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Abstract: The paper considers the detection of multiple targets by a group of mobile robots that
perform under uncertainty. The agents are equipped with sensors with positive and non-negligible
probabilities of detecting the targets at different distances. The goal is to define the trajectories of the
agents that can lead to the detection of the targets in minimal time. The suggested solution follows
the classical Koopman’s approach applied to an occupancy grid, while the decision-making and
control schemes are conducted based on information-theoretic criteria. Sensor fusion in each agent
and over the agents is implemented using a general Bayesian scheme. The presented procedures
follow the expected information gain approach utilizing the “center of view” and the “center of
gravity” algorithms. These methods are compared with a simulated learning method. The activity of
the procedures is analyzed using numerical simulations.

Keywords: search and detection; multi-agent systems; probabilistic decision-making; information
gain; stochastic learning; probabilistic search

1. Introduction

Methods of search and detection address various problems of finding hidden objects and chasing
after targets [1]. Studies in this field were initiated in 1942 as a part of the mission to detect submarines
in the Atlantic [2] and were later distributed among various applications and scenarios.

In particular, the search problem addresses the activity of the searcher up to hunting the target in
its location, and often results in an optimal search policy or in an effective movement trajectory of the
searcher. The detection problem, in contrast, focuses on the recognition of the target’s location without
necessarily reaching its physical location and results, usually, in a cost-effective distribution of the
search efforts [2]. For an overview of the field and related problems, see, e.g., [3–5]. In the last decades,
with the development of mobile robots and multi-robot systems, methods of search and detection were
extended to apply to groups of autonomous agents, so the current studies also include considerations
of communication and collective decision-making under uncertainties [6,7].

In the paper, we consider the problem of detection of multiple targets by a group of mobile agents.
This problem is a direct extension of the classical Koopman setting that aims at the detection of the
hidden objects [2,5,8]. However, in contrast to Koopman’s formulation, we assume that the detection
process is conducted by a finite small number of indivisible agents that start in certain locations, move
over the domain, and explore it up to the detection of all the targets. Also, we assume that the agents are
equipped with sensors that can detect the existence of the target in certain locations, yet with both false
positive and false negative errors. The simple version of this problem was considered in 2012 by Israel
et al. [9] in the framework of search in shadowed space. In the same year, Chernikhovsky et al. [10]
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considered a similar search problem with erroneous sensors and showed that the solution to the
detection algorithm terminates in a finite number of steps.

The search problem after static or moving targets by finite and usually small number of agents
appears in various applications, both military, and civil ones. The standard taxonomies of this problem
are often based on the targets’ and the search agents’ abilities, such as their mobility level, their
knowledge about the activities of the other party and on their cooperation level [4,7,11]. Many search
algorithms are classified with respect to the optimization principles that govern the motion of the agents
in the group. In particular, since a global optimization of the agents’ motions requires unreasonable
time and computation power, search algorithms are often implemented by using different heuristics,
mostly informational one or by mimicking animal foraging [6,7,12].

In the paper, we consider a detection process with several assumptions, which are usually
considered separately. Following the basic Koopman formulation, we consider a probabilistic search
scheme, in which the search agents have knowledge only about the targets’ location probabilities,
while assuming that Koopman’s exponential random search formula which defines those detection
probabilities is applicable. At the same time, we assume that the search-agents’ group includes a finite
small number of members and that the agents are indivisible; such an assumption implies that the
problem cannot be considered solely as a search-efforts distribution problem, but also as a problem
that requires methods of swarm navigation and control.

In practice, communication among the agents as well as information processing can be organized
at different levels: from peer-to-peer networks to a scheme of a central station that receives information
from all the agents in the group [6,7]. In the first case, each agent obtains information from its neighbors
and makes decisions based on such local information, while in the second case, a central station defines
the agents’ motion based on global information. In practice, the algorithms of swarm control use
both approaches, while in practice, applications based on a central station are usually restricted by
computation power and communication constraints. Also, in most of the military applications, the use
of a central station is a challenging one due to security reasons. In the suggested techniques, we assume
an existence of a central station that holds a global probability map, which, on the one hand, can be used
for theoretical consideration of the effectiveness of the suggested methods, while, on the other hand,
is required for generating strict criteria for the termination of the detection process. Nonetheless, as we
demonstrate in the paper, the use of a global map by a central station for the navigation of the group of
search agents is less effective than the use of local maps accompanied by peer-to-peer communication.

Finally, we continue a line of practical research works [10,13], yet in contrast to some known
methods of group search and detection, we consider a more realistic situation, in which both false
positive and false negative detection errors exist. Another practical assumption is the one that considers
a variety of sensors that can be used by each agent.

In this study, we consider the detection of a number of static targets; however, the developed
algorithms allow further modification for the detection of mobile targets that is out of the scope of this
paper. The objective of the presented research is to introduce methods of control of the mobile agents
acting within a group such that detection of the targets is conducted in a minimal time period. Notice
that the agents are not required to catch the targets, which is to reach physically their locations, but
rather to detect the locations of the targets using their on-board sensors.

The suggested solution follows the occupancy grid approach, where the map of the targets’
candidate points is created simultaneously with the detection process and the agents’ motion [14,15].
The implemented sensor-fusion scheme follows a general Bayesian scheme [16] with varying sensitivity
of the sensors.

The algorithm implements three different levels of the agent’s knowledge about the targets’ location:

• A global map that represents the information that is available to the group of agents and is
obtained by fusion of information which is available to each agent.

• A local map that represents the information available to every single agent and is obtained by
fusion of information obtained by the agent’s sensors.
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• A sensor map which is obtained by a single sensor.

The above maps are also called probability maps since they provide the information on the target’s
location by a probability distribution, often using a colored heat map to indicate the probability of the
target being located in each grid of the map.

The algorithm was trained with different decision-making objectives based on:

• The expected information gain by the agent’s next step.
• The location of the center of view, which indicates a future agent’s location that, given the sensors’

capabilities, is expected to yield a maximal modification of the probability map. Formally, this
approach relies on the expected information gain procedure which is applied to the global map
instead of focusing on the close neighborhood of the agent.

• The location of the center of gravity of the map, which is the first moment of the targets’
location probabilities.

In the detection by a single agent, it was found that all three procedures provide similar results.
However, since the center of view approach implements additional information about sensors’
capabilities, in certain cases, it demonstrates better performance than two other algorithms. Also
notice, that if the sensors are errorless and equal, then the center of view and the center of gravity
approaches result in the same detection times.

In a collective detection by the agents’ group, it was found that in all three algorithms, the use of
an individual local map by each agent results in shorter detection times than the times when using the
global map. Further studies of these scenarios demonstrated that, due to the similar decisions which
are governed by the use of a global map, the agents move towards the same areas instead of dividing
the efforts over the space to simultaneously investigate different areas. These results meet recent
theoretical considerations of the altruistic and egoistic behavior of search agents in the groups [17]
and form a basis for further considerations of the problem of “division of labor” in the groups of
autonomous agents.

The algorithm was implemented by Python programming language, and the code can be directly
used for solving the real-world tasks of detection of targets by groups of mobile agents.

2. Scenarios of Cooperative Detection

The considered detection problem follows general Koopman’s scenario [2] (see also [5,8]) with
additional consideration of the agents’ motion toward the destinated locations. Formally, using the
occupancy grid approach [14,15], the problem is defined as follows.

Let C = {c1, c2, . . . , cn} be a finite set of cells such that C represents a grid over a closed
two-dimensional domain, and consider a set of 1 ≤ m � n mobile agents A j, j = 1, 2, . . . , m,
searching for hidden targets in the domain. For simplicity, we assume that each agent, as well as each
target, can occupy only a single cell of the grid.

The state of a cell ci, i = 1, 2, . . . , n is defined as a discrete random variable taking values
si = s(ci) ∈ {0, 1}, such that si = 0 implies that the cell ci does not contain any target, while si = 1
implies that cell ci contains a target. In case we need to stress the time t of the sensing, we will use the
notation st

i = s(ci, t), otherwise, we omit it. Note that, at any time t and for each cell ci, the probabilities
of these events are mutually exclusive, i.e.,

Pr{si = 0}+ Pr{si = 1} = 1, (1)

Each agent A j is equipped with a variety of sensors ∼ jk, k = 1, 2, . . . l, that provide, not necessarily
accurate, information about the states of the cells si, i = 1, 2, . . . , n, relative to the agent’s distance with
respect to the Koopman’s exponential random search Formula [2],

Pr
{
target detected in ci

∣∣∣ target located in ci
}
= exp

[
−θ

(
d
(
ci, c j

)
, τ

)]
, (2)
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where θ
(
d
(
ci, c j

)
, τ

)
represents the search effort applied to the cell ci with respect to the distance d

(
ci, c j

)
between this cell ci and the agent’s location c j for observation period τ. It is assumed that as the
distance d

(
ci, c j

)
gets shorter and as the period τ gets longer, the higher the detection probability will be.

In order to formalize the possibility of both false positive and false negative detection errors,
let us assume that the domain includes both true and dummy targets that broadcast signals indicating
their presence in the domain cells. The signals sent by the true targets are considered as true alarms,
and the signals that are sent by the dummy targets are considered as false alarms that represent the
false-positive errors.

Then, with respect to Koopman’s search Formula (2), the probability of a perceived alarm is
defined as follows:

Pr
{
alarm percieved

∣∣∣ alarm sent
}
= exp

[
−d

(
ci, c j

)
/λ jk

]
, (3)

where λ jk = λ
(
∼ jk

)
is the sensitivity of the sensor ∼ jk installed on agent A j. The dependence of the

detection probability at observation period τ is considered in the updates of the probability map as
defined below.

The probabilities pi = p(ci) = Pr
{
alarm sent f rom ci

}
of sending alarms from cells ci ∈ C, i =

1, 2, . . . , n, are defined by the probability map that represents the information about the targets’
locations in the domain. Moreover, we assume that the agents can share information about the targets’
locations as they have been perceived by the sensors.

The activity of the agents is outlined as follows. The agents start with some initial probability map

P(t) =
{
p1(t), p2(t), . . . , pn(t)

}
,

that defines initial probabilities pi(t) of detecting the targets in cells ci ∈ C, i = 1, 2, . . . , n, at time t.
At time t, the agents A j, j = 1, 2, . . . , m, are located in the cells c j(t) and obtain the sent signals

(that are either true or false alarms) from the cells in which the targets can be located. The probabilities
of receiving the signal that was sent from the cell ci with probability pi is defined by the Koopman
Formula (3).

After receiving the signals, the jth agent A j updates the sensor probability maps, k = 1, 2, . . . , l,

Psensor( j, k, t) =
{
psensor

s1=1 ( j, k, t), psensor
s2=1 ( j, k, t), . . . , psensor

sn=1 ( j, k, t)
}
,

where
psensor

si=1 ( j, k, t) = Pr
{
sensor ∼ jk identi f ies a true target in ci at time t

}
.

The resulting sensor probability maps Psensor( j, k, t), k = 1, 2, . . . , l, are combined into the
probability map

Pagent( j, t) =
{
pagent

s1=1 ( j, t), pagent
s2=1 ( j, t), . . . , pagent

sn=1( j, t)
}
,

where probabilities pagent
si=1 ( j, t) of the target’s locations in the cells ci, i = 1, 2, . . . , n, from the agent’s

point of view are specified by fusion of the sensors’ probability maps Psensor( j, k, t), k = 1, 2, . . . , l.
Finally, a global probability map

Pglobal(t) =
{
pglobal

s1=1 (t), pglobal
s2=1 (t), . . . , pglobal

sn=1 (t)
}
,

that defines the probabilities pglobal
si=1 (t) of the target’s locations in the cells ci, i = 1, 2, . . . , n, as they are

known by the group of agents is obtained by the fusion of the agents’ probability maps Pagent( j, t) over
all the agents A j, j = 1, 2, . . . , m.

In the presented algorithms, the probability maps both at the sensors’ level and at the agents’ level
are fused using a simple Bayesian scheme. Exact equations for calculating each probability map are
presented in the next sections.
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The general scenario of the targets’ detection by a group of mobile agents is outlined as follows.
At each step, each agent makes a decision regarding its own next movement. The agent’s decision is
based on either the local or the global probability maps (or both of them) as obtained at this step.

After taking its decision, the agent makes a movement step towards the chosen direction. At the
completion of the step and arrival at the required cell, the agent observes the cells of the domain by
utilizing its sensors, obtains true or false information about the target’s location, and updates the
probability maps, respectively.

Then, the detection process continues following the updated probability maps and the agent’s
current locations, in a step forward manner.

Our goal is to define the trajectories of the agents over the domain, such that all the targets will be
detected in minimal time. Notice again that we do not require the agents to arrive physically to the
exact targets’ locations, but rather to detect the locations of the targets at some level of certainty.

It is clear that the formulated problem follows the general Koopman’s scenario [2]. As defined
in the framework of probabilistic search [5,16]. Since the general case, the computational complexity
of finding the optimal solution is O(nm), we are interested in a practically computable near-optimal
solution. In the next section, we consider several heuristic approaches and reasonable assumptions
that lead to such a solution.

3. Sensor Fusion and Updating Schemes over the Probability Maps

As indicated above, we assume that each agentA j is equipped with several sensors∼ jk, k = 1, 2, . . . l,
that independently provide, not necessarily accurate, information about the cells states si, i = 1, 2, . . . , n.
In the used framework of the occupancy grid, sensor fusion is conducted as follows.

Let for example ∼ j1 and ∼ j2 be two independent sensors installed on agent A j and let s̃ j1(ci, t)
and s̃ j2(ci, t) be the signals obtained by these sensors at time t. Then, the probability that the target is
located in the cell ci, that is the state si(t) = 1, is defined by Bayes rule as follows (see also [15]):

Pr
{
si(t) = 1

∣∣∣ s̃ j1(ci, t) = 1, s̃ j2(ci, t) = 1
}
=

Pr
{̃
s j2(ci, t) = 1si(t) = 1

}
× Pr

{
si(t) = 1

∣∣∣ s̃ j1(ci, t) = 1
}

∑
si(t) Pr

{̃
s j2(ci, t) = 1si(t)

}
× Pr

{
si(t)

∣∣∣ s̃ j1(ci, t) = 1
} , (4)

where the sum is taken over all possible values of si(t). In the considered case, these values are
si(t) ∈ {0, 1}.

An extension of this equation to l onboard sensors of the agent A j results in the probabilities

pagent
si=1 ( j, t) =

∏l
k=1 psensor

si=1 ( j, k, t)∏l
k=1 psensor

si=1 ( j, k, t) +
∏l

k=1

(
1− psensor

si=1 ( j, k, t)
) , (5)

of the targets’ locations in the cells ci, i = 1, 2, . . . , n, as they determined by the agent A j using its
sensors. This equation is based on the approach known as “independent opinion pool” [15] under the
assumption that the sensors are conditionally independent and that their reliabilities and accuracies
are equivalent.

Similarly, the location probabilities of different agents can be fused to global probabilities,

pglobal
si=1 (t) =

∏m
j=1 pagent

si=1 ( j, t)∏m
j=1 pagent

si=1 ( j, t) +
∏m

j=1

(
1− pagent

si=1 ( j, t)
) , (6)

of the targets’ locations in cells ci, i = 1, 2, . . . , n, as determined by the group of the agents. Notice
that such a definition requires a central unit that receives data from each agent and computes a global
probability map using the obtained probabilities from all the agents.
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The presented equations use the probabilities psensor
si=1 ( j, k, t) of the targets’ locations in the cells ci,

i = 1, 2, . . . , n, as determined by sensors ∼ jk, k = 1, 2, . . . l, installed on agents A j, j = 1, 2, . . . , m. These
probabilities form a sensor probability maps Psensor( j, k, t) that are updated as follows.

At the initial time t = 0 the probabilities psensor
si=1 ( j, k, t) are specified with respect to some initial

distribution; if no information is available, these probabilities can be drawn by a uniform distribution.
Then, these probabilities are updated by using the Bayesian approach as follows.

As indicated above, let s̃ jk(ci, t) be the signal obtained about cell ci relying on sensor ∼ jk of agent
A j at time t. Recall that in the considered scenario, s̃ jk(ci, t) = 1 implies that cell ci is occupied by a
target while s̃ jk(ci, t) = 0 implies that cell ci is empty, both based on sensor ∼ jk.

Then, the state probabilities of cell ci that are updated by the sensor outputs are:

• if a signal is perceived that is s̃ jk(ci, t) = 1, considering that the static target was located at the cell
at time t− 1, then the true positive probability is

psensor
si=1 ( j, k, t) = Pr

{
si(t) = 1

∣∣∣̃s jk(ci, t) = 1
}
=

Pr
{
si(t− 1) = 1

}
× Pr

{̃
s jk(ci, t) = 1si(t) = 1

}
∑

si(t) Pr
{
si(t− 1)

}
× Pr

{̃
s jk(ci, t) = 1si(t)

} , (7)

• Otherwise, while s̃ jk(ci, t) = 0, the false positive probability is

psensor
si=1 ( j, k, t) = Pr

{
si(t) = 1

∣∣∣̃s jk(ci, t) = 0
}
=

Pr
{
si(t− 1) = 1

}
× Pr

{̃
s jk(ci, t) = 0si(t) = 1

}
∑

si(t) Pr
{
si(t− 1)

}
× Pr

{̃
s jk(ci, t) = 0si(t)

} . (8)

These equations define an updating scheme of the probabilities map for the sensor given the new
observations. They include the probabilities Pr

{̃
s jk(ci, t) = 1si(t) = 1

}
that the sensor perceives the

signal given that the target is in the cell ci and the probability Pr
{̃
s jk(ci, t) = 0si(t) = 1

}
that the sensor

does not perceive a signal from cell ci given that the target is in that cell.
In order to define these probabilities, denote by ã(ci, t) an alarm signal that is sent about cell ci at

time t. The value ã(ci, t) = 1 implies, truly or not, that the cell is occupied and the value ã(ci, t) = 0
implies, truly or not, that the cell is empty. Then, implementing Koopman’s Formula (3), one obtains
the following

Pr
{̃
s jk(ci, t) = 1si(t) = 1

}
= Pr

{̃
a(ci, t) = 1si(t) = 1

}
× exp

[
−d

(
ci, c j

)
/λ jk

]
, (9)

Pr
{̃
s jk(ci, t) = 1si(t) = 0

}
= 1− Pr

{̃
s jk(ci, t) = 1si(t) = 1

}
, (10)

where, as above, d
(
ci, c j

)
is the distance between the cell ci and the agent’s location c j and λ jk = λ

(
∼ jk

)
is the sensitivity of the sensor ∼ jk installed on the agent A j.

These equations enable to calculate the occupation probabilities at each time t, given the
probabilities at the previous time t− 1 and the information obtained by the sensors at time t. As indicated
above, at the initial time t = 0, the probabilities are defined based on topographic data and prior
information or, in the worst case, can be specified by a uniform distribution of the occupancy grid.

The above defined process of sensors’ fusion is illustrated in Figure 1.
The sensors receive signals s̃ jk(ci, t) from the environment. Part of these signals are positive signals

from the targets, indicating the real locations of the targets, while others are false alarms (i.e., false
positive errors) that corresponds to false locations of the targets. Based on the received signals for each
sensor, a local sensor map is created (see Equations (7) and (8)). Then, each agent integrates its sensor
maps to a local agent map (see Equation (5)). Finally, a global map is created by integrating the agent
maps (see Equation (6)). Such a hierarchical structure allows us to consider the maps of each level
separately and, consequently, to define a more effective calculation process that uses only the maps
required for current computations.
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4. Agents’ Policies and Decision Making

In this section, we define the behavior of the group of agents taking actions in a gridded domain
aiming to detect hidden targets. The agents detect the targets by their on-board sensors such that the
sensors can identify the targets from certain nonzero distances. The goal is to define the trajectories of
the agents such that they detect the targets in minimal time.

Formally, this problem is defined as follows. Denote by τ j(T) =
(
c j(0), c j(1), . . . , c j(T)

)
the

trajectory of the agent A j starting from its initial cell c j(0) and up to the cell c j(t) occupied at time t.
Located at cell c j(t) the agent makes a decision regarding its next location, following a certain policy
π j(P) that prescribes how to choose the next cell c j(t + 1) given a probability map P. For simplicity and
tractability, we assume that policy π j(P) for each agent A j does not depend on the time and for any t is
specified by the applied probability map P that holds the aggregated information on the location of the
targets as a function of past movements of the agents. The result of the application of the policy π j(P)
is an action a j(t) that controls the agent movement from the current cell c j(t) to the next cell c j(t + 1).
More precisely, the policy is a function π j : P→ a

(
A j

)
, where a

(
A j

)
is a set of possible actions of the

agent A j, and an action is defined by a function a j(t) : C→ C that specifies the choice of the agent’s
positions. Assuming that the actions provide an unambiguous choice of the agent’s cells, the required
solution is to define the function π j.

Assume that there are ξ targets, ξ < n, distributed somewhat over the domain, and recall that
the probability pglobal

si=1 (t) defined by Equation (6) is the probability of detecting the targets in cells ci,
i = 1, 2, . . . , n, by the group of the agents. Both the number of the targets ξ and the global probability
pglobal

si=1 (t) are unknown to the agents; in real situations, the former value either cannot be obtained,
or its knowledge requires additional efforts, while the specification of the latter value requires a central
unit that obtains data from all the agents, a requirement which can be practically challenging in many
applications. However, we use these values as parameters for simulations and sensitivity analysis to
demonstrate that better results can be provided by a separate usage of the agents’ probability maps,
such that the use of a central unit is often unnecessary.

Denote by Tθ(p
∣∣∣π1(P),π2(P), . . . ,πm(P)) the time required to detect the target θ, θ = 1, 2, . . . , ξ,

with probability p given the agents’ policies π1(P),π2(P), . . . ,πm(P). Then, the goal is to define such
policies that result in minimal time for detecting the last target, that is(

π∗1(P),π
∗

2(P), . . . ,π
∗
m(P)

)
= argmin

(π1(P),π2(P),...,πm(P))
max

θ=1,2,...,ξ
Tθ(p). (11)

Note that this is an NP-hard problem that can’t be solved directly by conventional linear or integer
mathematical programming [4,6]. In order to approximate the policies π∗1(P),π

∗

2(P), . . . ,π
∗
m(P) in a

tractable manner, we evaluate three different approaches:
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• Maximizing of the expected information gain (EIG) locally - over the cells that are reachable to
each of the agents in a single move;

• Heading the agents toward the center of view (COV), that is the point that provides maximum
expected information-gain over all the cells in the domain;

• Heading the agents toward the center of distribution, also known as the center of gravity (COG),
that is defined by the first moment of the probability map.

Notice that the last approach is a greedy heuristic that requires minimal computation efforts,
while the first two approaches are more complicated heuristics that require the computation of the
possibilities in the local or the global neighborhoods of each agent.

For the aims of comparisons, we also consider a case where static agents remain in their initial
places and an agent that accumulates signals received from the targets while being governed by
the brute force learning rule. We apply it for a single agent only, since this case is extremely
demanding computationally.

The expected information gain EIG( j, k, t) for each sensor ∼ jk of the agent A j at time t is defined
by the sum of the Kullback–Leibler (KL)divergence measures between the sensor probability map
Psensor

(
j, k, t

∣∣∣a j
)

as obtained after executing a chosen action a j by the agent A j and the sensor probability

map Psensor( j, k, t
∣∣∣O) obtained without execution of any action; where such a null action is denoted by

O. Then, the expected information gain, EIG( j, k, t), is defined as

EIG( j, k, t) =DKL
(
Psensor

(
j, k, t

∣∣∣a j
)∣∣∣∣∣∣∣∣Psensor( j, k, t

∣∣∣O)
)
, (12)

where DKL(p
∣∣∣∣∣∣q) = ∑

x p(x) log(p(x)/q(x)) and logarithm is taken to the base of 2; thus, the distance
DKL is represented by the average number of bits. Certainly, instead of the KL distance that is a
pseudo-metric in the probability distributions space, other information-theoretic metrics can be used.
In particular, EIG can be defined by the Jensen–Shannon divergence as the average of the KL distances
1
2 DKL(p

∣∣∣∣∣∣M) + 1
2 DKL(q

∣∣∣∣∣∣M), M = 1
2 (p + q), or by the use of Ornstein or Rokhlin metrics (for application

of such metrics to search problems see [4]). Nevertheless, here we use the conventional definition of
the EIG, and since the heuristics do not need the metric properties of the probability distributions
space, we do not require the distance function to be a formal metric.

At the agent’s level, the expected information gain EIG( j, t) is defined by the sum of the expected
information gains for each sensor ∼ jk, that is

EIG( j, t) =
∑l

k=1EIG( j, k, t). (13)

Similarly, for the group of m agents, the expected information gain EIG(t) at time t is

EIG(t) =
∑m

j=1EIG( j, t). (14)

Notice that instead of calculating the KL distances for each agent based on his own map as
well as calculating the global probability maps over all agents (Equations (5) and (6), respectively),
the expected information gains of higher levels are calculated by the sums of expected information
gains of the lower levels. Thus, the EIG of the group is calculated as a sum of the EIGs of the agents,
and the EIG of the agent is calculated as a sum of the EIGs of its sensors. Such a definition follows a
line of additive property of information and leads to essentially simpler computations.

Using the EIGs, the agent’s decision-making follows the maximization of the EIG measure, that is

a∗(t) = argmax
a j

EIG(t). (15)

For example, while located in any cell ci, an agent can choose one of nine movement possibilities:
make a step forward, backward, left, right, left-forward, left-backward, right-forward, right-backward,
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or stay in its current cell. Then, by Equation (15) the agent chooses such a movement that results in
obtaining the maximum expected information gain about the targets’ locations.

The sensor probabilities psensor
si=1

(
j, k, t

∣∣∣a j
)

given the agent action a j can be defined by using either

the global probability map, Pglobal(t), or by using the agent probability map, Pagent(t). In the former
case, the sensor probabilities are:

psensor
si=1

(
j, k, t

∣∣∣a j
)
= pglobal

si=1 (t)×Pr
{̃
a(ci, t) = 1si(t) = 1

}
× exp

[
−d

(
ci, c

(
a j

))
/λ jk

]
, (16)

psensor
si=1 ( j, k, t

∣∣∣O) = pglobal
si=1 (t) × Pr

{̃
a(ci, t) = 1si(t) = 1

}
× exp

[
−d(ci, c(O))/λ jk

]
, (17)

while in the latter case these probabilities are defined as follows

psensor
si=1

(
j, k, t

∣∣∣a j
)
= pagent

si=1 ( j, t)×Pr
{̃
a(ci, t) = 1si(t) = 1

}
× exp

[
−d

(
ci, c

(
a j

))
/λ jk

]
, (18)

psensor
si=1 ( j, k, t

∣∣∣O) = pagent
si=1 ( j, t) × Pr

{̃
a(ci, t) = 1si(t) = 1

}
× exp

[
−d(ci, c(O))/λ jk

]
, (19)

where c
(
a j

)
is the agent’s location after conducting the action a j and c(O) is the agent’s location if it

decides to avoid conducting any action, i.e., staying in its current location.
A second approach to govern the agent’s action implements the center of view (COV) measure,

aiming at the grid point that provides maximum expected information gain over all the cells in the
domain. In other words, the difference between information, which the agent obtains in its current
position, versus the information, which it expects to obtain while being located at the COV point,
reaches its maximum. Formally, it means that in contrast to EIG that is calculated over neighboring
locations (thus, eight points around the current agent’s location and its current point), the COV is
based on a calculated EIG over all the points in the domain. Thus, instead of calculating the sensor
probabilities by Equations (16)–(19) using distances d

(
ci, c

(
a j

))
and, for the COV calculation, the sensor

probabilities are defined by using the distances d
(
ci, cη

)
between the cell ci and other points in the

domain, cη, η = 1, 2, . . . , n, that can be considered as candidate locations of the COV. In parallel to
Equations (16) and (18) in this case, we have

psensor
si=1,G

(
j, k, t

∣∣∣cη) = pglobal
si=1 (t)×Pr

{̃
a(ci, t) = 1si(t) = 1

}
× exp

[
−d

(
ci, cη

)
/λ jk

]
, (20)

psensor
si=1,A

(
j, k, t

∣∣∣cη) = pagent
si=1 ( j, t)×Pr

{̃
a(ci, t) = 1si(t) = 1

}
× exp

[
−d

(
ci, cη

)
/λ jk

]
. (21)

If the agent chooses to stay in its current location, then the distance is defined as above by
d(ci, c(O)) and the sensor probabilities are calculated by Equations (17) and (19).

By the use of these sensor probabilities, the EIGη is defined in parallel to the EIG:

EIGη( j, k, t) =DKL
(
Psensor

(
j, k, t

∣∣∣cη)∣∣∣∣∣∣∣∣Psensor( j, k, t
∣∣∣O)

)
, (22)

EIGη( j, t) =
∑l

k=1EIGη( j, k, t), (23)

EIGη(t) =
∑m

j=1EIGη( j, t), (24)

and the COV is the point, in which EIGη reaches its maximum, that is

COV(t) = argmax
cη

EIGη(t). (25)

Finally, the center of gravity (COG), which is the first moment of the probability map, the following
calculations are used. In a two-dimensional domain, the location of each cell ci, i = 1, 2, . . . , n, is
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defined by two coordinates, ci = (xi, yi). In addition, recall that si = s(ci) ∈ {0, 1} stands for the state of
the cell ci. Then, the coordinates of the COG for the axes are

COGx(t) =
∑n

i=1xi × pglobal
si=1 (t)/

∑n
i=1pglobal

si=1 (t), . (26)

COGy(t) =
∑n

i=1yi × pglobal
si=1 (t)/

∑n
i=1pglobal

si=1 (t), (27)

and the final location of the COG is obtained by rounding the values COGx(t) and COGy(t) to the
closest integers that is

COG(t) =
(
[COGx(t)],

[
COGy(t)

])
. (28)

Notice that since we consider only the states si = 1, the sum of the probabilities in the denominator
differs from the unit and varies with time and with the number of targets.

Since both here and in the previous case the desired points COG(t) and COV(t) can be located
far from the current agent’s location, the agent follows toward these points by steps and changes its
direction with respect to the changes of the coordinates of both COG(t) and COV(t).

5. Policies Control and Brute Force Learning

In order to control the obtained policies, we apply the simple look-backward method. Based on
this method, the control of the agents’ policies is conducted as follows.

Let the global probability map at time t− 1 be Pglobal(t− 1) and assume that, following the chosen
policies π j

(
Pglobal(t− 1)

)
, j = 1, 2, . . . , m, the agents made a decision and conducted corresponding

actions. Then, at time t, each of the agents is located in a new cell and following the observations from
these cells the global probability map Pglobal(t) is constructed. The value

Vπ(t) = DKL
(
Pglobal(t)

∣∣∣∣∣∣Pglobal(t− 1)
)
, (29)

is the actual information gain that was obtained by the actions defined by the policyπ = (π1,π2, . . . ,πm).
The defined decision-making process and control method are illustrated in Figure 2.
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Based on the policy π, at time t each agent makes a decision regarding its action. After the action
and the corresponding movement, the agent observes the environment, and following the obtained
sensor maps, the agent map and the global map are refined. In parallel, in order to control the agent’s
policy, a value of information gain Vπ(t) is calculated.

The calculated information gain Vπ(t) indicates the efficiency of the applied policy, and it is used
as a comparative measure of the agents’ decisions: its accumulated value up to some time T gets larger
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as the agents’ policies are more efficient in the sense of the quantity of the obtained information about
the targets’ locations. Accordingly, the best policy can be defined as follows:

π∗(T) = argmax
π

∑T
t=1Vπ(t), (30)

whereπ∗(T)denotes the best policy among all the combinations of the agents’ policies,π j, j = 1, 2, . . . , m,
that can be applied to the available global maps till time T.

The learning measure is also based on the actual information gain, but in this case, it is defined
over the actions a = (a1,a2, . . . ,am) that were chosen by the agents, namely:

Va(t) = DKL
(
Pglobal(t|a)

∣∣∣∣∣∣Pglobal(t|O)
)
, (31)

where Pglobal(t|a) stands for the global probability map obtained after performing the actions of all the
agents, and Pglobal(t|O) is the global probability map, if all the agents stay at their current locations.

The selection of actions is conducted as follows. Assume that at time t the agents are at
their locations and observe a certain global probability map Pglobal(t). Then, for each combination
a = (a1,a2, . . . ,am) of their actions and for the null action O = (O1,O2, . . . ,Om), global maps
Pglobal(t|a) and Pglobal(t|O) are obtained and the average information gain Va(t) for the combination a
is specified. The best combination of actions is defined by the maximal value Va(t), that is

a∗(t) = argmax
a

Va(t). (32)

It is clear that this is the brute force learning that requires a consideration of all possible
combinations of actions for all the agents with a large number of iterations. Thus, in practice, such a
policy cannot be performed for a large number of agents and actions. However, for a single agent,
this learning step can be performed in a relatively short time by available computation resources.

In the considered work, the brute force learning is used as a reference for the evaluation of the
suggested methods.

6. Numerical Simulations and Analysis

Numerical simulations were implemented using the Python programming language, executed
by a regular PC Intel I5 8265U processor. In all the cases, unless defined specifically, the run times
of the algorithms are indicated by the numbers of iterations. Also, in all the tables, the policies are
measured with respect to the defined approaches: expected information gain (EIG), center of view
(COV), and center of gravity (COG), as presented in Section 4.

In the simulations, the search is conducted over a gridded square domain of size n = nx × ny

cells, and it is assumed that each agent and each target can occupy only one cell in the domain. In the
simulations, different setups included different numbers m of the agents and different numbers l of the
targets. Also, we assume that there are two types of sensors while each agent A j is equipped with two
sensors ∼ j1 and ∼ j2 of different types with corresponding sensitivities λ j1 and λ j2. Both true alarms
and false alarms are sent with respect to the sensors’ types and are perceived separately by each of the
two sensor types.

Following the goal of finding such policies that result in a minimal time of detecting the last target
(see Equation (11)), we determined the maximal simulation time by

Tmax(p) = max
θ=1,2,...,ξ

Tθ(p), (33)

where, as indicated above, Tθ(p) is the time required to detect the target θ, θ = 1, 2, . . . , ξ, with
probability p. Then, the policies that result in a minimum time Tmax(p) given probability p are the best
policies. In the simulations, we used the probability p = 0.95.
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To reduce systematic errors, the results presented below were obtained by averaging the outcomes
of five repeated trials, each of which contained thirty sessions, executed with the same parameters,
with the same initial locations of both the searchers and the targets. The true and false alarms in the
sessions were generated by the same uniform distribution with a random seed for each trial.

6.1. Detection by a Single Agent

Let us start with a small illustrative example of detection by a single agent A1. In order to simulate
the brute force learning defined by the Equations (31) and (32), we considered a small domain of
the size n = 20× 20 = 400 cells. A broadcast of the false alarms was distributed uniformly over the
domain, and the frequency of sending false alarms from all 400 cells was 100 false alarms per second
for each type of sensor, that is, on average 1/4 alarms per second from each cell to each type of sensor.
The sensitivities of the sensors are λ11 = λ12 = 10.

In the first setting, the single agent A1 was detecting l = 3 targets located in the cells with
coordinates c1 = (11, 16), c2 = (0, 14) and c3 = (7, 1); the starting position of the agent was
c(0) = (20, 8). The results of the simulation trials are summarized in Table 1.

Table 1. Times required for the detection of the last among l = 3 targets with probability p = 0.95 by a
single agent implementing different policies.

Detection Policy
Detection Times

First Target Second Target Third Target Tmax (0.95)

Static agen 15 72 15 72
EIG 15 19 11 19

COV 8 18 15 18
COG 8 18 15 18

Brute force learning 10 17 14 17

As expected, the best result, which leads to the minimum of Tmax(0.95) is obtained by the brute
force learning, while the times obtained by the policies based on the expected information gain (EIG),
the center of view (COV), and the center of gravity (COG) are close to this best result. Notice that
since the detection is conducted by a single agent, the results obtained by the COV and COG policies
are equal.

Figure 3 illustrates the activity of a single agent detecting three targets using the center of view
(COV) policy.

Entropy 2020, 22, x FOR PEER REVIEW  12  of  19 

 

6.1. Detection by a Single Agent 

Let us  start with  a  small  illustrative  example of detection by  a  single  agent  𝔸 .  In order  to 

simulate  the brute  force  learning defined by  the Equations  (31)  and  (32), we  considered  a  small 

domain  of  the  size  𝑛 20 20 400   cells.  A  broadcast  of  the  false  alarms  was  distributed 

uniformly over the domain, and the frequency of sending false alarms from all  400  cells was  100 
false alarms per second for each type of sensor, that is, on average  1 4⁄   alarms per second from each 

cell to each type of sensor. The sensitivities of the sensors are  𝜆 𝜆 10. 
In  the  first  setting,  the  single agent  𝔸  was detecting  𝑙 3  targets  located  in  the  cells with 

coordinates  𝑐 11,16 ,  𝑐 0,14   and  𝑐 7,1 ; the starting position of the agent was  𝑐 0
20,8 . The results of the simulation trials are summarized in Table 1. 

Table 1. Times required for the detection of the last among  𝑙 3  targets with probability  𝑝 0.95 
by a single agent implementing different policies. 

Detection Policy 
Detection Times 

First Target  Second Target  Third Target  𝐓𝐦𝐚𝐱 𝟎. 𝟗𝟓  
Static agent 15  72  15  72 

EIG 15  19  11  19 
COV 8  18  15  18 
COG  8  18  15  18 

Brute force learning  10  17  14  17 

As expected, the best result, which leads to the minimum of  𝑇 0.95   is obtained by the brute 
force learning, while the times obtained by the policies based on the expected information gain (𝐸𝐼𝐺), 
the center of view (𝐶𝑂𝑉), and the center of gravity (𝐶𝑂𝐺) are close to this best result. Notice that since 

the detection is conducted by a single agent, the results obtained by the  𝐶𝑂𝑉  and  𝐶𝑂𝐺  policies are 
equal. 

Figure 3 illustrates the activity of a single agent detecting three targets using the center of view 

(𝐶𝑂𝑉) policy. 

 

Figure 3. Activity of a single agent detecting  three  targets setting.  (a)—The  targets’ positions  (red 

squares) and the agent’s initial location (green squire). (b)—100  false alarms per second for each type 

of sensor (white color indicates false alarm). (c)—The agent’s trajectory and final position. 

The values of the accumulated information gain (see Equation (30) 

𝑉 𝑇 ∑ 𝑉 𝑡 ,  (34) 

that characterizes the effectiveness of the policy for the simulated policies are presented in Table 2. 

The time  𝑇 17  is the minimal time of detecting the last target based on the brute force policy. 
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The values of the accumulated information gain (see Equation (30)

Vπ(T) =
∑T

t=1Vπ(t), (34)
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that characterizes the effectiveness of the policy for the simulated policies are presented in Table 2.
The time T = 17 is the minimal time of detecting the last target based on the brute force policy.

Table 2. Accumulated information gain of the detection of l = 3 targets by a single agent for the times
T = 10 and T = 17.

Detection Policy
Accumulated Information Gain Vπ(T)

T= 10 T= 17

Static agent 3.6 4.1
EIG 4.2 6.1

COV 4.4 6.4
COG 4.4 6.4

Brute force learning 4.6 6.8

With respect to the detection time, the maximal accumulated information gain Vπ(T) is obtained
by the brute force learning policy, while the EIG, COV, and COG policies result in the accumulated
information gains that are close to the maximum.

In the next simulation, a single agent A1 is detecting l = 5 targets located in the cells of the
following coordinates: c1 = (11, 16), c2 = (0, 14), c3 = (7, 1), c4 = (5, 3) and c5 = (11, 15); the starting
position of the agent is c(0) = (19, 8). The results of the simulation trials are summarized in Table 3.

Table 3. The times required for detection of the last among l = 5 targets with the probability p = 0.95
by a single agent implementing different policies.

Detection Policy
Detection Times

First Target Second Target Third Target Fourth Target Fifths Target Tmax(0.95)

Static agent 14 94 29 12 9 94
EIG 9 32 20 13 7 32

COV 14 28 22 10 8 28
COG 14 28 21 10 8 28

Brute force learning 14 25 17 18 11 25

Similar to the previous case, the best result is obtained by the brute force learning, while the times
obtained by the policies based on the center of view (COV) and the center of gravity (COG) are close to
this best result. However, for this case with larger number of targets, one can already notice that the
policy based on the expected information gain (EIG) is worse than the first three policies.

The relations between the values of the accumulated information gain, in this case, are again
similar to the case of the detection of three targets. The best result is provided by the brute force
learning policy. Then, the results of the COV and the COG policies obtain close to the brute force, while
the EIG policy is less effective. The worst results are obtained by the static agent.

6.2. Detection by Multiple Agents

Now let us consider detection by a group of agents that can share information and consequently
use probability maps of each other as well as a global probability map, which represents the knowledge
of the group.

Since in this case, we have not considered the brute force learning, in the simulations, we used a
greater domain of size n = 40× 40 = 1600 cells. As mentioned above, a broadcast of the false alarms
was distributed uniformly over the domain. However, the frequency of sending false alarms from
all 1600 cells was 400 false alarms per second for each type of sensor that is 1/4 alarms per second
on average from each cell to each type of sensor. It is assumed that each agent A j is equipped by the
sensors of two types. The sensitivities of the sensors of each type are denoted by λ j1 and λ j2.
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Recall that located in a cell, each agent can choose one of nine alternatives, while if the agent
is located at the border of the domain, then the number of alternatives is smaller due to boundary
conditions of the map.

In addition to the considered policies that are based on (i) expected information gain (EIG),
(ii) center of view (COV), and (iii) center of gravity (COG), in the following simulations, we also
distinguish decision-making under several scenarios:(i) when relying on the agent probability map
versus (ii) when relying on the global probability map, as well as (i) selection of actions by each agent
separately or (ii) selection of actions mutually by all the agents in the group. The use of the maps and
the selection of the actions for the different policies are summarized in Table 4.

Table 4. Decision-making and action choice in the group of m agents act in a domain with n cells.

Decision Making/Action Choice
Number of Alternatives

EIG COV COG

Agent map/agent action 9m mn m
Global map/agent action 9m mn 1
Global map/group action 9m nm 1

The table presents the fact that when applying the EIG policy, from its current cell the agent can
either move to one of eight neighboring cells or stay in its current location. When applying the COV
policy the agent can choose one of n cells as a desired center of view, and when applying the COG
policy the agent can consider only one cell as the COG cell.

For consistency, let us start with the same setting as in the previous simulations, namely by
detection of l = 5 targets located at the cells with coordinates c1 = (4, 34), c2 = (6, 23), c3 = (37, 3),
c4 = (32, 13) and c5 = (2, 5). These simulations are conducted for m = 2 agents, each of which is
equipped by two sensors with respective sensitivities λ j1 = λ j2 = 10, j = 1, 2. Initial positions of
the agents are c1(0) = (25, 3) and c2(0) = (20, 9). The results of the simulations when using different
policies are presented in Table 5 (cf. Table 3).

Figure 4 illustrates the activity of two agents detecting five targets when using the expected
information gain (EIG) with agent map/agent action policy.
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Figure 4. Activity of two agents detecting five targets setting. (a)—The targets’ positions (red squares)
and the agents’ initial locations (green squares). (b)—Map of 400 false alarm signals per second for
each type of sensor (white color indicates false alarm). (c)—The agent trajectories and final positions.

Results of simulations using different policies are presented in Table 5 (cf. Table 3).
As expected, the worst results are obtained by the static agents. The best results are provided by

the policies based on the center of view (COV) and center of gravity (COG). As indicated above, these
policies result in the same detection times. Finally, the EIG policy, as seen above, results in a longer
search than the COV and the COG policies, yet, better than the static agent policy.
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Table 5. The times required for the detection of the last among l = 5 targets with the probability
p = 0.95 by m = 2 agents implementing different policies.

Detection Policy
Detection Times

First Target Second Target Third Target Fourth Target Fifths Target Tmax(0.95)

Static agents 400 90 47 27 70 400

EIG
Agent map/agent action 95 37 51 18 60 95
Global map/agent action 143 123 53 28 109 143
Global map/group action 138 116 35 28 103 138

COV
Agent map/agent action 88 33 43 18 59 88
Global map/agent action 126 85 35 28 81 126
Global map/group action 108 85 37 32 61 108

COG
Agent map 87 33 43 18 59 87
Global map 126 89 35 28 81 126

In addition, notice that the decision-making policies that are based on the agent map provide
significantly better results than the policies based on the global map. In other words, in the detection
tasks, more information is not always better, unless actions between the agents can be synchronized.
The reason for this result is the following. Relying on a single global map, all agents aim at the same
preferable regions with the higher probabilities of detecting the targets while ignoring the regions with
the lower probabilities. However, because of the existence of both false positive and false negative
errors, the targets can appear in those ignored regions, to which the agents return only after the
unsuccessful detection in the preferable regions. All these movements waste a lot of time. In contrast,
while using the agent maps, each agent considers its local region and continues to the other regions
only after unsuccessful detection in its close neighborhood. In such a manner, the agents divide the
task and conduct the detection process in parallel in different regions. At the same time, the global
map is used for terminating the detection for all the agents.

Finally, notice that a better choice of actions is provided by applying the group action. However,
since it requires strong computation power without a significant improvement of the detection time,
this approach is less attractive for practical tasks.

The accumulated information gain for this simulated detection of l = 5 targets by m = 2 agents is
presented in Table 6; the CPU times required for such detection are presented in Table 7.

Table 6. Accumulated information gain in the detection of l = 5 targets by m = 2 agents for the times
T = 75 and T = 100.

Detection Policy
Accumulated Information Gain Vπ(T)

T= 75 T= 100

Static agents 4.4 6.5

EIG
Agent map/agent action 9.9 13.6
Global map/agent action 5.7 7.9
Global map/group action 5.8 8.7

COV
Agent map/agent action 10.8 14.2
Global map/agent action 8.4 11.7
Global map/group action 9.2 12.6

COG
Agent map 10.9 14.2
Global map 8.4 11.7

The obtained results support the previous observations. The higher accumulated information gain
is obtained by the COV and the COG policies, the EIG policy obtains the worse results, and the lowest
gain is obtained by the group of static agents. Also, better results are achieved by the decision-making
policies based on the agent maps, and the better choice of actions is provided by the use of group action.

In order to represent the relation between the detection efficiency and the sensors’ sensitivity,
a similar detection scenario was simulated for the agents that are equipped by sensors with different
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sensitivities λ1k = 12 and λ2k = 8, k = 1, 2. Table 8 presents the detection times Tmax(0.95) and that
accumulated information gains Vπ(100) for this scenario.

Table 7. CPU time (sec.) for target detection with probability p = 0.95 of l = 5 targets by m = 2 agents.

Detection Policy CPU Time (sec)

Static agents 240

EIG
Agent map/agent action 75
Global map/agent action 180
Global map/group action 850

COV
Agent map/agent action 220
Global map/agent action 350
Global map/group action 3700

COG
Agent map 25
Global map 32

Table 8. Detection times and accumulated information gain in the detection of l = 5 targets by m = 2
agents with different sensor sensitivities λ1k = 12 and λ2k = 8, k = 1, 2.

Detection Policy Tmax(p= 0.95) Vπ(T= 100)

Static agents 300 5.1

EIG
Agent map/agent action 81 13.6
Global map/agent action 144 6.2
Global map/group action 129 9.0

COV
Agent map/agent action 63 12.9
Global map/agent action 109 11.7
Global map/group action 96 12.4

COG
Agent map 67 12.9
Global map 109 11.9

A comparison of the obtained times and information gains with the results presented in Tables 6
and 8, respectively, show that in general, the change of the sensors’ sensitivities preserves the already
considered trends in the efficiencies of the policies. At the same time, it stresses an advantage of the
group action relative to the actions by each agent separately.

Finally, let us consider the dependence of the accumulated information gain on the detection
time. An example of such functions is shown in Figure 5, where we used the results of the previous
simulation of detecting l = 5 targets by m = 2 agents with different sensors sensitivity λ1k = 12 and
λ2k = 8, k = 1, 2, following the COV policy with agent action choice.
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Figure 5. Dependence of the accumulated information gain Vπ(T) on the detection time T for the COV
policy with agent action choice; l = 5 targets, m = 2 agents, and sensors’ sensitivities λ1k = 12 and
λ2k = 8, k = 1, 2.



Entropy 2020, 22, 512 17 of 19

It is seen that in the beginning of the search process, the policy based on the agent map accumulates
information faster than the policy based on the global map. However, as the search process continues,
the accumulated information gain obtained by the global map policy converges to a value which is
significantly greater than the one to which the agent map policy converges.

For validation of the presented results, further simulations were conducted for different settings.
The obtained detection times and information gains demonstrate the same trends of the policies’
efficiency. In addition, it was found that as the number of the agents gets larger, the difference between
the best COV policy and the nearly best COG and EIG policies is increasing.

7. Discussion

The paper presents three heuristic techniques for navigation of autonomous agents searching
for hidden targets in the presence of false positive and false negative errors. Two of these heuristics
are based on the expected information gain calculated over the local neighborhood of each agent
(EIG policy) or relative to the center of view (COV policy), and the third heuristic uses the center of
gravity (COG policy) of the targets’ location probabilities. In order to make decisions regarding the
next movements, the agents use either their own probability maps or a global probability map.

The simulations show that in short-term detection processes, the policies based on the agent map
outperform the policies based on the global map, both while the agents’ movements are not centrally
synchronized (individual decision-making) and while the agents’ actions are definitely synchronized
(collective decision-making in the group). However, in the long-term detections, the accumulated
information gain during the search process when using the global map policy was significantly
larger than the accumulated information gain during the search process when using the agents’ maps
policy. Probably, the reason for such a result is the following: while using the global map, the agents
calculate the information gain also taking into account the not relevant information based on the false
alarms, and while using the agents’ maps the influence of such alarms is lower and, consequently,
the accumulated information gain is lower as well.

Detection using the EIG policy demonstrated lower efficiency (in terms of detection time) than
the COV and COG policies while using both the agents’ and the global probability maps. The main
reason for such a result is the following. On the one hand, the EIG policy does not always recognize
what should be the next step since the differences in the expected information gain obtained by staying
in the current cell and by moving to a neighboring cell are extremely small and cannot be used for a
reasonable selection of the actions. On the other hand, in order to reveal the center of view, the COV
policy requires the agent to check all the cells in the domain and, consequently, succeeds to find a
significant change in the expected information gain.

While using the sensors with equal sensitivities, the COV and COG policies result in a close or even
equal detection times. Therefore, since the COG policy has an extremely lower computational complexity
than the COV policy, it should be preferable when the agents are equipped with similar sensors.
However, if the sensitivities of the sensors are different, then the COV policy is significantly better.

As expected, a decision-making heuristic which relies on group actions leads to better performance
than the one which relies on single agents’ actions, yet, the first heuristic requires much greater
computation efforts. In order to shorten the running time, the number of calculations can be decreased
by using some probability threshold. Thus, at each step of the computation, the cells with probabilities
lower than the threshold are ignored, thus the number of calculations is reduced without significantly
influencing the quality of the search results.

Finally, notice that the results obtained when using the presented techniques are close to the
results obtained by the optimal brute-force learning method. Such a comparison both validates
the suggested methods and demonstrates that, for the detection over large domains, where due to
intractable computation complexity the brute force learning cannot be used, these methods might
provide sub optimal results by reasonable computation efforts in reasonable running time.
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8. Conclusions

In the paper, we considered the problem of detection of multiple targets by the group of mobile
agents that directly extends the classical Koopman search problem [2]. In contrast to many known
algorithms, we addressed detection with both false positive and false negative detection errors.

The suggested solution implements three different levels of the agent’s knowledge about the
targets’ locations: information that is available to the group of agents, information available to a single
agent, and information obtained by a single on-board sensor of an agent.

For these settings, we considered three decision-making policies based on different considerations
of the expected information gain, which can be obtained by the agent in its next step. Namely,
the policies considered a local neighborhood of the agent, a location of the “center of view” from
which the agents can obtain maximum information using their sensors, and a location of the “center of
gravity” of the targets’ probability map.

The results obtained using the suggested policies were compared against the results provided by
the worst policy, in which the agents are static, as well as the best policy of the brute force learning
when tractable.

Simulations of the suggested solutions demonstrate that the best results among the constructed
policies are obtained by a policy which is based on the center of view. Close results are provided by the
policy based on the use of the center of gravity, and the worse results, yet sometimes satisfactory, were
achieved by the policy based on the expected information gain over a local neighborhood of the agent.

In addition, it was found that in the considered problem including both false positive and false
negative detection errors, decision-making policies based on the agent maps provide significantly
better results than the policies based on the global map.

The best search policy under the considered settings was obtained by relying on group actions,
at the expense of having a strong computation complexity, without significantly improving the
detection time relative to the suggested heuristics. This observation makes this approach less attractive
to implement.

Finally, it was demonstrated that the policies based on the agent map are more effective for the
detection in a given short period of time, while in a long-term detection, the policies based on the use
of a global map result in better outcomes in terms of accumulated information gain.

The constructed algorithms and software can form a basis for the further development of the
proposed methods as well as other methods related to probabilistic search and detection. These
methods can be used directly for practical applications in various fields, such as smart cities, military
applications, and autonomous vehicles.
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