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Summary 

Changes in stochastic processes often affect their description length, and reflected by their stochastic complexity 
measures. Monitoring the stochastic complexity of a sequence (or, equivalently, its code length) can detect process 
changes that may be undetectable by traditional SPC methods. The context tree is proposed here as a universal 
compression algorithm for measuring the stochastic complexity of a state-dependent discrete process. The advantage of 
the proposed method is in the reduced number of samples that are needed for reliable monitoring. 
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1.    INTRODUCTION 
 
Most statistical process control (SPC) methods use a Shewhart type control chart to monitor 
attributes or variables (e.g., mean and standard deviation) of the controlled process. The observed 
statistics are often assumed to be independent and identically distributed (i.i.d.) and, in many cases, 
also normally distributed. As evidenced by the wide spread implementation of the Shewhart control 
charts, this tool has proved to be very useful in practice. 
 

Nonetheless, there are practical situations where the i.i.d. and the normality assumptions are grossly 
inaccurate, and can lead to false alarms or to late detection of faults. For example, many industrial 
processes are being controlled by a feedback controller that takes an action whenever the process 
deviates from a pre-specified set-point. These actions introduce dependency among consecutive 
observations and deviation from the normality assumption. 
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The need to find substitutes for the traditional Shewhart control charts has been recognized in the 
literature. Model specific methods, such as the EWMA, the exponential weighted moving average, 
assume a known underlying time series model and need relatively large amounts of data to produce 
accurate monitoring. These methods often can not capture more complex process' dynamics, such as 
the ones that are modeled by Hidden Markov Models (HMM). Model generic methods, such as the 
ITPC (Alwan et al., 1998) and the CSPC (Ben-Gal et al., 2003), rely on asymptotic properties based 
on information theory as a replacement for explicit distribution assumption on the process 
characteristics. In these methods, as well, large amounts of data are needed either for deriving an 
empirically based control limit, or for using an analytically derived control limits that are based on 
asymptotic considerations. 
 

The stochastic complexity of a sequence is a measure of the number of bits needed to represent and 
reproduce the information in a sequence. This statistic is commonly used as a yardstick for 
choosing between alternative models for an unknown time series. 
 

Universal coding methods have been developed to compress a data sequence without relying on 
prior assumptions regarding the properties of the data generating mechanism. Universal coding 
algorithms – typically used for data compression – model the data for coding in a less redundant 
representation. The size of the compressed data is a practical measure of the stochastic complexity 
of the process. Some universal algorithms are known to have asymptotic performance as good as 
the optimal non-universal algorithms. This means that for long sequences, the model provided by 
the universal source behaves like the “true” unknown model for all tasks one wishes to use it for, 
such as coding, prediction, and decision making in general. Here we extend this list of tasks also to 
statistical process control.  
 

In this paper we use Rissanen (1983) context tree algorithm, which is a well known universal 
coding model, for measuring the stochastic complexity of a time series. The advantage of this 
specific algorithm, in comparison to many other universal algorithms, is that it has been known to 
have a quick non-asymptotic convergence rate (Rissanen, 1983, Ziv 2002). Thus, it can be used to 
compress even relatively short sequences, like the ones often available from industrial processes.  
 

The key idea in this paper is to monitor the stochastic complexity (or, equivalently, the code length) 
of a data sequence. The context tree model is used as the universal model for measuring the 
stochastic complexity of a state dependent discrete process. The advantages of this method are in 
the relatively small number of samples that are needed for reliable monitoring and in its 
computational tractability. 
 
 
2.    THE  CONTEXT  TREE  METHOD 
 
Following the notation in Ziv (2000, 2002), let us consider a discrete sequence emitted by a 
stationary source with N+1 symbols 

01
0 ,,, XXXX NNN K+−−− ≡ , where each symbol iX  belongs to 

an alphabet A of cardinality A . In the estimation problem, one has to estimate )|( 0
1 NXXP −

, i.e., 

the unknown conditional probability distribution of 
1X  given the sequence 0

NX −
. 

  

Consider the class of universal conditional probability measures that count the recurrence of the 
longest suffix of 

1X  in 0
NX −

. The suffix – 0

)( 0
0 NXK

X
−−

 – is a subsequence of 0
NX −

 called also as the 
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context, where K0 is itself a function of the observed symbols often satisfying NXK N <<− )(
0

0
 (Ziv, 

2000). 
  

In the context tree, ( )SST Θ≡Τ ,  with a structure S and parameters 
SΘ , a context is represented by 

the path of arcs starting at the tree root until reaching a leaf (an external node). A context is 
represented in the tree in reversed order with respect to the order of observance.  Thus, deeper 
nodes in the tree correspond to previously observed symbol sequences in the process. The lengths 
(depth) of various contexts (branches in the tree) are not necessarily equal. The conditional 
probabilities for symbols are estimated given every context in the tree and are given in the tree 
nodes, as demonstrated in Figure 2. Given a context tree, compression can be obtained as a result 
of the recurring patterns in the data. Each node in the tree is related to a specific recurring context 
(sub-sequence). The original sequence can be coded by the sub-sequences in the context tree. A 
sequence that does not belong to the same class of sequences from which the context tree was 
generated (trained) is expected to obtain a lower compression rate with respect to sequences that 
belong to that class (for further details on the context trees see also Rissanen, 1983, Ziv, 2000, 2002 
and Ben-Gal et al., 2003). 
 
 
3.   SPC  FOR  THE  STOCHASTIC  COMPLEXITY  BASED  ON  THE  CONTEXT  TREE  

MODEL 
 
The proposed SPC procedure has two stages. First, in the training stage a "reference" tree is trained 
from "in-control" data, 0

1+−NY . Then, in the monitoring stage sequences are being compressed based 

on the reference tree and their compression rate is plotted on a control chart against predefined 
control limits. 
  

Three parameters have to be set for developing an SPC procedure that monitors the stochastic 
complexity of a sequence: N, the sequence length on which the reference context tree is trained; 

maxK , the maximal depth of the initial context tree that is later trimmed to obtain the reference 

context tree; and N̂ , the sequence length for the monitored sequences for which the compression 
statistic is computed based on the reference context tree. According to Ziv (2002), one can set the 
depth of the context tree such that 

LAKXXP 10
)1 )|(

max
≥−

, where 1
)(
−

LA  is assumed to be the smallest 

probability of a symbol to occur at any context in the tree. The value of L effectively determines the 
resolution of the probabilities in the tree, and the minimal probability change that is detectable by 
the tree. The other parameters satisfy: 
 

3
max

ˆ KN ≥  and  3ˆ LANN > . (1) 
 

Thus, the order for defining the parameters is NNKL →→→ ˆ
max . 

 

The stochastic complexity of any monitored sequence NX
ˆ

1
 that is prefixed by a context 0

1+−DX , and 

generated by the same source that generated the training sequence 0
1+−NY  can be measured by the 

universal algorithm based on the reference context tree. There exists a recursive method to calculate 
the stochastic complexity measure (Ziv, 2000, 2002): 
 

( )( ) ( ) ( )( )( )∑∏
=

−
−

=

−
−+− −=
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where ND ˆ<  is chosen to comply with the initial conditions and ( ) ( )Τ≡ −
− ,, 1

11
j

Djj XXKjK . The first 

equality relies on the probability multiplication chain rule and the second equality relies on the 
dependences found by the tree structure. The stochastic complexity of the monitored sub-sequence 
is measured by the sum of the negative log probabilities of symbols given their context in that 
specific sub-sequence of size N̂ . The specific context ( )jK1

 of the j-th symbol depends on the 

previous symbols (including those in the prefix 0
1+−DX  to that sub-sequence) and the parameters of 

the tree (obtained from the training sub-sequence). 
 

The context tree T with S  leafs can be represented by a multinomial distribution ( )( )1

1
|Pr −

−
j

jKjj XX . 

The conditional probabilities of symbols, ( )( )1

1
|Pr −

−
j

jKjj XX , are independent when the context tree is 

trained on a sufficiently long sequence 0
1+−NY , SN >> . In such case, the expression is 

approximately the sum of i.i.d. random variables.  The value of the stochastic complexity of the 

sequence NX
ˆ

1
 prefixed by the sequence 0

1+−DX  is a random variable with N
S  possible discrete 

values. For a sufficiently large N̂ , the distribution of the stochastic complexity can be approximated 
with the Central Limit Theorem (Ziv, 2000, 2002). 
  

Following the above results, we propose the following scheme for an SPC based on the stochastic 
complexity of the monitored process as a measure for its stability: 
 

• Use a sequence of observation 0
1+−NY  from the in-control process to construct a reference  context 

tree ( )SST Θ≡Τ , . 
  

• From the multinomial distribution. ( )( )1

1
|Pr −

−
j

jKjj XX , of symbols represented in Τ  calculate the 

first two moments of the distribution of the stochastic complexity. These will be used later for 
computing the control limits either empirically or by methods explained in Ben-Gal et al., 
(2003). 

  

• Denote by 1q  and 2q  the required False Alarm Rates (FARs) with respect to the upper control 

limit (UCL) and the lower control limit (LCL). Use a control charts with 00135.021 == qq  to 
comply with traditional charts with a type-I probability error of 0.27%. The density of the 
stochastic complexity is typically a-symmetric, so a correction may be needed for the control 
bounds. 

 

• For every monitored sequence of length N̂  use the reference context tree to compute its 
stochastic complexity. Insert a point in the control charts and monitor it with respect to the UCL 
and LCL. 

 
 
4.   EXAMPLE:   SPC  FOR  A  SINGLE  STAGE  PRODUCTION  SYSTEM 
 
Following the example in Ben-Gal et al. (2003), consider a system of two machines: M1, M2 
separated by a finite-capacity buffer B of size 3. Machine M2 attempts to process a part whenever it 
is not starved, i.e., whenever there are parts in its input buffer. Machine M1 attempts to process a 
part whenever it is not blocked.  Figure 1  presents the state transition diagram for the buffer queue 
where the in-control production probabilities of the machines are, respectively, 9.01 =p  (the 
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transition probability from an empty buffer to a buffer with one part) and 8.02 =p  (the transition 
probability from a full buffer to a buffer with two parts) respectively. Monitoring the buffer size at 
regular intervals results in a discrete sequence of buffer states. For illustration purposes we 
simulated the queues' state machine to generate a sequence of length 1,000,000: 
 

 

 
 

Figure 1.  The  state  transition  diagram  of  the  queue  in  the  "in-control"  production  system 
 
 

Figure 2 presents the "in-control" distribution of buffer levels in the referenced process, 
( )1|Pr −jja XX , in the form of an analytical context tree Ta. Note that it is a single-level tree with 

4=S  contexts and a symbol set of size 4=A . The root node presents the system steady-state 

probabilities and the leaves presents the transition probabilities given the current state: 
 
 

(0.0231,0.2600,0.5852,0.1317)

(0.1,0.9,0,0) (0.08,0.74,0.18,0)

0 1

(0,0,0.8,0.2)

2

(0,0.08,0.74,0.18)

3

 
 

Figure 2.  In-control  context  tree,  Ta,  based  on  the  "in-control"  process  with  8.0,9.0 21 == pp  

 
 

Figure 3  presents the modified distribution of buffer levels ( )1|Pr −jjb XX  by a second context 

tree, Tb. The modified process was generated by selecting new production 
probabilities: 9.0,7.0 21 == pp . The tree is used for simulating the "out of control" sequences. As may 
be well-recognized, the tree shows the probability differences. Note that in this case the presented 
distributions in both trees, Ta and Tb, can be computed analytically by the first-order Markov 
process in  Figure 1.  For validation purposes, we also estimated the parameters of the context tree 
from a sequence of observations generated by the modified process, which turned out to be accurate 
within two decimal digits to those represented in  Tb. 
  

(0.2316,0.6006,0.1557,0.0121)

(0.3,0.7,0,0) (0.27,0.66,0.07,0)

0 1

(0,0,0.9,0.1)

2

(0,0.27,0.66,0.07)

3

 
 

Figure 3.  Context  tree,  Tb,  for  the  modified  process  parameters  with  9.0,7.0 21 == pp  
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In this example, the (analytic and empirical) context trees are of depth 2. Following (1) it leads to 
monitored sequences of size 32ˆ ≥N . Accordingly, we computed the stochastic complexity of two 

monitored sequence of lengths )16 and( 8ˆ =N  based on (2). The control limits were determined to 
be the upper and lower 1.0% percentile. The stochastic complexity of the lower control limits was 
found to be 3.3627 (8.765) and for the upper control limit 14.8794 (25.5307), respectively, for the 
monitored sequence length 8 (16). Note the doubling the sequence length roughly doubles its mean 
stochastic complexity. The statistics from 50,000 monitored sequences of the out-of-control process 
resulted in detecting 16.76% (22.41%) as out of control.  Figure 4  presents a typical example for 
monitoring the stochastic complexity of sequence of length 16. The process is "in control" for the 
first 50 monitored sequences and deviates of control (via the process described by  Figure 3)  
starting from monitored sequence 51. As we can see, the  average run length  for the in control 
process tends to infinity: ARLin-control→∞. The process change is detected in this example almost 
immediately with an ARLout-of-control→4.5. In comparison and as demonstrated in Ben-Gal et al. 
(2003), such a change in a state-dependent process can not be captured by traditional SPC charts, 
including charts of known SPC methods that are used for dependent data. 
 

 

 
 

Figure 4: A SPC for the stochastic complexity of sequences of length 16;  
the  process  changed  at  the  51th  sequence 

 
 
5.   CONCLUSIONS 
 
In this paper we proposed an SPC method based on the stochastic complexity of the monitored 
process. The stochastic complexity measures rely on a context tree as a universal model that can 
capture complex dependencies in the data. In the given example, the stochastic complexity measure 
turned out to be sensitive to process changes.  
 

The advantages of the proposed method are two-fold: i) it is generic and suitable for many types of 
discrete processes with complex and unknown dependencies; ii) it is suitable for relatively short 
data sequences due to the context tree's convergence properties. The viability of the proposed SPC 
method and its advantages were illustrated by a numerical experiment. 
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