme and the devel- 
ped procedure to access and analyze a list of webpage design 

eatures. The implementation is based on design elements 
f the webpage, where the word "design" refers to all visual 
nd nonvisual elements (e.g., hidden links or text) on a web- 
age and their related features. We assume (and evaluate) that 
hese design features can serve as useful identifiers for im- 
roving the identification accuracy of website types or cate- 
ories, including crack websites. In the first experiment, the 
rocedure relies on the feature extraction of websites’ land- 

ng pages and assumes that crack websites must quickly sig- 
al their functionality to potential visitors. As shown in Figs.
.1 and 2.2 , the proposed application receives a list of URLs 
s an flat input file. It thenaccesses the list, extracts websites’ 
rimary design features, processes the information, and then 

enerates a simple machine learning classifier that models 
he combinations of features that define website categories as 
Crack” and “Not Crack” websites. 

Fig. 2.2 shows a schematic view of the proposed system 

hat was used in Experiment 2. The algorithm obtains a list 
f URLs as its input, downloads the website at each URL,
xamines the HTML elements and then extracts their con- 
ent and design features. A Document Object Model/JavaScript 
DOM/JS) engine is used to access all DOM elements on a web- 
age. One of the primary difficulties in the construction of 
he DOM/JS sub-algorithm is the ability to run it from the 
lient-side on external websites. Therefore, we have imple- 
ented a PHP-based server-side engine that downloads an 

TML file and related style libraries, and saves the files on the 
erver side. These operations allow access to websites, down- 
oad related files that affect the website design and save those 
n the server. In the second step, the algorithm extracts ele- 
ents from the webpage, ranks them based on their size, and 

hen extracts their primary design features, as shown in Fig. 3 .
hen using cascading style sheets (CSS), a parent element’s 

tyle definition is applied to all descendant elements. For ex- 
mple, if a certain element background color is set as “blue”,
nd this element is defined as a table, its descendant cells will 
ave a blue background as well. 

However, if one of those cells is set separately with a dif- 
erent background color, this background will be shown as de- 
ned. Accordingly, the proposed algorithm infers the style el- 
ments with respect to the CSS inheritance tree. In the third 

tep of the procedure, the metadata, including keywords, titles 
nd tags that are used to enrich the identification engine, are 
xtracted from the website, as explained below. 

Table 1 describes the information that is extracted from 

he website following the implementation of the PHP and 
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Table 1 – Website features example. 

Feature name Description Units 

Website address Website domain name: 
"www.example.com" 

Nominal value 

Element tag name Each element in HTML 
has a tag name. The tag 
name represents the 
type of element (for 
example, table, heading, 
image, etc.). 

Nominal value 

Element area Calculation of the area 
for each HTML element 
(height X width) 

Pixel 

Metakeyword The presence of a 
relevant keyword on the 
website 

Binary 

Text length The text length ignoring 
spaces. For example, 
"This example!" has a 
text length of 12. 

Number 

Text font rate Acquires the font size of 
the element that 
contains text. The font 
size is measured in 
pixel units. 

Pixel 

Text total rate Text Total rate = Text 
length x Text font rate x 
Bold factor ∗. 
∗If the text is in bold, we 
multiplied the function 
by 1.5. 

Pixel 

Background color The final background 
color associated with 
the element, as shown 
in the browser to the 
internet surfer. 

R,G,B 

Text Color The final text color 
associated with the 
element, as shown in 
the browser to the 
internet surfer. 

R,G,B 

Fig. 3 – Area and text calculation example. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DOM engines. Finally, following all visual elements’ extrac-
tion, the proposed algorithm also calculated new summarized
attributes for each website feature using common descrip-
tive statistic functions. We have used functions such as max,
min, sum, average, count, color classification, standard devia-
tion, normal distribution, interquartile range and normaliza-
tion by the deviation of the features. Using these standard
functions, this preprocessing stage results in a total of 1198
design-related features for each website page. 

In the second experiment, which is described in Section 4.2 ,
the proposed procedure is refined to support the robust analy-
sis of large-scale datasets. Additionally, the algorithm’s capa-
bilities are extended to support various website structures and
to address more design features, such as the XY position of an
element, word count, color allocation and color classification.
Overall, the proposed scheme shown in Fig. 2.2 extracts and
scans 2522 features. 

3. Experimental settings and evaluation 

The proposed algorithmic engine was designed to perform
a full scan of one website within a few seconds. In the first
experiment, we identify “Crack” vs. “Not Crack” websites. As
a baseline, and to obtain a tagged dataset for “Not Crack”
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ebsites, we used Google’s top 1000 websites in the highest- 
ated website categories, “Shopping”, “Games”, “News” and 

Search” websites. A total of 579 websites were excluded from 

he list (e.g., websites that do not use HTML or CSS while us- 
ng RGBA and server timeout). Following this extraction, 421 
arefully selected websites remained in the negative training 
ataset (i.e., “Not Crack” websites), following a manual inspec- 
ion. For the “Crack” websites, we used the top 60 websites 
hich appeared in Google’s "crack websites" search. Thirty- 
ne crack websites were excluded from the set using the same 
rocedure described above. The remaining “Crack” websites 
ere checked manually to ensure that they actually did dis- 

ribute crack content. Then, we created a training dataset with 

50 carefully selected websites, which resulted in a relatively 
mall and unbalanced dataset that was fairly accurate due to 
igorous manual inspection to verify the studied websites’ cat- 
gorization. We found that a small yet accurate dataset that 
ocused on evaluating the information embedded in websites’ 
esign features was sufficient for this study. 

In the next stage, we tagged each website in the dataset 
ith its category type. This categorization enabled us to ex- 

mine whether website design features can be used for au- 
omated identification of a website’s category. Then, we built 
 decision/classification tree for each category by consider- 
ng either the design feature alone or a larger set of features 
hat contains both the design features and the metakeyword 

eatures. The primary goal of the first experiment was to ex- 
mine whether design features can be used to improve the 
dentification of website categories, specifically crack web- 
ites, while using simple classification models such as deci- 
ion trees. We used the classification based on design features 
nd meta-keywords as a baseline benchmark because many 
rack websites apply specific keywords to attract traffic from 

ainstream search engines. The contribution of this work is 
ased on the extraction and use of design features that are 
therwise overlooked and not on the proposal of new learn- 

ng models. 
In the second experiment, we used a free dataset published 

or researchers on the UK Web Archive and scanned 14,922 web- 
ites that are categorized by type. We randomly checked 50 
ebsites to validate the accuracy of the categorization, and 

o discrepancies were found. We added 510 URLs that con- 
ain malware content to this list and used the “Google Safe 
rowsing” (GSB) API to classify and tag each website. GSB clas- 
ifies a malicious URL into one of the following five classes: 
Malware”, “Social engineering”, “Unwanted software”, “Po- 
entially harmful application”, and “Threat type unspecified”.
o obtain a high-quality dataset, we only used URLs that were 
agged as “Malware” or “Unwanted software”. Then, we ex- 
cuted an additional retrospective inspection of these URLs 
o verify that they continued to appear on the website list as 

alicious. Thus, we reduced the chance of having a misclas- 
ified URL in the malicious website learning dataset. Finally,
e obtained a dataset of 15,432 URLs. Then, after tagging the 
ataset, we used five well-known machine learning models 
o classify website categories: logistic regression, k nearest- 
eighbors (KNN), an artificial neural network (ANN), an adap- 

ive boosting classifier, and a CART decision tree with 5-fold 

ross-validation. 
(
t

The proposed algorithm was designed to run on several 
ores simultaneously to reduce the overall scanning time.
ach of the 8 cores obtained a subset of sites from the URL list,
canned the websites and wrote the results into the same data 
chema. The execution of this algorithm for over 15,000 web- 
ites took approximately 1.5 hours per core (with a mean time 
f 2.8 seconds per website per core). Two factors (the website 
estination and the scheme size) were found to impact the 
equired scanning time of the website. These factors affected 

oth the required loading time and rendering time of the site.
he average scanning time was also affected by the category 
f the website, depending on the number of objects. For ex- 
mple, a typical “News” website often consists of a relatively 
igh number of HTML objects and required a scan time of up 

o 5 seconds, while a typical “Search” website often consists of 
ewer elements and required a scan time of below 1 second.
hese running times were obtained with an average down- 

oad rate of less than 20 Mbps, which are much slower than 

he download rate of commercial packages that are available 
n the market. Thus, the algorithm runtime can be decreased 

sing faster download rates, faster ports and more computing 
ower. 

. Results 

.1. Results of Experiment 1 

e used the classical J48 decision tree ( Salzberg, 1994 ) which 

s based on information gain, wherein each level starting from 

he root, the attribute with the highest normalized informa- 
ion gain is selected to obtain a decision node. The proposed 

rocedure enables to generate a simple and interpretable set 
f conditional statements on the design features of different 
ebsite categories. 

To analyze the performance of the proposed approach, we 
alculated the classification accuracy, including the true pos- 
tive (TP) rate and the true negative (TN) rate, for each of 
he website categories by each classifier based on the design 

eatures alone or on both the design features and the meta- 
eywords together. Table 2 shows the confusion matrix, clas- 
ification accuracy, TN rate, precision, TP rate (recall) and F1- 
core for all instances that were included in Experiment 1.
hese metrics were selected because they are often used to 
valuate classifications in unbalanced datasets, where cer- 
ain predicted categories are minority classes ( Pouyanfar et al.,
018 ; Al-Azani and El-Alfy 2017 ). The upper-left entry in each 

atrix indicates the number of correctly tagged websites with 

heir category type (TP), and the lower right entry in each ma- 
rix indicates the number of websites correctly tagged as not 
elonging to the category type (TN). The classification accu- 
acy was calculated as (TP + TN)/N. Results show that design 

eatures alone could successfully classify crack websites with 

n average accuracy of 90.7%. 
The TP rate (Recall) of “Crack” websites was the high- 

st among all the categories (62.1%), while the other cate- 
ories obtained the following TP rates: “Search” (60%); “News”
48.8%); “Shopping” (35.7%); and “Games” had the lowest rate 
23.1%). The true negative rate of “Crack” website identifica- 
ion was 92.6%, with the following values for the other cat- 
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Table 2 – Confusion matrix, classification accuracy and tp rates based on site categories ∗. 

Category Minority 
class 
proportion 

Classification Type Design Alone (Actual) Design & KW (Actual) 

Crack 11% Confusion Matrix 
(predicted) 

18 31 22 3 
11 390 7 418 

Accuracy 90.7% 97.8% 

TN Rate 92.6% 99.3% 

Precision 36.7% 88.0% 

TP Rate (Recall) 62.1% 75.9% 

F1-score 46.2% 81.5% 

Shopping 8% Confusion Matrix 10 24 22 14 
18 398 6 408 

Accuracy 90.7% 95.6% 

TN Rate 94.3% 96.7% 

Precision 29.4% 61.1% 

TP Rate (Recall) 35.7% 78.6% 

F1-score 32.3% 68.8% 

Games 4% Confusion Matrix 6 14 20 4 
20 410 6 420 

Accuracy 92.4% 97.8% 

TN Rate 96.7% 99.1% 

Precision 30.0% 83.3% 

TP Rate (Recall) 23.1% 76.9% 

F1-score 26.1% 80.0% 

News 10% Confusion Matrix 21 23 31 16 
22 384 12 391 

Accuracy 90.0% 93.8% 

TN Rate 94.3% 96.1% 

Precision 47.7% 66.0% 

TP Rate (Recall) 48.8% 72.1% 

F1-score 48.3% 68.9% 

Search 2% Confusion Matrix 6 2 6 6 
4 438 4 434 

Accuracy 98.7% 97.8% 

TN Rate 99.5% 98.6% 

Precision 75.0% 50.0% 

TP Rate (Recall) 60.0% 60.0% 

F1-score 66.7% 54.5% 

∗ Results are based on websites’ design features and meta-keywords. The design matrix presents the following counts, starting with the upper 
left entry clockwise direction: true positive (TP), false positive (FP), true negative (TN) and false-negative (FN). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

egories: “Shopping” (94.3%); “Games” (96.7%); “News” (94.3%);
and “Search” (99.5%). 

The “search” class was the smallest, representing 2% of the
websites, and yet it reached a precision of 75% based solely on
design features. When keywords were added, the algorithm
was defocused, and the precision decreased to 50% because
search engines contain many keywords that may represent
many other categories. The highest improvement in the F1-
score occurred for the “Games” category (26.1% to 80%), al-
though this is a small minority class that contains only 4%
of the websites in the dataset. 

These results indicate that relying only on websites’ design
features can provide satisfactory results in many cases, pri-
marily with respect to true negative rates. Using keywords can
thus improve results, as shown in the last column of Table 2 .
In particular, the average TN rate of “Crack” websites was im-
proved by 6.7%, while the average TN rate was improved by
only 2% −3% for all other categories. The average TP rates,
conversely, were improved significantly when keywords were
considered, while the average total accuracy was improved by
1% −7% in most cases. Respectively, the recall, precision and
harmonic mean, which is known as the F1-score and is typ-
ically applied to unbalanced datasets, describe similar phe-
nomena: when relying on design features and keywords, the
obtained measures were relatively high, with the exception of
the “News” category, where the variety of keywords actually
decreases the measure performance. 

The F1-score of “Crack” websites, based on both design
features and keywords, was the highest (81.5%) among all
classes. Similarly, the other categories achieved the following
F1-scores: “Games” (80%); “News” (68.9%); “Shopping” (68.8%);
and “Search” (54.5%). Thus, it is typically true that classifica-
tion performance often increases with sample size; however,
these observations were also relevant for minority classes,
such as “Shopping” (8%), “Games” (4%) and “News” (10%). 

When adding the meta-keywords to the design features,
the greatest improvement in the average classification accu-
racy occurred with “Crack” websites (7.1%). A possible reason
for this result is that “Crack” websites discuss different top-
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Fig. 4 – True Positive by Classification Type. 

Fig. 5 – True Negative by Classification Type. 
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cs but use similar keywords to indicate their functionality to 
sers, a fact the proposed learning algorithm exploits that. 

Following the manual verification, we found that using key- 
ords had significantly improved classification. However, the 

mprovement achieved by learning keywords cannot be guar- 
nteed in the general case. For example, ‘black-hat’ search en- 
ine optimization (SEO) procedures manipulate websites’ key- 
ords to attract incoming links from legitimate sites and even 

teal their content ( Motoyama et al., 2011 ). Figs. 4 and 5 de-
cribe the TP and TN improvement in percentages. Fig. 6 de- 
cribes the overall model accuracy. The only exception occurs 
ith search websites in which design features do not improve 

lassification accuracy. One possible reason for this result is 
hat these websites often do not contain many design objects.
he "Search" category had the lowest number of instances 

websites) in the dataset. 

.1.1. . Problem formulation 

o further analyze the proposed classifiers’ performance, we 
alculated the receiver operating characteristic (ROC) curves 
f “Crack” websites. Fig. 7 shows the ROC curve for the clas- 
ification by design features only. The area under this ROC 

urve for “Crack” and “Not crack” was 0.78. Fig. 8 shows the 
OC curve for the classification by design features alone as 
ell as by both design features and meta-keywords. The area 
nder this ROC curve for “Crack”and “Not crack”was 0.78. This 
elatively marginal difference again shows the value of the 
esign features for the considered classification task. The TP 
ate increased when comparing classifications based on de- 
ign features and categories when both design features and 

eta-keywords were considered. 
To evaluate the increase, we have performed a paired sam- 

les t -test (one-tailed). Using Weka software, the confusion 

atrix elements (TP and TN) were obtained using various 
olds over 100 repetitions, as shown in Table 3 . We used the
ame J48 algorithm parameters that were used in earlier nu- 
erical studies for consistency. The following results were ob- 

ained for the paired tests. The p-value for the paired t -test 
etween the TP rates was 1.11E-49; thus, the average TP rates 
or the classifications based on both the design features and 

he meta-keywords were higher than the TP rates for the clas- 
ifications based on the meta-keywords alone. The p-value of 
he paired t -test between the TN rate was 6.41E-41. The av- 
rage TN rates for the classifications based on both the de- 
ign features and the meta-keywords were higher than the 
N rates for the classifications based on the meta-keywords 
lone. We also used a t -test to evaluate the significance of the
mprovement in the overall accuracy when using the two sets 
f features. This test resulted in a significance level of 7.51E- 
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Fig. 6 – Total Tree Accuracy. 

Table 3 – Illustration of the paired samples of various confusion matrix elements. 

Rep Fold Training Testing TP FP TN FN 

1 1 405 45 43 0 2 0 
1 2 405 45 39 2 1 3 
1 3 405 45 42 0 3 0 
1 4 405 45 42 1 2 0 
1 5 405 45 42 2 1 0 

∗Results are based on over 100 repetitions that were used to obtain the paired t-tests’ p -values. 

Fig. 7 – ROC curve for prediction by design features alone. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 – ROC curve for prediction by both 

design features and metakeywords. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

04; thus, the average accuracy for the classifications based on
both the design features and the meta-keywords was higher
than the average accuracy for the classifications based on the
meta-keywords alone. Thus, again, using the design features
leads to a statistically significant improvement. To describe
the obtained classification models in more detail, Fig. 9 shows
a J48 decision tree for the classification of crack websites that
rely only on design features. Fig. 10 shows a J48 decision tree
for the classification of crack websites that rely on both de-
sign features and meta-keywords. As shown in these decision
trees, there are different routes for classifications based on
both design features and meta-keywords compared to those
based only on design features. 

However, there were also similar routes in both decision
trees. These routes are often based on certain types of nor-
malization (e.g., using the standard deviation of the "number
of elements in a website"). Using a J48 tree to generate a list
of routes, one can simplify and summarize the major deci-
sion questions in the following route: “If the ‘number of white
blank areas’ (i.e., no text or image) decreases, and the ‘text to-
tal rate for elements from type "A" (link)’ increases, the prob-
ability for the website to be “Crack” increases.”

Accordingly, we checked if the color -specific features are
placed in the first two levels of depth in the tree (i.e., hav-
ing the highest information gain in the first two iterations of
building the tree). In 7 out of 10 tree models overall categories,
we found that color features were indeed selected on the tree’s
first two levels on the first two levels of the tree. Two out of the
three classification trees that did not contain color features
in the first two levels were trees that were generated to clas-
sify the "Search" category, which had the lowest number of
instances (websites) in the dataset. Thus, these results show



10 c o m p u t e r s  &  s e c u r i t y  1 0 7  ( 2 0 2 1 )  1 0 2 3 1 2  

Fig. 9 – J48 decision tree for the classification of crack websites. 
∗ Normalized to the sum of the elements in the webpage 
∗∗ Normalized to the text total rate for all elements in the webpage. 

Fig. 10 – J48 decision tree for the classification of crack websites relying on both design features and metakeywords. 
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hat color features play important roles when using a J48 de- 
ision tree to classify website categories. 

.2. Results of Experiment 2 

he first experiment, which used manually tagged data, pro- 
ided a proof of concept for the idea of website identifica- 
ion using website design features. Based on that experiment’s 
romising ve results, we developed an automated “next gen 

lgorithm” to collect and obtain a larger-scale dataset with a 
ider feature set. 

Using an unbalanced data set of 15,432 URLs containing 
522 features for each URL, we developed and trained five pop- 
lar machine learning models: logistic regression, KNN, ANN,
daBoost, and CART decision tree. More details about these 
odels are discussed below. We intentionally chose classic 
odels as described, because we aim to demonstrate the im- 

ortance of design features without providing major impor- 
ance to the model by itself. Principal component analysis 
PCA) was used, and results showed a linear combination of 
00 features (out of 2522) was required to explain nearly all 
ariance in the dataset. The feature importance level was an- 
lyzed using an ANOVA F-value score between the labels and 

eatures. The first decile of important features was found to 
onsist of features from different feature groups, as shown in 

ig. 11 . For all considered models, 5-fold cross-validation was 
erformed. 

The logistic regression model attained a significantly low 

P rate; however, it managed to detect only 10.5% of the mali- 
ious websites on average with an average recall of 10.5%, an 

verage precision of 88.5%, and an average F1 score of 18.9%. 
Surprisingly, the ANN model yielded unsatisfactory results.

e trained and tested various networks with different sizes 
sing a rectified linear unit function activation function and a 
tochastic gradient descent solver. A four-layer network con- 
aining 64 neurons in each layer obtained an average recall of 
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Fig. 11 – ANOVA F-value score between labels and features, top 10% and top 5%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36.4%, an average precision of 70.1%, and an average F1 score
of 47.9%. For larger networks, the classifier results worsened. 

An adaptive boosting model based on decision tree clas-
sifiers with a maximum depth of three detected the majority
of the malicious sites while maintaining a relatively low false-
positive rate. Results showed an average recall of 53.5%, an av-
erage precision of 93.5%, and an average F1 score of 68.1%. 

The KNN model provided relatively good results. Imple-
mented with uniform weights, a Euclidean distance a brute-
force start algorithm, and five neighbors, the model detected
the majority of the malicious websites with an average re-
call of 67.9%, an average precision of 88.1%, and an average
F1 score of 76.7%. 

A simple CART decision tree classifier was found to outper-
form all other models in terms of the F1 score. When trained
with a maximum depth of ten levels, the CART decision tree
obtained an F1 score of 78.4%, identified 69.2% of the malicious
sites on average, and maintained a precision of 90.2%. 

When the tree’s maximum depth was reduced, the ability
to detect malicious sites did not decrease significantly, while
model precision improved. 

For a decision tree with a maximum depth of eight levels,
the classifier achieved an F1 score of 77%, less than 0.155%
false positives, a recall of 65.6%, and a precision of 93.3%.
A comparison of the various learning models with their pa-
rameters is shown in Table 4 . A possible explanation for
the higher F1 score of the CART decision tree is its ability
to manage various types of variables and identify the most
significant features while eliminating insignificant features
( Singh et al. 2014 ). This ability was found to be a significant ad-
vantage when considering the wide and sparse design feature
set analyzed in this study that contained different categorical,
nominal and numerical features, as shown in Table 1 . 
 

We have also verified the results on a balanced dataset. For
this task we selected the 510 malicious websites and, corre-
spondingly, we randomly selected 510 legit websites. 40 PCA
components were used (out of 2500 features) to avoid over-
fitting. As expected, the accuracy of the model has decreased
(84.6%), however the recall and F1-score achieved better re-
sults: Recall 76%, F1-score 83.2% and Precision 91.7%. 

We compared the results of the proposed algorithm to
those of the kAYO mechanism, as shown in Fig. 12 . The kAYO
mechanism is an analysis technique based on static fea-
tures of mobile webpages derived from their URL, HTML and
JavaScript content that is used to detect malicious mobile
webpages in any language ( Amrutkar et al., 2016 ). As shown
in Fig. 12 , for TPR values lower than 70%, the proposed algo-
rithm results in significantly lower FPR values than kAYO 

5. Discussion 

In this study, we classified websites by learning their design
features, which are often ignored in the literature. We were
surprised to see that design features alone can provide a lot
of information about website categories. Thus, the same types
of websites have similar design features, regardless of their
geography, language, and keywords. These results support an
earlier hypothesis about the distinct visual style of crack and
malicious websites and extend this observation to other web-
site categories. 

In Experiment 1, which was based on the identification of
websites after manual tagging, we showed that websites’ de-
sign features can be used to enhance the identification of the
website category in general and of crack websites in particular.
Using only design features for website category classification,
we achieved a 90% accuracy. Adding design features to meta-
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Table 4 – Comparison of various machine learning models in Experiment 2. “M” and “L” represent ‘Malware’ and ‘Legit’ 
websites, respectively. 

Fig. 12 – Comparison of the proposed algorithm and the kAYO ROC curves. For a TP rate range of 0% −70%, the proposed 

scheme outperforms kAYO in terms of the false positive (FP) rate ( Amrutkar et al., 2016 ). 
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eywords increased the accuracy significantly to 97% or higher 
or most categories, resulting in a true positive rate increase 
cross all tested website categories. In particular, all decision 

rees reached an average accuracy of 96.5%. As discussed ear- 
ier, the true positive rate plays an important role when crack 
ebsites must be identified. Therefore, we assume that the 
ser will prefer to have marginally lower accuracy instead of 
voiding crack websites that may harm his system. 

When combining design and metadata for the “Crack”web- 
ite category, both the TP rate and overall accuracy increased,
hich may be due to the compromised metadata that are used 

n crack websites. Thus, using design features to identify crack 
ebsites might be more effective because design features do 
ot rely on text words or keywords that might be used to de- 
eive the user. This result indicates that using design features 
long with a set of meta-keywords for classification yields 
ood website classification. 

Because using a sample size of hundreds of websites is not 
ufficient to conclude whether design features can be used ef- 
ciently to classify website categories, a robust automated al- 
orithm was developed to address larger dataset sizes with a 
arger set of features, as shown in Experiment 2. In this exper- 
ment, we expanded the dataset to more than 15,000 websites 
nd increased the number of design features to 2522. We used 
he ANOVA F-value to identify the most impactful features 
o avoid overfitting. We trained five popular machine learn- 
ng classifiers (logistic regression, KNN, ANN, AdaBoost, and 

 CART decision tree) and found that the CART decision tree 
lassifier outperforms all other models in terms of F1 score.
n particular, the CART classifier achieved an F1 score of 77%,
esulting in less than 0.155% false positives, a recall of 65.6% 

nd a precision of 93.3%. This result implies that the “noise”
n design features is low for website-classification tasks. 

One of the proposed approach’s possible applications may 
e relevant for large organizations, such as financial or gov- 
rnment organizations. For example, the proposed approach 

an be integrated into the web browsers of employees’ com- 
uters or in the organization’s firewall as a distinctive layer 
o block suspicious websites. Based on the results of Exper- 
ment 2, only a small fraction of legitimate websites will be 
rroneously marked as suspicious by the proposed algorithm.

One can challenge the proposed approach by arguing that 
rack websites can use visual designs similar to those used by 

egitimate websites. Note, however, that in this study, the word 

design” represents a wide spectrum of objects, standards and 

pecifications that malware developers cannot easily access,
ee or imitate. A “design” consists of all HTML code and hier- 
rchies, JavaScript, CSS, color tables, styles, font types, objects,
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etc. (; Duckett, 2011 ; Nixon, 2012 ; Chen and Ryu, 2011 ). The av-
erage developer cannot easily imitate this depth of a structure
exactly, unlike a list of keywords that can be easily modified.
Therefore, as noted above, we do not suggest using the pro-
posed approach to develop a new search engine; rather, we
suggest combining it with existing methods as an additional
protective layer to manage more potential threats. 

The proposed method has several advantages over other
methods that can be easily deceived by the frequent changes
in Crack Websites, such as those developed by Ma et al. (2011 )
and Zhang et al. (2014 ). First, the proposed approach is de-
signed to be used independently of language, URL, geograph-
ical location, or website type. These characteristics are strong
advantages because the Internet is rapidly changing, and this
approach provides users with the ability to analyze informa-
tion on a wide range of websites in near-real time. Second,
the proposed method does not consider outgoing or incoming
links and can therefore be used without requiring any infor-
mation on the structure of the category to which the website
belongs. 

Several modifications and extensions could be imple-
mented in future research to improve the performance and
accuracy of the proposed application. One such direction is
to increase the dataset to a scale of 500K-1M websites. Such
an increase will require a longer learning process and more
computing power but would increase the sample size and
most likely improve classification accuracy. A larger dataset
could support more learning features to target higher identi-
fication accuracy, including URL prefixes, countries of origin,
user metrics, and display features for different devices (PC,
laptop, tablet, smartphone, etc.). These features that are not
necessarily associated with website design per se can result
in better accuracy. Second, the proposed application could be
expanded to scan and analyze images, possibly using deep
learning classifiers. The experiments in this study are primar-
ily based on scanning and analyzing sites’ HTML code and
extensions, such as JS and DOM, which do not include the
websites’ images. Analyzing images could provide an addi-
tional layer of significant features for better website segmen-
tation, classification and prediction. For example, website im-
ages could be used to easily identify commercial products,
celebrities and, similarly, illegal and crack content and porn-
related objects. Third, the proposed approach could be mod-
ified to better manage timeout errors, which were found to
occur often during scanning. Many scanned websites were in-
terrupted due to timeout errors, which were set to 60 seconds
per scan. Timeout errors occur due to a variety of reasons,
such as bandwidth saturation; website security and blocking
mechanisms; and incorrect or non-standard webpage code. To
reduce the number of timeout errors, the scanning algorithm
could explore and identify various errors in real time, differen-
tiate them and then associate a specific subprocedure to man-
age each type of error. Fourth, the suggested algorithm was ex-
ecuted in an environment with a relatively low download rate
with only 8 available cores, while the proposed algorithm can
support a simultaneous execution by many more cores. As a
result, by using a faster download rate and higher computing
power the total run time can be reduced significantly to sup-
port a large-scale data collection as suggested. More specif-
ically, by using a faster download rate, we expect the mean
scanning time to be less than 2 seconds per website per core.
As an example, by using a faster download rate and 24 cores,
the overall expected time for scanning 100,000 websites is ex-
pected to be approximately 2.3 hours. Finally, it is important
to indicate that the learning phase that can be carried offline
and in parallel to the online website scanning and classifica-
tion stage. These modifications and extensions could increase
the prediction accuracy and performance of the proposed ap-
proach, and thus should be investigated in future research. 

Most website classification tools that are available today
are based on website content and not their design features.
We believe that using the proposed method to detect web-
site (sub)categories based on their design features can have
various applications, such as blocking specific websites and
focusing a search on a specific website category. This option
is suitable for large organizations that aim to reduce the ac-
cess of their employees to potentially harmful websites, such
as malware, cracks, gambling and porn-related sites. Another
potential use case of the proposed method is an automated
comparison between different websites from the same cate-
gory. This comparison may identify which design features rep-
resent more ‘successful’ websites, such as websites with large
numbers of users that are best sellers, fast-growing and well-
branded. Design features might also play an important role
in marketing applications. Applying data-mining methods to
these features may show patterns that enhance marketing ex-
posure and sales activities. 

6. Conclusions 

In this paper, we presented a new method for website catego-
rization based on thousands of visual and nonvisual design
features, and used it to identify website categories, specifi-
cally malware- and Crack websites. We showed that design
features differ significantly between website categories and
can be used specifically to identify malware and crack. 

In this study, the word “design” represents a wide range of
features and objects, and is not necessarily limited to visual el-
ements on a webpage. In certain cases, these design features
can even show developers’ behavioral patterns and trends. De-
sign features are not always identifiable by the human eye due
to the large volume of information across a large combination
of features that is exposed at once. There are also hidden el-
ements in websites that cannot be seen by users but that can
be found in the webpage’s code. Visual design elements, such
as differences in tones among colors (dark, light, saturated,
muted or achromatic), are highly variable and are difficult to
categorize based solely on the human eye. However, design
features are critical in conveying (underlying) messages, such
as the quality or the price of the products on ecommerce web-
sites, to users. This fact is the reason why categorizing de-
sign features can be important for website designers in var-
ious applications, such as identifying specific website topics,
analyzing trends, finding anomalies, designing ad-removal al-
gorithms, and automating and optimizing website design. 

In this study, we were able to identify malicious websites at
relatively high true positive rates and negligible false positive
rates. These results imply that the false alarm rates for users
and organizations that may apply this method are reasonably
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ow. Results show that a classification layer that relies on de- 
ign features can serve as an effective alternative to text min- 
ng that is often time consuming and computationally inten- 
ive. We do not claim that the proposed approach is always su- 
erior to other identification methods; rather, we claim that it 
an serve as an efficient extension of existing methods, specif- 
cally when the application’s running time and accuracy are 
ritical. This study provides a proof of concept to identify use- 
ul information embedded in website design features. The full 
utomation and extension of the proposed approach, in which 

esign, images and text features are mapped into feature vec- 
ors with tens of thousands of dimensions and are then cat- 
gorized by algorithms such as deep learning, latent Dirichlet 
llocation (LDA) or other topic modeling algorithms, should be 
 subject in future research. 

esearch Data 

he python code and the database we generated and used,
an be found in this link https://data.mendeley.com/datasets/ 
vmcmngkjw/1 

eclaration of Competing Interest 

he authors declare that they have no known competing fi- 
ancial interests or personal relationships that could have ap- 
eared to influence the work reported in this paper. 

RediT authorship contribution statement 

Doron Cohen: Conceptualization, Methodology, Software,
ormal analysis, Validation, Visualization, Writing - original 
raft. Or Naim: Investigation, Software, Resources, Data cura- 
ion. Eran Toch: Formal analysis, Methodology, Writing - re- 
iew & editing. Irad Ben-Gal: Conceptualization, Methodology,
alidation, Writing - review & editing, Project administration,
upervision. 

cknowlegements 

his paper was partially supported by the Koret Foundation 

rant for Digital Living 2030, and by the ICRC Grant for cyber 
ecurity. 

E F E R E N C E S  

burrous M , Hossain MA , Dahal K , Thabtah F . Predicting phishing 
websites using classification mining techniques with 

experimental case studies. In: Proceedings of the 2010 
Seventh International Conference on Information Technology: 
New Generations (ITNG ’10). Washington, DC, USA: IEEE 
Computer Society; 2010. p. 176–81 .

l-Saleh MI , Abuhjeela FM , Al-Sharif ZA . Investigating the 
detection capabilities of antiviruses under concurrent attacks. 
Int. J. Inf. Secur. 2015;14(4):387–96 .
ogdanov D , Niitsoo M , Toft T , Willemson J . High-performance 
secure multi-party computation for data mining applications. 
Int. J. Inf. Secur. 2012;11(6):403–18 .

onnardel N , Piolat A , Bigot Lle . The impact of colour on Website 
appeal and users’ cognitive processes. Displays 
2011;32(2):69–80 .

rebs B. Software Cracks: a Great Way to Infect Your PC; 2011 
http://krebsonsecurity.com/2011/06/ 
software-cracks-a-great-way-to-infect-your-pc/ .

arlini , et al . Adversarial examples are not easily detected: 
Bypassing ten detection methods. Proceedings of the 10th 

ACM Workshop on Artificial Intelligence and Security (pp. 
3-14). 2017 .

ebi S . Determining importance degrees of website design 

parameters based on interactions and types of websites. 
Decis. Support Syst. 2013;54(2):1030–43 .

yr D , Trevor-Smith H . Localization of Web design: an empirical 
comparison of German, Japanese, and United States Web site 
characteristics. J. Am. Soc. Inf. Sci. Technol. 
2004;55(13):1199–208 .

yr D , Head M , Larios H . Colour appeal in website design within 

and across cultures: a multi-method evaluation. Int. J. Hum. 
2010;68:1–2 1-21 .

yr D . Modeling Web Site Design Across Cultures: relationships 
to Trust, Satisfaction, and E-Loyalty. J. Manage. Inf. Syst. 
2008;24(4):47–72 .

ai D , Yu S , Wen Ji-R , Ma W-Y . Extracting content structure for 
web pages based on visual representation. In: Proceedings of 
the 5th Asia-Pacific web conference on Web technologies and 

applications (APWeb’03). Berlin, Heidelberg: Springer-Verlag; 
2003. p. 406–17 .

eloitte. TMT Global Security Study; 2013 .
hen T-C , Stepan T , Dick S , Miller J . An anti-phishing system 

employing diffused information. ACM Trans. Inf. Syst. Secur. 
2014;16(4) .

gele M , Scholte T , Kirda E , Kruegel C . A survey on automated 

dynamic malware-analysis techniques and tools. ACM 

Comput. Surv. 2008;44(2) .
olander GK , et al . Trends in website design.. AIS Transactions on 

Human-Computer Interaction, 4(3), 169-189. 2012 .
adžiosmanovi ́c D , Bolzoni D , Hartel PH . A log mining approach 

for process monitoring in SCADA. Int. J. Inf. Secur. 
2012;11(4):231–51 .

e M , Horng S-J , Fan P , Khan MK , Run R-S , Lai J-L , Chen R-J ,
Sutanto A . An efficient phishing webpage detector. Expert 
Syst. Appl. 2011;38(10):12018–27 .

eiderich M , Frosch T , Holz T . IceShield: detection and mitigation 

of malicious websites with a frozen DOM. In: Proceedings of 
the 14th international conference on Recent Advances in 

Intrusion Detection (RAID’11). Berlin, Heidelberg: 
Springer-Verlag; 2011. p. 281–300 .

ammerstetter M , Platzer C , Wondracek G . Vanity, cracks and 

malware: insights into the anti-copy protection ecosystem. In: 
Proceedings of the 2012 ACM conference on Computer and 
communications security (CCS ’12). New York, NY, USA: ACM; 
2012. p. 809–20 .

night S , Buffett S , Hung PCK . The International Journal of 
Information Security Special Issue on privacy, security and 

trust technologies and E-business services: guest Editors’ 
Introduction. Int. J. Inf. Secur. 2007;6(5):285–6 .

akshmi VS , Vijaya MS . Efficient prediction of phishing websites 
using supervised learning algorithms. Procedia Eng. 
2012;30:798–805 .

a J , Saul LK , Savage S , Voelker GM . Learning to detect malicious 
URLs. ACM Trans. Intell. Syst. Technol. 2011;2(3) .

esbah A , van Deursen A , Lenselink S . Crawling ajax-based web 
applications through dynamic analysis of user interface state 
changes. ACM Trans. Web 2012;6(1) .

https://data.mendeley.com/datasets/xvmcmngkjw/1
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0001
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0002
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0003
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0004
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0004
http://krebsonsecurity.com/2011/06/software-cracks-a-great-way-to-infect-your-pc/
http://refhub.elsevier.com/S0167-4048(21)00136-X/optbZmfEPSlcy
http://refhub.elsevier.com/S0167-4048(21)00136-X/optbZmfEPSlcy
http://refhub.elsevier.com/S0167-4048(21)00136-X/optbZmfEPSlcy
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0006
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0007
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0008
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0009
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0010
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0011
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0012
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0013
http://refhub.elsevier.com/S0167-4048(21)00136-X/opt1zmT0LR5wL
http://refhub.elsevier.com/S0167-4048(21)00136-X/opt1zmT0LR5wL
http://refhub.elsevier.com/S0167-4048(21)00136-X/opt1zmT0LR5wL
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0015
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0016
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0017
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0019
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0020
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0021
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0023
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0024
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0024


c o m p u t e r s  &  s e c u r i t y  1 0 7  ( 2 0 2 1 )  1 0 2 3 1 2  15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Motoyama M , McCoy D , Levchenko K , Savage S , Voelker GM . An 

analysis of underground forums. In: Proceedings of the 2011 
ACM SIGCOMM conference on Internet measurement conference 
(IMC ’11). New York, NY, USA: ACM; 2011. p. 71–80 .

Pavlou PA , Liang H , Xue Y . In: Understanding and Mitigating 
Uncertainty in Online Exchange Relationships: A Principal- 
Agent Perspective, 31. MIS Q; 2007. p. 105–36 .

Pelet JÉ, Papadopoulou P . The effect of e-commerce websites’ 
colors on customer trust. Int. J. E-Bus. Res. 2011;7(3):1–18 July 
2011 .

Pfleeger SL , Sasse AM , Furnham A . From weakest link to security 
hero: transforming staff security behavior. J. Homel. Secur. 
Emerg. Manag. 2014;11(4):489–510 2014 .

Shahabi C , Zarkesh AM , Adibi J , Shah V . Knowledge discovery 
from users Web-page navigation. Proceedings of the 7th 

International Workshop on Research Issues in Data 
Engineering (RIDE ’97) High Performance Database 
Management for Large-Scale Applications (RIDE ’97), 1997 .

Spiliopoulou M , Faulstich LC . In: International Workshop on the 
Web and Databases. Wum: a web utilization miner; 1998. 
Valencia, Spain .

Wells JD , Valacich JS , Hess TJ . What signal are you sending? how 

website quality influences perceptions of product quality and 

purchase intentions. MIS Q 2011;35(2):373–96 .
Wu Ou , Hu W , Shi L . Measuring the Visual Complexities of Web 

Pages. ACM Trans 2013;Web 7(1) .
Wu Ou , Zuo H , Hu W , Li B . Multimodal web aesthetics 

assessment based on structural SVM and multitask fusion 

learning. IEEE Trans. Multimedia 2016;18(6):1062–76 .
Yue C , Wang H . A measurement study of insecure javascript 

practices on the web. ACM Trans. Web 2013;7(2) .
Zhang X , Wang Y , Mou N , Liang W . Propagating Both Trust and 

Distrust with Target Differentiation for Combating Link-Based 

Web Spam. ACM Trans. Web 2014;8(3) .
Zhuge J , Holz T , Song C , Guo J , Han X , Zou W . Studying malicious 

websites and the underground economy on the Chinese web. 
In: Managing Information Risk and the Economics of Security. 
Springer US; 2009. p. 225–44 .

Amrutkar C , Kim YS , Traynor P . Detecting mobile malicious 
webpages in real time. IEEE Trans. Mob. Comput. 
2017;16(8):2184–97 .

Shahegh P , Dietz T , Cukier M , Algaith A , Brozik A , Gashi I . 
AntiVirus and Malware Analysis Tool; 2017 .

Moghimi M , Varjani AY . New rule-based phishing detection 

method. Expert Syst. Appl. 2016;53:231–42 .
Lewis RJ . An introduction to classification and regression (CART) 

analysis. Presented at the 2000 Annual Meeting of the Society 
of Academic Emergency Medicine San Francisco, California; 
2000 .

Bernardini A . Extending Domain Name Monitoring. Identifying 
Potentially Malicious Domains Using Hash Signatures of DOM 

Elements. ITASEC; 2018 .
Sarhan Al , A J,R , Sharieh A . Website Phishing Detection Using 

Dom-Tree Structure and Cant-MinerPB Algorithm. American 

Journal of Computer Science and Information Engineering 
2017;4(4):38–42 .

Samtani S , Chinn R , Chen H . Exploring hacker assets in 

underground forums. In: 2015 IEEE International Conference 
on Intelligence and Security Informatics (ISI). IEEE; 2015. 
p. 31–6 .
Breiman L , Friedman J , Stone CJ , Olshen RA . Classification and 

Regression Trees. CRC press; 1984 .
Steinberg D , Colla P . CART: classification and regression trees. In: 

The Top Ten Algorithms in Data Mining, 9; 2009. p. 179 .
Amrutkar C , Kim YS , Traynor P . Detecting mobile malicious 

webpages in real time. IEEE Trans. Mob. Comput. 
2016;16(8):2184–97 .

Liu X , Lin Y , Li H , Zhang J . A novel method for malware detection 

on ML-based visualization technique. Comput. Secur. 2020;89 .
Kim S , Kim J , Kang BB . Malicious URL protection based on 

attackers’ habitual behavioral analysis. Comput. Secur. 
2018;77:790–806 .

Fang Y , Huang C , Su Y , Qiu Y . Detecting malicious JavaScript code
based on semantic analysis. Comput. Secur. 2020;93 .

Chiba D , Akiyama M , Yagi T , Hato K , Mori T , Goto S . 
DomainChroma: building actionable threat intelligence from 

malicious domain names. Comput. Secur. 2018;77:138–61 .
Cimino MG , De Francesco N , Mercaldo F , Santone A , Vaglini G . 

Model checking for malicious family detection and 

phylogenetic analysis in mobile environment. Comput. Secur. 
2020;90 .

Singh S , Gupta P . Comparative study ID3, cart and C4. 5 decision 

tree algorithm: a survey. Int. J. Adv. Inf. Sci. Technol.) 
2014;27(27):97–103 .

Duckett J . HTML & CSS: Design and Build Websites (Vol. 15). 
Indianapolis, IN: Wiley; 2011 .

Nixon R . Learning PHP, MySQL, JavaScript, and CSS: A 

step-By-Step Guide to Creating Dynamic Websites. O’Reilly 
Media, Inc.; 2012 .

Chen M , Ryu YU . Facilitating effective user navigation through 

website structure improvement. IEEE Trans. Knowl. Data Eng. 
2011;25(3):571–88 .

Salzberg SL . C4. 5: Programs for Machine Learning By J. Ross 
Quinlan. Morgan Kaufmann Publishers, Inc.; 1994. 1993 .

Pouyanfar S , Tao Y , Mohan A , Tian H , Kaseb AS , Gauen K ,
Shyu ML . Dynamic sampling in convolutional neural 
networks for imbalanced data classification. In: 2018 IEEE 
Conference on Multimedia Information Processing and 

Retrieval (MIPR). IEEE; 2018. p. 112–17 .
Al-Azani S , El-Alfy ESM . Using word embedding and ensemble 

learning for highly imbalanced data sentiment analysis in 

short arabic text. Procedia Comput. Sci. 2017;109:359–66 .

Irad Ben-Gal , Professor & Head, L aboratory
of A I B usiness and D ata A nalytics (LAMBDA),
Tel Aviv University. 

Prof. Ben-Gal is a world-renowned expert
in machine learning, data science and pre-
dictive analytics with more than 25 years of
experience in the field, including close R&D
collaborations with companies such as Ora-
cle, Intel, GM, AT&T, Applied Materials and
Nokia. 

Prof. Ben-Gal wrote four books, published
more than 100 scientific papers and patents,
supervised dozens of graduate students and

received numerous awards for his work. He held a visiting profes-
sor position at Stanford University, teaching graduate courses in
analytics and co-heading the TAU/Stanford “Digital Living 2030”
research initiative. 

http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0025
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0026
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0027
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0028
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0029
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0030
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0031
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0032
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0033
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0035
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0036
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0037
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0038
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0040
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0041
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0042
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0043
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0044
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0045
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0045
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0045
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0045
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0046
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0046
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0046
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0046
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0046
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0047
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0047
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0047
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0048
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0048
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0048
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0048
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0051
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0051
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0051
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0051
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0051
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0052
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0052
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0052
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0052
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0053
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0053
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0053
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0053
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0053
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0054
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0054
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0054
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0054
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0054
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0054
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0054
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0055
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0055
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0055
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0055
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0055
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0055
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0056
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0056
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0056
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0057
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0057
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0058
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0058
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0059
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0059
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0059
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0060
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0060
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0062
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0062
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0062
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0062
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0062
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0062
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0062
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0062
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0063
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0063
http://refhub.elsevier.com/S0167-4048(21)00136-X/sbref0063

	Website categorization via design attribute learning
	1 Introduction and background
	2 Proposed website assessment scheme
	3 Experimental settings and evaluation
	4 Results
	4.1 Results of Experiment 1
	4.1.1 . Problem formulation

	4.2 Results of Experiment 2

	5 Discussion
	6 Conclusions
	Research Data
	Declaration of Competing Interest
	CRediT authorship contribution statement
	Acknowlegements

	Reference

