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The method of robust design has long been used for the design of systems that are insensitive to noises. In this paper it is demonstrated
how this approach can be used to obtain a robust eco-design (ecological design). In a case study, robust design principles are applied
to the design of a factory smokestack, using the Gaussian Plume Model (GPM). The GPM is a well-known model for describing
pollutant dispersal from a point source, subject to various atmospheric conditions. In this research, the mean-square-error (MSE) of
the accumulated and the maximum pollution values around a given target are defined as the performance measures and used to adjust
the design parameters. Both analytical and numerical approaches are used to evaluate the MSE measures over the design space. It
is demonstrated how to use the non-linearity in the GPM to reach a low MSE value that produces a cheaper design configuration.
The differences between the manufacturer viewpoint and the environmentalist viewpoint with respect to the considered eco-design
problem are discussed and analyzed.
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1. Introduction: Eco-design and quality engineering

The concept of eco-design, often referred to as cleaner pro-
duction or design for the environment, describes a design
process which takes into consideration the environmental
implications of a designed product or process by using var-
ious approaches. The goal of such a process is to eliminate
undesirable or potentially hazardous effects on the environ-
ment. The trend of cleaner production first emerged in the
1970s, owing to the growing understanding of the danger-
ous effects of pollution, which led to increasing pressure
on governments and organizations to control and limit its
spread. The early efforts to produce cleaner production fo-
cused on reducing the impact of pollution and waste af-
ter they have been produced, using “end of pipe” methods
(Roy, 2000). However, since the late-1980s, attention has
gradually shifted toward efforts to integrate environmental
considerations into the planning and design phase—first
to the production process and later to the products them-
selves. A similar trend was observed in the area of quality
engineering, where efforts have shifted in the last decades
from sampling and testing to robust design (Phadke, 1989;
Kenett and Zacks, 1998).

∗Corresponding author

Research has been focused on the end of the product’s
life cycle. O’Brien (2002) addresses the sustainability of the
design and manufacture of products, while presenting a
closed-loop concept for industry, in which inputs of raw
materials and return of waste to the environment must be
minimized or eliminated. Nakashima et al. (2002) explic-
itly handle the product recovery system, in which parts and
materials of the products are reused and recycled in order
to minimize waste and environmental damage. To that end,
some research has been conducted to address the disassem-
bly process used for product recovery (see, e.g., Dini et al.
(2001) and Guèngoèr and Gupta (2002)).

There is a large body of research that deals with eco-
design, which is associated with non-quantitative models
and qualitative discussions. Shu-Yang et al. (2004) present
seven principles of eco-design and conclude that any form
of design that minimizes environmental impact by emulat-
ing and integrating with natural ecosystems can be referred
to as eco-design. They also state that eco-design seeks to
provide a framework for an environmentally appropriate
system of design and management by incorporating both
anthropogenic and ecological values, at relevant spatial and
temporal scales (see, also, Todd and Todd (1994) and Scott
(1999)).

Nissen (1995) gives a list of traits which characterize an
eco-product—a product that already incorporates environ-
mental considerations within its design : i) the material used
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908 Ben-Gal et al.

is a plentiful natural resource; ii) the manufacturing process
requires only a low consumption of natural resources; iii)
the emission of hazardous waste in the production process
is minimal; iv) when in use, the product is relatively envi-
ronmentally sound; v) environmentally sound remanufac-
turing or recycling processes can be easily applied after use;
and vi) when finally discarded, the environmental impact
of disposal/incineration is minimal.

In this paper, we suggest the implementation of an an-
alytical approach, which may be most useful in achieving
the third characteristics listed in Nissen (1995). The method
is based on quality engineering concepts, and particularly
on the approach of robust design which was originally pro-
posed by Taguchi (1978) and later integrated with other
“offline quality engineering” principles. The method aims
to design products or processes which are robust, i.e., insen-
sitive to the effects of noise sources as intended under a wide
range of conditions. Some applications and discussions of
the principles of robust design can be found in Fowlkes and
Creveling (1995) and Kenett and Zacks (1998).

Although the statistical foundations of the Taguchi meth-
ods have been criticized over the years (e.g., Leon et al.
(1987), Box (1988), and Steinberg and Bursztyn (1994)),
the principles of robust design have been widely applied
to diverse areas, such as the design of VLSIs, optimization
of communication networks, development of electronic cir-
cuits, laser engraving of photo masks, cash-flow optimiza-
tion in banking, government policy making, and runway
utilization improvement at airports (Ross, 1988; Phadke,
1989; Rupe and Gavirneni, 1995; Taguchi, 1995).

In this paper we consider a robust eco-design of a system
whose output (quality characteristic) is the pollution level
emitted from its source. In particular, our analyzed case
study deals with a robust design of a factory smokestack.
The applied pollution model is the well-known Gaussian
Plume Model (GPM) of pollution dispersal from a point
source. Using robust design principles, one can divide the
factors included in this model into controllable factors and
noise factors. The controllable factors (called also the design
parameters), such as the physical dimensions of the stack,
are selected by the designer. The uncontrollable noise factors
such as temperature, wind velocity and other atmospheric
conditions, are the source of variability in the system.

A common practice in robust design methods is to eval-
uate different settings of the controllable factors via experi-
mentation, while observing their interactions with the noise
factors. The designer then picks a design configuration that
yields a robust output, which in our case is a low and rel-
atively constant pollution level under various atmospheric
conditions. The output pollution level is characterized by
its mean value and its variance. A low pollution value is of-
ten desirable; therefore one option is to use Taguchi’s“the-
smaller-the-better” criterion, where the designer aims to
minimize the system output, since quality decreases with
the system output. However, note that in practice, most
designers of polluting systems are highly committed to rev-

enues and cost–benefit considerations rather than a “zero-
pollution” level. Total elimination of pollution is often too
costly, unrealistic and, therefore, is not enforced by govern-
mental regulations. Thus, another option is to use Taguchi’s
nominal-the-best criterion, where the designer aims to set
the output to a predefined target value. In this paper, we
apply this criterion to the “required” pollution level. We
find this criterion appealing since it enables us to ana-
lyze the robust eco-design from two conflicting viewpoints
simultaneously—that of the “environmentalist”, aiming to
reach a “zero” target for the pollution level, and that of the
manufacturer, aiming to maintain a given pollution limit, as
set by environmental regulations, while minimizing his/her
costs. Given a target value, the designer aims to set the con-
trol factors such that the output mean value is adjusted
to the target while minimizing the output variance (i.e., its
sensitivity to noise). A widely used measure that takes into
consideration shifts in both the output’s mean and its vari-
ance is the Mean-Square Error (MSE) measure. This mea-
sure enables analysis of the tradeoff between shifts in the
output mean and the output variance that have an impor-
tant practical implication in the case of eco-design as dis-
cussed below. We demonstrate how to implement a robust
eco-design approach to obtain a desirable system config-
uration that yields a small MSE measure. We use two al-
ternative approaches for computing the MSE measure. The
first approach is analytic, based on expanding the pollution
model to a Taylor series. The second approach is numeric,
based on Monte Carlo simulations that estimate the MSE
empirically.

The above analysis relies on the GPM transfer functions
that express the effects of the control and the noise factors
(as well as their interactions) on the MSE pollution level.
Taguchi proposed to exploit the possible non-linearity in a
model’s transfer functions in order to minimize the output
variance, while fixing the mean value to a predetermined
target (e.g., Phadke (1989)). We follow this idea, which is
particularly appealing in the context of eco-design since
most pollution models, including the GPM, rely on non-
linear transfer functions.

2. Evaluating the MSE value for a given transfer function

We use the MSE of a random pollutant output y with re-
spect to a prespecified target M as our performance mea-
sure. The MSE function is related to Taguchi’s loss function
(Phadke, 1989) and depends on the output variance and
mean values, that is

MSE(y) = V (y) + (E(y) − M)2. (1)

Given n observations of the pollutant output, the MSE
value can be estimated as follows:

MŜE = 1
n

n∑
i=1

(yi − M)2

= σ̂ 2 + (µ̂ − M)2,
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where yi is the ith observed output, σ̂ 2 is the output sample
variance and µ̂ is the output sample mean. Two alternative
approaches are used here to estimate the MSE measure, one
analytical and the other numerical.

2.1. The analytical approach

The analytical approach is well illustrated in Kenett and
Zacks (1998). It derives the loss function of the output y
from its approximated mean and variance. In particular,
it expands the input–output transfer function y = f(θ, X),
where θ is a vector of control factors, and X is a vector of
k noise factors. Let the noise factors (X1,X2, . . . , Xk) have
a respective vector of mean values ξ = (ξ1,ξ2, . . . , ξk) and a
variance–covariance matrix as follows:

V =




σ 2
1 σ12 · · · σ1k

σ21
...

. . .
...

σk1 σk2 σ 2
k


 . (2)

We assume that based on numerous past observations, both
the mean values and the variance–covariance matrix values
are known. Otherwise, we shall use their maximum likeli-
hood estimates. Let us expand f (θ, X) into a second-order
Taylor series around ξ to obtain:

f (θ, X) ∼= f (θ,ξ) +
k∑

i=1

(Xi − ξi)
∂

∂Xi
f (θ,ξ)

+ 1
2

(X − ξ)′H(θ,ξ)(X − ξ), (3)

where H(θ,ξ) is the Hessian, a k × k matrix of second-order
partial derivatives evaluated at ξ, with the (i, j)th element
equal to

Hij(θ,ξ) = ∂2

∂Xi∂Xj
f (θ,ξ), i, j = 1, 2, . . . , k. (4)

Then, we obtain the following approximation for the func-
tion mean value:

E{f (θ, X)} ∼= f (θ,ξ) + 1
2

k∑
i=1

k∑
j=1

σijHij(θ,ξ), (5)

and for its variance:

V{f (θ, X)} ∼=
k∑

i=1

k∑
j=1

σij
∂

∂Xi
f (θ,ξ)

∂

∂Xj
f (θ,ξ). (6)

Expressing the pollutant output by its transfer function
y = f (θ, X) and substituting Equations (5) and (6) into
Equation (1), we obtain an analytical approximation for
the MSE measure for various values of noise and control
factors. Note that for non-linear transfer functions, both
the expected value (5) and the variance (6) depend on the
set of control and noise factors, as well as the noise fac-
tors variance–covariance matrix (2). Keeping in mind that

our goal is to minimize the MSE (with respect to the tar-
get M), which depends on Equations (5) and (6), we real-
ize that for a non-linear transfer function we may obtain
a “tradeoff” behavior. Namely, a specific set of parame-
ters can minimize the bias component while maximizing
the variance component or vice versa, as these components
are not independent of each other. Since the functions de-
scribing pollution-related behaviors are often complex and
non-linear, we expect to deal with such tradeoffs when ap-
plying the robust eco-design method. This phenomenon is
further illustrated by two case studies in Section 4.

2.2. The numerical approach

The numerical approach for the evaluation of the MSE is
based on a Monte Carlo simulation. Since the transfer func-
tions are assumed to be known, it is possible to replicate
random (weather) conditions for each set of the stack’s de-
sign parameters. Each replication yields a single realization
of the system’s output under the considered design param-
eters. Given a sufficient number of such realizations, we can
estimate the mean and the variance of the output empiri-
cally.

Note that both the analytical and the numerical ap-
proaches are complementary to each other. The analyti-
cal approximation enables analysis of a continuous design
space, which is relatively large, with a low computational
cost. The numerical approach, which is more costly in terms
of computation time, can be used to validate the accu-
racy of the analytical approach at certain (discrete) de-
sign points. Both approaches are used in the case studies in
Section 4.

3. The GPM

We analyze a classical air pollutant concentration model
known as the GPM. We use the GPM to demonstrate the
advantages in applying the robust eco-design method, albeit
the method can be applied to numerous other pollutant
dispersal models. In this section we briefly introduce the
main transfer functions of the GPM. For a more detailed
description, turn to De Nevers (1995), Heinsohn and Kabel
(1999) and Pepper et al. (1996).

The GPM is a basic model dealing with atmospheric dif-
fusion or atmospheric dispersion. In its typical form, it is
used to describe the downwind concentrations of a pol-
lutant, resulting from a point source such as a factory
smokestack (a smokestack is not a “real” point source, but
a small area that can be approximated as a point source).
The pollutant stream exits a stack of geometric height hs.
It rises vertically a distance δh, called the plume rise, un-
til the upward momentum and/or buoyancy ceases at the
effective stack height H = hs + δh, where it is transported
downwind. Later it is seen that δh depends on the stack’s
height and diameter. The common coordinate system used
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910 Ben-Gal et al.

Fig. 1. Graphical illustration of the GPM.

to describe the pollutant’s advance orients the x-axis in
the direction of the prevailing wind, the z-axis vertically
upward, and the y-axis transverse to the wind. The coor-
dinates are all described with respect to the smokestack’s
base as seen in Fig. 1 (Heinsohn and Kabel, 1999).

The general GPM describes the concentration of the
pollutant at any point of the plume. For simplicity, we
limit our discussion to the pollutant’s ground level con-
centration down the central line of the plume, which is
calculated at some distance x downwind from the stack
center:

cGL
i (x, 0, 0) = ṁi,s

UHπdydz
exp

[
−1

2

(
H
dz

)2
]
, (7)

where, ṁi,s is pollutant i emission rate from the stack
(in kilograms per second [kg/s]) units; UH is the wind
speed in the x-direction at the effective1 stack height H
(in meters [m]); while dy and dz are the dispersion co-
efficients in the transverse (y) and vertical (z) directions
respectively.

The values of dy and dz are evaluated empirically and de-
pend on the stability condition, which refers to the ability of
the system to return to its initial state after being perturbed
from equilibrium. It is common to use the letters A to F
to classify the basic stability conditions, where A, B and C
refer to unstable conditions; D refers to the neutral condi-
tion; and E and F refer to stable conditions, which suppress
vertical dispersion of pollutants (the interested reader is re-
ferred to Hanna et al. (1982) for further details). One set
of empirical expressions for evaluating dy and dz for differ-
ent stability levels and urban sites are presented in Table 1
(Heinsohn and Kabel, 1999).

Equation (7) is based on the value of the effective stack
height H = hs + δh. The plume rise, δh, which represents
the height to which the plume rises before it loses its upward

1A conservative approach suggests using the wind speed at phys-
ical stack height rather than effective stack height. We aim to
analyze the proposed robust method in a less conservative case.

Table 1. Empirical dispersion coefficients for urban sites
(Heinsohn and Kabel, 1999).

Stability
letters Stability dy(m) dz(m)

A–B Unstable 0.32x(1 + 0.0004x)−0.5 0.24x(1 + 0.0001x)0.5

C Unstable 0.22x(1 + 0.0004x)−0.5 0.20x
D Neutral 0.16x(1 + 0.0004x)−0.5 0.14x(1 + 0.0003x)−0.5

E–F Stable 0.11x(1 + 0.0004x)−0.5 0.08x(1 + 0.0015x)−0.5

momentum or buoyancy, can be calculated by using the
Briggs equation, as given by Heinsohn and Kabel (1999):

δh =
(

114 ·
(

1.58 − 41.4
��

�z

)(
gvsD2

s (Ts − Ta)
4Ta

)1/3)/
Us, (8)

where Us is the wind speed at the stack exit (stack’s height);
vs is the gas velocity at stack exit; Ds is the inside diame-
ter of the stack exit; g = 9.8 m/s2; Ts is the gas temper-
ature at stack exit in absolute units of [kelvin]; Ta is the
ambient temperature at stack exit [in kelvin]; ��/�z is
the potential temperature gradient—a meteorological pa-
rameter that depends on atmospheric stability (and deter-
mined by the lapse rate). Thus, the pollutant behavior is
largely influenced by the atmospheric stability class, a mete-
orological concept describing the vigor of vertical mixing.
In a stable atmosphere, buoyancy returns a parcel of air
to its original position after it has been displaced upward
or downward in an adiabatic fashion. An unstable atmo-
sphere is one in which buoyancy increases the displacement
of the parcel of air that has moved in an adiabatic fash-
ion. The different constants used in the model (dy , dz and
��/�z) are chosen according to the atmospheric stabil-
ity level. Finally, the value of the wind speed at different
heights (UH and Us in Equations (7) and (8), respectively)
can be evaluated via the power-law function (Hanna et al.,
1982)

UZ = U10

(
z

10

)p

z ≤ 200 m, (9)

where z is the height in meters; U10 is the observed wind
speed at 10 m; while the value of p is taken from Table 2
(Heinsohn and Kabel, 1999).

Table 2. Power-law exponents for atmospheric stability categories
(Heinsohn and Kabel, 1999).

Location A B C D E F

Urban (p) 0.15 0.15 0.20 0.25 0.30 0.30
Rural (p) 0.07 0.07 0.10 0.15 0.35 0.55
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Robust eco-design 911

3.1. The applicability of the GPM for robust eco-design

Examining Equations (7) and (8) reveals that the pollutant
concentration at ground level downwind from the stack is
represented by non-linear transfer functions. These func-
tions depend upon three types of factors that are classified
here as follows:

1. Weather conditions: the ambient temperature (Ta) and
the wind speed at 10 m (U10) that allows computa-
tion of the wind speed at various heights (denoted by
Us and UH in the model). We consider these as clearly
uncontrollable noise factors. For simplicity of exposi-
tion, other variables that are affected by the weather
conditions such as dy, dz and ��/�z are defined and
fixed according to the selected atmospheric stability
level.

2. Stack design parameters: the stack height (hs) and the
stack diameter (Ds). We consider these as pure design
parameters, i.e., the controllable factors.

3. Manufacturing process characteristics: the ith pollutant
emission rate from the stack (ṁi,s), the gas velocity (vs)
and the temperature (Ts) at the stack exit. All these
factors depend on the manufacturing process and can
be treated either as controllable factors, if the designer
wishes to redesign the process, or as noise factors if they
are assumed to be uncontrollable. For simplicity reasons,
we consider the process as rigid and fix the values of these
variables.

The definition of these classes shows that the GPM model
is suitable for the application of robust design methods, as
described by the following case studies.

4. Case studies: robust eco-design of a smokestack via
the GPM

2 We now implement the robust design method for the fac-
tory smokestack. Our objective is to find a suitable design
for a factory stack, which emits SO2 as a result of coal burn-
ing. In particular, we aim to minimize some functions of the
pollutant’s ground level concentration directly downwind
of the stack over a range of distances from the point source.
The analysis is based on the non-linear transfer functions
(7) and (8), while the MSE measure is approximated by
using Equations (5) and (6) or estimated numerically. For
simplification purposes, we reduce the number of “free” pa-
rameters to four, considering two control factors and two
noise factors. The control factors are the stack diameter
(Ds), for which the feasible range is [1.8, 2.8] m, and the stack
physical height (hs), for which the feasible range is [50 m,
150 m]. These ranges are selected to illustrate the non-
linearity effects of the control factors on the eco-robust so-
lution as shown below. The two independent noise sources
are the wind speed at 10 m (U10) and the ambient tempera-

ture at stack exit (Ta) that are represented by known random
variables. The first variable is assumed to follow a normal
distribution with a mean of two and standard deviation
0.2, i.e., U10 ∼ N(2, 0.2) m/s. The second variable is as-
sumed to follow a uniform distribution between 283–295
K, i.e., Ta ∼ U(283,295) K. The distributions’ mean values
follow the examples given in Heinsohn and Kabel (1999)
(see Sections 9.9 and 9.10). Our selection of these types of
distributions is for illustration purpose. It does not affect
the non-linearity behavior of the transfer function nor its
applicability to robust eco-design, which is the main sub-
ject of this study. The rest of the parameters in the following
case studies are based on the same examples from Heinsohn
and Kabel (1999).

The two system outputs (that are considered in two dif-
ferent case studies) are ycum, the cumulative ground level
concentration of the pollutant over a discrete range of 1–
10 km from the stack, and ymax the maximum ground level
concentration of the pollutant over the same range. These
outputs are defined here as follows:

ycum =
10∑

x=1

cGL
i (x, 0, 0) and

ymax = max
x=1,2,...,10

cGL
i (x, 0, 0) = cGL

i (xmax, 0, 0). (10)

Thus, ycum is approximated by summing the pollutants con-
centration over ten discrete points from 1 to 10 km, while
ymax is found over the same discrete points (starting the
range from 0 km has a negligible effect on the outputs in
our case study, since the location of the maximum ground
level concentration in this case is above 1 km—mostly in the
range of 5–8 km). Note that the cumulative ground level pol-
lutant concentration, which gained some attention in recent
years (e.g., Hunter (1999) and Daggubati et al. (2007)), can
serve as a measure when considering the overall hazardous
effects of a pollutant dispersal source. The use of a cumu-
lative concentration measure can reveal a realistic situa-
tion where a point source causes significant environmental
damage by the cumulative amount of pollutants it emits, al-
though the maximum ground level concentration is relatively
low due to stable weather conditions. Usually, however, the
cumulative ground level concentration is not used for the
evaluation of air pollutant health impacts. For this reason,
in Section 4.4 we include another example with respect to
the maximum ground level concentration, which is a standard
output measure for reporting dispersion modeling results.
In the first example we consider stable weather conditions
(category F in Table 2) whereas in the second example we
consider unstable weather conditions (category A). This is
done to show that the proposed eco-design method can be
developed for different measures and different weather con-
ditions. Recall that for both considered output measures,
our objective is to minimize the MSE measure (as reflected
in Equation (1)) with respect to the target M being set either

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
T
e
l
 
A
v
i
v
 
U
n
i
v
e
r
s
i
t
y
]
 
A
t
:
 
1
8
:
1
0
 
6
 
A
u
g
u
s
t
 
2
0
0
8



912 Ben-Gal et al.

close to zero (“environmentalist” viewpoint) or to some
regulated level (“manufacturer” viewpoint). In Sections 4.1
to 4.3 we analyze the system from an “environmentalist”
viewpoint with M = 0. Sections 4.4 and 4.5 also consider
other values for M. Both examples highlight the potential
implications of robust eco-design that rely on the obtained
non-linear transfer functions and the clear tradeoff between
the variance and the bias components in the MSE function.

4.1. Initial analysis for the cumulative ground level
concentration

In this example, we consider the cumulative ground level
concentration ycum in urban settings with stable atmospheric
conditions (category F in Table 1). The pollutant emission
rate is ṁi,s = 153,700 mg/s = 58,836,360 ppb, the lapse rate
is 4 K/Km, yielding ��/�z = 0.0058 K/m, Ts = 400 K
and vs = 14.5 m/s.

Our initial analysis is based on a simple factorial exper-
iment of the two design factors. For each factor we define
three equally spaced levels within the design range, result-
ing in the following 32 = 9 factorial experiment: {hs, Ds} =
{(150, 2.8), (100, 2.8), (50, 2.8), (150, 2.3), (100, 2.3), (50,
2.3), (150, 1.8), (100, 1.8), (50, 1.8)}, as seen in Tables 3
and 4. The output’s mean, variance and MSE (with respect
to M = 0) are evaluated for each of the nine combina-
tions of the design factors by both the analytical and the
numerical approaches. Namely, the analytical approach ap-
plies Equations (7) to (10) to derive ycum(hs, Ds, U10, Ta)—a
closed-form transfer function for the system output ycum.
It then generates the approximations for the output’s mean
and its variance—E{ycum} and V{ycum} as in Equations (5)
and (6). These expressions are simplified due to the assumed

Table 3. Analytical approach results for stable atmospheric
conditions (category F).

hs

Ds 150 100 50

2.8
Run 1 2 3
Average 42.62 60.32 62.59
Var 38.31 105.78 209.216
MSE 1854.94 3744.44 4126.15

2.3
Run 4 5 6
Average 57.14 83.33 92.82
Var 40.33 123.32 295.26
MSE 3305.66 7067.58 8910.08

1.8
Run 7 8 9
Average 77.96 117.46 141.03
Var 35.43 125.61 383.96
MSE 6113.97 13923.4 20274.9

Table 4. Numerical approach results for stable atmospheric
conditions (category F).

hs

Ds 150 100 50

2.8
Run 1 2 3
Average 42.4 60.13 62.67
Var 39.95 103.56 197.85
MSE 1838.09 3719.87 4124.93

2.3
Run 4 5 6
Average 56.87 83.72 92.21
Var 42.17 120.16 288.11
MSE 3276.4 7130.1 8790.63

1.8
Run 7 8 9
Average 77.92 117.74 141.9
Var 39.17 139.29 409.65
MSE 6111.35 14001.3 20546.62

independence of the noise factors:

E{ycum(hs, Ds, U10, Ta)}
∼= ycum(hs, Ds, µU10, µTa )

+ 1
2

(
σ 2

U10
× ∂2ycum(·)

∂U2
10

+ σ 2
Ta × ∂2ycum(·)

∂T2
a

)
V{ycum(hs, Ds, U10, Ta)}

∼= σ 2
U10

×
(

∂ycum(·)
∂U10

)2

+ σ 2
Ta ×

(
∂ycum(·)

∂Ta

)2

(11)

The outputs of the analytical approach in the initial
experiment are shown in Table 3.

The numerical approach uses the inverse transform
method for both the Gaussian and the Uniform random
variables to generate 1000 realizations of U10 and Ta for
each of the examined design configurations. A simple way
to generate these values is by using the inverse distribution
functions in Excel. Thus, the generated values are based
on a random sampling from the assumed distributions of
the noise factors. Finally, using these realizations, E{ycum},
V{ycum} and MSE{ycum} are estimated empirically. The re-
sults of the numerical approach in the initial experiment are
given in Table 4.

Note that the mean values derived by both approaches
are similar, ensuring that the analytical approximation is
close enough to the “real/simulated” value. As for the MSE,
the values of both approaches are convincingly close, al-
though not identical, mainly due to the differences in the
variance estimates. The variances are relatively high due to
the stable atmospheric conditions, under which the pollu-
tion can be carried far away from the stack. Unintuitively,
these variances decrease dramatically for the unstable at-
mospheric conditions (this analysis is not presented here)
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Robust eco-design 913

when air turbulence pushes the pollutant to the ground level
close to the stack exit.

At first sight, the results in Tables 3 and 4 seem quite
trivial. The minimal accumulated pollution level and the
lowest value of MSE is obtained for the highest and widest
stack (run no. 1), which is not surprisingly the most ex-
pensive design configuration. A closer look at the results,
however, reveals some inconsistencies resulting from the
interactions between the factors. For example, while for a
fixed 50 m stack height the variance clearly decreases in the
stack diameter, for a fixed 150 m stack height the variance is
non-monotonic in the stack diameter. That is, for the latter
case the variance increases (e.g., in Table 3 from 35.43 to
40.33) when increasing the diameter (from 1.8 m to 2.3 m)
but then surprisingly changes direction and decreases (e.g.,
in Table 3 from 40.33 to 38.31) with the second increase
of the diameter (from 2.3 m to 2.8 m). For a 150 m stack
height, the lowest variance value is obtained for Ds = 1.8
m and not, as expected, for Ds = 2.8 m. Similar interaction
effects to those shown in Tables 3 and 4 are observed in
Fig. 2, which depicts the MSE as a function of the stack
height for different (fixed) stack diameters.

4.2. Analyzing a continuous design range

In this stage a more thorough investigation of the output’s
mean, variance and MSE behavior is conducted based on
the analytical approach for a continuous range of design
space. We use Mathemetica c© software to draw these mea-
sures in Fig. 3. The figure shows the non-linear behavior of
the mean (Fig. 3(a)), the variance (Fig. 3(b)) and the MSE
with M = 0 (Fig. 3(c)) as a function of the design param-
eters. As can be seen, the MSE is mostly influenced by the
output’s mean value, which is relatively high with respect to
the output’s standard deviation.

The most practical observation from these figures is that
the MSE behavior is, indeed, non-monotonous (i.e., shows
a change of trend) in stack height for any fixed diameter
at the considered ranges. Thus, given a fixed diameter, it

0

5000

10000

15000

20000

25000

0 50 100 150 200
hs

MSE (ppb)

D=2.8 D=2.3 D=1.8

Fig. 2. MSE as a function of the stack height for different (fixed)
stack diameters.

Table 5. “Zoom-in” analytical results for stable atmospheric
conditions.

hs

Ds 70 60 50

2.6
Mean 77.92 75.69 73.10
Var 192.15 219.65 241.81
MSE 6263.01 5948.05 5585.58

2.4
Mean 87.61 87.93 85.64
Var 211.86 246.42 276.98
MSE 7888.15 7977.63 7611.44

2.2
Mean 101.45 102.50 100.69
Var 230.38 273.02 313.77
MSE 10522.08 10778.45 10451.85

is possible to obtain the same MSE values for both lower
and higher stacks. The white dotted line in Fig. 3(c) for
Ds = 2.45 m illustrates this phenomena—a similar MSE
value can be obtained for low values of hs (under 55 m) as
well as for higher values (over 80 m). Since higher stacks are
practically more expensive, this result implies that a cheaper
solution may be found to the stack design problem, which
is of equal quality with respect to the accumulated MSE
measure.

4.3. “Zoom-in” analysis

We finalize our analysis by zooming into a smaller design
region defined by the following parameters range: hs = [50,
70] m and Ds = [2.2, 2,6] m. Once again, nine combinations
of design parameters are defined based on an equally spaced
factorial design: {hs, Ds} = {(70, 2.6), (60, 2.6), (50, 2.6),
(70, 2.4), (60, 2.4), (50, 2.4) (70, 2.2), (60, 2.2), (50, 2.2)}.
The analytical and the numerical results are given in Tables
5 and 6, respectively.

Table 6. “Zoom-in” numerical results for stable atmospheric con-
ditions based on 1000 replications.

hs

Ds 70 60 50

2.6
Mean 77.50 75.40 73.12
Var 180.39 199.82 229.18
MSE 6187.07 5885.18 5575.07

2.4
Mean 88.16 88.34 85.18
Var 223.82 243.99 271.85
MSE 7996.43 8048.81 7527.40

2.2
Mean 101.21 102.65 100.62
Var 236.75 274.20 300.15
MSE 10481.07 10810.57 10425.25
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914 Ben-Gal et al.

Fig. 3. (a) The output’s mean; (b) variance; and (c) MSE as a function of the stack’s height (hs) and diameter (Ds). Lighter areas
represent higher values. The numbers represent the nine discrete points that were investigated in the initial design (Tables 3 and 4).

These results strengthen our previous observations. For
each of the suggested diameter values and for both analysis
approaches, the obtained MSE for a stack height of 50 m is
smaller and, therefore, better than those designs obtained
for higher stacks.

The practical implication for an engineer dealing with
the robust eco-design of the stack problem is that a better
solution exists, which is a cheaper one with respect to the
used MSE measure and the considered design range.

4.4. The maximum ground level concentration

As indicated above, the accumulative ground level concen-
tration is not a standard measure in evaluating air pollu-

tant health impact. A commonly used measure is the max-
imum ground level pollutant concentration, as indicated by
the National Ambient Air Quality Standards ( NAAQS,2

Chapter 3). Engineers are required to know the maximum
ground level pollutant concentration, cGL

i (xmax, 0, 0), for a
particular stack’s parameters and emission rates, and where
this maximum value occurs. This location, downwind dis-
tance is denoted by xmax, that is, the location where the
ground level pollutant concentration achieves its maximum
(see Equation (10)).

2See http://www.epa.gov/air/criteria.html
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Robust eco-design 915

In this subsection we show that the same type of analysis
regarding the applicability of robust eco-design applies also
to the maximum ground level measure. This fact should not
be surprising, since similar types of non-linear functions
result from both measures.

Let us follow Heinsohn and Kabel (1999) for simplicity
reasons and assume that the ratio of dispersion coefficients
is a constant for any stability category, namely, dy/dz = C.
Equation (7) can now be rewritten as

cGL
i (x, 0, 0)U

ṁi,s
= 1

πCd2
z

exp

[
−1

2

(
H
dz

)2
]
. (12)

Differentiating Equation (12) with respect to dz and equat-
ing it to zero results in the optimal value of the dispersion co-
efficient d∗

z = H/
√

2. Plugging d∗
z into Equation (12) leads

to the maximum normalized ground level concentration of
unabsorbed gaseous pollutants:

ỹmax = cGL
i (xmax, 0, 0)U

ṁi,s
= 0.1171

(H/
√

2)2

= 0.2342
(hs + δh)2

. (13)

Note that one can use Table 1 to find where xmax is located by
substituting the expressions for the dispersion coefficients
as functions of x. Recall that δh is evaluated by using Equa-
tions (8) and (9). Evidently, Equation (13) is non-linear in
the design and the noise factors and for C = 1 can be ex-
plicitly written as

ỹmax = 0.2342 ×(
hs + 114 × (1.58 − 41.4(��/�z) × (

gvsD2
s (Ts − Ta)/4Ta

)
U10(s/10)p

1/3)−2

.(14)

One can approximate both the expected value (by Equa-
tion (5)) and the variance (by Equation (6)) of the above
function, and use them (by Equation (1)) to derive an ap-
proximation of MSE(ỹmax). Since the goal is to minimize
the MSE value with respect to some target, we expect a
“tradeoff” behavior between the bias and the variance com-
ponents. For illustration purpose, Fig. 4 plots the approxi-
mate MSE(ỹmax) as a function of both the stack height hs
(between 10 and 220 m) and the target values (in the vicinity
of M = 0) for a fixed diameter Ds = 2.8 m. Other param-
eters are set according to examples given in Section 9.7 in
Heinsohn and Kabel (1999) for urban unstable conditions
(category A in Table 1 with p = 0.15), where the lapse rate
is 20 K/Km, resulting in ��/�z = − 0.0102 K/m, Ta =
289 K, Ts = 450 K and vs = 14.5 m/s. Figure 4 reflects well
the highly non-linear behavior that results from the inher-
ent trade off within the MSE function. Moreover, it is seen
that the MSE is highly sensitive to the target value in the
vicinity of zero.

Finally, Table 7 shows a numerical analysis of the non-
normalized measure MSE(ymax) (see Equation (10)) for

Fig. 4. The MSE(ỹmax) contour plot as a function of both the
stack height hs and the target value M in the vicinity of zero. The
stack’s diameter is fixed at Ds = 2.8 m.

an emission rate of ṁi,s = 153, 700 mg/s = 58, 836, 360
ppb, as a function of the combinations of three values
for the stack height hs ∈ 50 m, 75 m and 100 m and
three values for the stack diameter Ds ∈ 2.6 m, 2.7m and
2.8 m. Two different target values are considered here
(M = 12 and M = 8). Other parameters are set accord-
ing to the same examples given in Heinsohn and Kabel
(1999).

Here again, the non-linear behavior of the MSE with
respect to the stack height is evident. Note that for any
fixed diameter value and for both target values, the MSE

Table 7. Numerical evaluation of MSE(ymax) based on 1000 repli-
cations, as a function of the design parameters for unstable atmo-
spheric conditions with respect to two different target values.

hs

Ds 100 75 50

2.8
Run no. 1 2 3
Avg 13.52 13.86 13.67
Var 0.67 0.86 1.05
MSE (M = 12) 2.98 4.31 3.83
MSE (M = 8) 31.12 35.16 33.19

2.7
Run no. 4 5 6
Avg 14.00 14.40 14.24
Var 0.66 0.87 1.15
MSE (M = 12) 4.67 6.63 6.17
MSE (M = 8) 36.68 41.84 40.10

2.6
Run no. 7 8 9
Avg 14.64 14.92 14.79
Var 0.70 1.00 1.27
MSE (M = 12) 7.68 9.52 9.03
MSE (M = 8) 44.81 48.87 47.31
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Fig. 5. The output bias, variance and MSE as a function of the stack height (50–66 m) for a fixed stack diameter of 2.6 m: (a) the
regulated threshold is equal to 46 ppb; (b) the regulated threshold is equal to 48.5 ppb; (c) the regulated threshold is equal to 48 ppb.

value for the 50 m stack’s height is lower than the MSE value
for the 75 m stack’s height. Thus, for a given diameter, the
“cheaper” stack obtains better MSE values.

4.5. Robust design from the manufacturer’s point of view

Thus far, we have applied the robust design method mainly
from the “environmentalist’s” point of view, trying to
achieve a zero pollution level (with the exception of Table 7).
However, in practice, the manufacturer, who has to comply
with environmental regulations—often a given threshold
set by the regulators—is usually interested in achieving an
optimal design for a target function of the “nominal the
best” type, as shown in Equation (1).

To illustrate such a case, we consider an example in which
a designer is looking for the best height given a stack diam-

eter of 2.6 m, and under a given regulation for maximum
allowed pollution level. We use the same performance mea-
sure as in Section 4.1, namely, the MSE of the cumulative
pollutant concentration on the ground level with respect to
the required regulation. Feasible heights ranging from 50 m
to 66 m are examined. Both the output mean and the out-
put variance are calculated, using the analytical approach.
Finally, the MSE is computed with the given threshold as
the target. The results are presented in Fig. 5.

A short review of these graphs leads to an interesting ob-
servation. For the diameter and height range in question,
the bias component of the outputY (which depends on its
mean value) increases in the stack height, whereas the vari-
ance component decreases in the stack height. When the
target is equal to 46 ppb, the bias component is the dom-
inating one on the MSE measure, i.e., the MSE increases
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Robust eco-design 917

in hs, (making lower values of hs the better design choice).
When the target is equal to 48.5 ppb, the variance becomes
the dominating component on the MSE measure, which de-
creases in hs (making higher values of hs the better design
choice). However, when the target is exactly 48 ppb, there
is more of a balance between the two components of the
MSE. Due to the non-linear transfer function, a tradeoff
between the output mean and the output variance yields
an almost constant MSE level for a significant range of
heights. This phenomena in this case allows the designer
to pick the most suitable design free of the MSE consider-
ations. The selection between the two components of the
MSE measure has also an important practical implication
in the area of eco-design. Namely, from pollution preven-
tion (“end of pipe”) considerations (such as filtering devices
etc.), it is often better to obtain a stabilized system with a
slightly higher mean pollution value (reflected in a higher
bias term) but a lower variance value. This phenomenon is
even more significant if the regulated penalties on the pol-
lution levels are proportional to their deviation from the
threshold.

5. Conclusions and summary

In this paper we suggested applying concepts from robust
design to systems with environmental and ecological impli-
cations. Eco-design, which is closely associated with emerg-
ing research areas such as green manufacturing and sustain-
able design, provides new and wide ranging applications to
quality engineers. Using a particular case study, we showed
that concepts of robust design and the Taguchi method are
suitable for an eco-design that minimizes the emission of air
pollutants and guarantees an environmentally sound use of
a system.

Our case study focused on the design of a factory stack,
aiming to obtain a stack that guarantees a minimal yet a
stable cumulative pollutant concentration at ground level.
To demonstrate the benefits in the suggested method, we
used a combination of analytical and numerical analyses.
We found some interesting phenomena that resulted from
the non-linear transfer function of the GPM.

1. When considering the stack design from an environ-
mentalist’s viewpoint, aspiring to minimize the pollution
level, one is able to take advantage of the non-linearity
in the system output to choose a less expensive design of
an equal air quality level.

2. When considering the viewpoint of the manufacturer,
aiming to comply with given pollution regulations, one
can directly deal with the tradeoff between the pollution
variance and the bias components. This tradeoff allows
the designer to pick a design from a wide range of solu-
tions while carefully evaluating the effects of these two
components.

Further investigations of the plume model may include the
extension of the study to a thorough design of experiment
analysis, while adding more design factors and investigat-
ing their joint effects simultaneously. Another potential di-
rection is to relax some of the assumptions used in this
paper, such as the independence between the various atmo-
spheric conditions. All these extensions will potentially add
to the non-linearity of model and, hence, provide further
opportunities to exploit these non-linearities as suggested
by Taguchi (1995). Finally, one can consider other applica-
tions of the robust design method to the field of eco-design,
which contains numerous descriptive models that are ana-
lytically convenient.
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