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a b s t r a c t 

This paper proposes an ordinal decision-tree model, which applies a new weighted information-gain ra- 

tio (WIGR) measure for selecting the classifying attributes in the tree. The proposed measure utilizes a 

weighted entropy function that is defined proportionally to the value deviation of different classes and 

thus reflects the consequences of the magnitude of potential classification errors. The WIGR can be used 

to select the classifying attributes in decision trees in a manner that reduces risks. The proposed ordinal 

decision tree is found effective for classification problems in which the class variable exhibits some form 

of ordinal ordering, and where dependencies between the attributes and the class value can be non- 

monotonic. In a series of experiments based on publicly-known datasets, it is shown that the proposed 

ordinal decision tree outperforms its non-ordinal counterparts that utilize traditional entropy measures. 

The proposed model can be used as a part of an expert system for ordinal classification applications, 

such as health-state monitoring, portfolio investments classification and performance evaluation of ser- 

vice systems. 

© 2020 Elsevier Ltd. All rights reserved. 
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. Introduction 

Ordinal classification problems are often treated as multi-class

lassification problems, in which the target class exhibits some

orm of ordinal ordering. These problems commonly address real-

orld applications for which expert-systems and machine-learning

lgorithm were developed, such as automatic classification of

everity of diseases ( Nabi et al., 2019 ), portfolio investment by

xpected returns ( Altuntas and Dereli, 2015 ) or performance pre-

iction of queueing systems ( Senderovich et al., 2015 ). In these

roblems, it is important to take into account the value devi-

tion among the different classes, since the magnitude of po-

ential classification error could results in critical consequences

 Gaudette et al., 2009 ), such as the detection of the level of

ongestive heart failure ( Masetic and Subasi, 2016 ) or prediction

f load level in emergency services ( Senderovich et al., 2015 ;

ouroo et al., 2017 ; Sanit-in and Saikaew, 2019 ). Most of the ordi-

al classification methods in the literature assume monotonic be-

avior, according to which the class values follow a monotonicity

onstraint with respect to the classifying attributes ( Marsala and

etturiti, 2013 ; Ben-David, 1995 ; Ben-David et al., 1989 ; Zhu et al.,

017 ; Verbeke et al. , 2017 ). Such a constraint implies that the
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nfluence of an attribute on the class, either increases or de-

reases throughout the attribute range. Thus, these methods as-

ume that the classifying attributes also follow some natural order-

ng, which is not necessarily true in many real cases. Accordingly,

hese approaches cannot deal with categorical attributes, nor with

ttributes that affect the class variable non-monotonically in some

ange sections. In fact, non-monotonic dependencies between ex-

lanatory attributes and target class are very common in many

rdinal problems, for example, on medical application of conges-

ive heart failure identification the ordinal attribute “blood pres-

ure” may have a non-monotonic effect on the level of congestive

eart failure (e.g., extreme blood pressure values, either high or

ow, may lead to high level of congestive heart failure while un-

er “regular” blood pressure the level of congestive heart failure

ay be low). Another example can be prediction of load level in

ervice system, in which the ordinal attribute “weather forecast”

ay have a non-monotonic effect on the load of a service sys-

em (e.g., extreme weather conditions, either hot or stormy, may

ead to lower loads while under “regular” conditions the load may

e higher). Specifically, the monotonicity assumption hinders the

se of decision trees, in which categorical attributes are commonly

sed. Decision-tree algorithms are known to be efficient and inter-

retable models for representing classification problems. In most

f these algorithms, including ID3, C4.5, and Random Forest (see

hiju and Remya, 2014 ; Fernández-Delgado et al., 2014 ), Shannon’s

ntropy ( Shannon, 1948 ) plays a fundamental role in attribute
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selection. In the context of classification problems, Shannon’s en-

tropy is often used to measure the quantity of information that a

classifying (explaining) attribute provides about the class variable.

Note, however, that Shannon’s entropy does not reflect well ordi-

nal class variables, since the entropy solely depends on the distri-

bution of possible outcomes rather than the outcome values and

their associated effects. This implies, for example, that a distri-

bution of four symbols in a class variable that represents an ex-

pected return on investment and given by the vector (30%, 10%,

20%, 40%), results in the same entropy measure as the distribu-

tion (10%, 30%, 40%, 20%), although the ordinality of the two vec-

tors and therefore their potential effects on the expected return

and the associated risks might be significantly different, as seen

in the running example presented below. Several researchers have

extended entropy-based algorithms to take into account the ordi-

nal behavior of the class, but most of them assume monotonic-

ity not only of the class variable but also of the explaining at-

tributes. Ben-David (1995) introduced a non-monotonicity index

defined as the ratio between the actual number of non-monotonic

branch-pairs of a decision tree and the maximum number of pairs

that are non-monotonic with respect to each other in the same

tree. Potharst and Bioch (20 0 0) proposed an algorithm for repair-

ing non-monotonic decision trees for multi-attribute classification

problems with several linearly ordered classes. Other researchers

proposed tree-induction algorithms to deal with the monotonicity

of data ( Cao-Van and Baets, 2003 ; Potharst and Feelders, 2002 ).

Hu et al. (2010) generalized Shannon’s entropy to address crisp

ordinal classification as well as fuzzy ordinal classification and pro-

posed indices to evaluate the degree of monotonicity between at-

tributes and the decision in the context of ordinal classification.

Hu et al. (2012) designed a decision-tree algorithm based on a new

measure of attribute quality called rank mutual information (REMT)

to build a monotonically-consistent decision tree when the train-

ing samples are monotonically consistent. Qian et al. (2015) pro-

posed a so-called “fusing monotonic decision trees” (FREMT) algo-

rithm which combines decision trees with an ensemble-learning

technique. The method obtained an improved classification perfor-

mance. Cardoso and Sousa (2011) surveyed different approaches for

measuring the success of an ordinal classification, including mea-

sures that are applied in the numerical study of the current re-

search. 

Despite the large body of research on different ordinal classi-

fiers, there is no comprehensive study that compares their per-

formance. Moreover, it is not clear whether these ordinal mod-

els outperform their non-ordinal sibling classifiers. In fact, Ben-

David et al. (2009) showed that the ordinal classifiers were statis-

tically indistinguishable from their non-ordinal counterparts since

the monotonicity assumption led to high levels of non-monotonic

noise data that resulted in a poor classification accuracy. 

In this research we propose an extended ordinal decision-tree,

which is based for simplicity reasons on the well-known C4.5 al-

gorithm but does not depend on any monotonicity constraint of

the classifying attributes. We use a risk-based information gain

ratio as an attribute selection criterion for ordinal classification

tasks. The concept of using a risk-based entropy measure originates

from the portfolio management literature (e.g., see Philippatos and

Wilson, 1972 ; Dionisio et al., 2006 ; Ormos and Zibriczky, 2014 ;

and Mahmoud and Naouib, 2017 ). We conduct a numerical study,

which is based on well-known ordinal datasets with a high level

of non-monotonic noisy data. Similarly to Ben-David et al . (2009) ,

the performance of the proposed algorithm is compared to that

of its non-ordinal counterpart, namely the conventional C4.5 al-

gorithm itself. The results show that the proposed tree-generation

algorithm outperforms the non-ordinal algorithm for most of the

datasets. Thus, the contribution of this work is three-fold. First,

it extends the use of Information-Gain measure, which is based
n the classic definition of entropy as measure of uncertainty, to

eal with ordinal targets taking into account the value deviations

f different tar get classes. Note that Information-Gain is a centric

easure in many experts and intelligent systems including ones

hat are based on Decision Trees, Bayesian models, Reinforcement

earning and more. Second, the proposed measure is practically

sed in this study for selecting branching (classifying) attributes in

ecision trees over both ordinal and non-ordinal categorical vari-

bles, and shown to yield a very different outcomes from the con-

entional non-ordinal approaches. Finally, the study presents a sys-

ematic experimental analysis framework and demonstrates the su-

eriority of the proposed algorithm relative to its non-ordinal ver-

ion over many publically-known ordinal datasets that are related

o intelligent systems. 

This research is novel both in its goal of developing an or-

inal decision-tree model, which is based on a new weighted

nformation-gain ratio (WIGR) measure. This measure utilizes a

eighted entropy function that is defined proportionally to the

alue of different target classes, and thus reflects consequences of

he magnitude of potential classification errors. In comparison to

onventional information-gain measures, the proposed WIGR can

e used to better select the classifying attributes in a decision tree

n a manner that reduces risks in ordinal cases. Furthermore, the

roposed ordinal decision-tree does not depend on any monotonic-

ty constraint of the classifying attributes. Thus, it can be used as

art of an expert and intelligent systems for ordinal classification

roblems, in which the magnitude of the classification error can

e critical, and non-monotonic dependencies between the explana-

ory attributes and the target class are very common. Such systems

an be developed to support smart application with ordinal targets,

uch as the identification disease’s severity, classification of portfo-

io investments by expected returns and performance prediction of

ervice systems. 

The rest of the paper is organized as follows. Section 2 intro-

uces the concept of using entropy as a risk measure, presents

he challenge in using an entropy measure for ordinal classifica-

ion and proposes an extended information-gain measure. The nu-

erical experiments are then presented in Section 3 . Finally, the

onclusions and future work directions are discussed in Section 4 . 

. Methodology 

.1. Risk-based entropy 

Several studies have used the degree of entropy uncertainty

s a risk measure in portfolio management. Philippatos and Wil-

on (1972) presented the case wherein two securities have the

ame entropy, but different levels of risk. They were among

he first researchers who applied entropy to the study of port-

olio selection. The authors emphasized the difference between

he entropy and the variance, claiming that while the en-

ropy depends on the number and distribution of states in

 probability distribution (known as the second property of

hannon and Weaver (1949) ), the variance depends on the

tate values. They found that the entropy provided more gen-

ral results and sometimes outperformed the standard devia-

ion when measuring risk, since the entropy is a nonparametric

easure. Dionisio et al. (2006) , Ormos and Zibriczky (2014) and

ahmoud and Naouib (2017) showed that the entropy is sensitive

o diversification and uses information on the probability distribu-

ion and as result is efficient for measuring risk in portfolio man-

gement cases. As such, in general terms it can measure uncer-

ainty better than the variance. Nawrocki and Harding (1986) ex-

ended the entropy measure and proposed a weighted entropy as

 measure of investment risk, to deal with a case of two different

ecurities holding the same entropy values but different risk levels.
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Table 1 

Revenue return probabilities of two different investment portfolios with different expected returns but with the same entropy. 

Investments State i 

Hard Loss (40% return) Loss (80% return) Medium Profit (120% return) High Profit (180% return) Entropy Expected Return 

Investment #1 p i 0.3 0.1 0.2 0.4 1.85 116% 

Investment #2 p i 0.1 0.3 0.4 0.2 1.85 112% 

 

n  

t  

b  

a  

b  

a  

T  

t  

s  

c  

t  

i  

m  

a  

t

2

 

t  

d  

c  

i

H  

w  

t  

i  

w  

c

 

t  

w  

t  

c  

p  

i  

i  

p

 

m  

m  

s  

B  

t  

#  

r  

w  

t  

t  

r

 

H  

u  

p

H

 

w  

p  

i  

t  

m  

l  

o  

N  

c  

c  

s  

r  

i  

i  

s  

m  

c  

m  

a  

o

2  

d

 

t  

r  

C  

1  

w  

t  

s  

F  

2

 

d  

g  

t  

v  

p  

w  

(  

p  

n  

p  

c  

s  

a  

a  

t  

u  

w  
Following on from the above literature, this research proposes a

ew, state-value, weighted-information gain-ratio which is an ex-

ended measure of the conventional information-gain ratio (used

y many tree-generation algorithms including the C4.5 which is

nalyzed in this work). The proposed measure relies on a risk-

ased entropy, which is better suited to loss-oriented and risk-

verse tasks than the variance or conventional entropy measures.

he latter do not take into consideration the ordinal properties of

he class variable when selecting a branching attribute in a deci-

ion tree. In other words, when classifying an ordinal target, the

lassic information metrics do not prefer attributes that partition

he data into bins in which the values are more densely distributed

n adjacent bins. In contrast, as seen next, the proposed entropy

easure takes into consideration the classification expected costs

nd rewards when selecting a branching attribute in a decision

ree. 

.2. Entropy measure of ordinal variables 

Shannon’s entropy is a mathematical property that measures

he randomness and the uncertainty about the outcome of a ran-

om variable. The lower the entropy, the more predictable the out-

ome of the random variable is. This conventionally-used entropy

s given by 

 = −K 

n ∑ 

i =1 

p i log ( p i ) , (1)

here p i is the probability mass function of the i th outcome of

he class variable and K is considered as a constant that normal-

zes the information units according to the used logarithm base,

here K = 1 and logarithm to the base 2 are often used by the

onventional entropy that is then measured in bits. 

Note that the conventional entropy does not consider the ac-

ual values of the random variable, nor the ordinal form associated

ith it. The entropy treats each outcome as a unique probabilis-

ic event. Thus, different outcomes that have the same probability

ontribute equally to overall entropy measure, regardless of their

otential effect on the expected value. In particular, the entropy

gnores the potential costs or rewards that are associated with var-

ous outcomes in a risk-management case, such as the case of a

ortfolio management decision making. 

Let us illustrate the challenge of using a conventional entropy

easure when considering a running example of a portfolio invest-

ent. Table 1 presents two investments, #1 and #2, that have a

imilar probability distribution, yet with different associated risks.

oth investments yield the same entropy value of 1.85 bits, al-

hough most investors will prefer investment #1 over investment

2 since the probability for a "High Profit" is higher (40% vs. 20%)

esulting in a higher expected return (1.16 vs. 1.12). Later however,

e show that when using the proposed weighted information gain,

here is an advantage for an investor to select Investment #2 from

he perspective of prediction, decision-making and the weighted

isk. 

Awared about the above-mentioned limitation, Nawrocki and

arding (1986) proposed a weighted entropy measure that can be

sed to reflect the risk level of each outcome in addition to its
robability distribution, i.e., 

 = −
n ∑ 

i =1 

k i p i log ( p i ) . (2) 

The authors considered two forms of the state-dependent

eights k i that can be also applied for illustration purpose to the

rotfolio-management example in Table 1 . Namely, while compar-

ng investment #1 versus investment #2, one can set the weights

o be proportional to either i) the squared deviations from the

ean; or ii) the absolute deviations from the mean. Thus, un-

ike Shannon’s entropy, which has a fixed K = 1 assuming all bits

f information are uniformly distributed over all the realizations,

awrocki and Harding suggested using weights k i with different

omponent-wise values. We extend this notion by taking into ac-

ount the associated monetary values and by generalizing the as-

umption that the expected loss is uniformly distributed over all

ealizations. As seen next, we integrate this approach with an

nformation-gain ratio measure for selecting a branching attribute

n a conventional decision tree. Note that this approach has some

imilarities with, yet is significantly different from other entropy

easures, such as the Tsallis entropy and the Rényi entropy, which

ontain additional parameters. These parameters can be used to

ake the measure more or less sensitive to the shape of the prob-

bility distribution; however, it is not related to the potential gain

r risk values of the outputs, as proposed here. 

.3. Weighted information gain for selecting branching attributes in a

ecision tree 

Decision trees are one of the most popular and commonly used

ypes of classification algorithm. A variety of decision-tree algo-

ithms are used for data mining purposes, such as ID3, C4.5 and

ART ( Breiman, Friedman, Olshen, & Stone, 1984; Quinlan, 1986,

993; Singer & Golan, 2019; Singer, Golan, Rabin, & Kleper, 2019 ),

hile ensembles of these models, such as random forests and ro-

ational forests, have been found to yield good and robust clas-

ification results (see Byon et. al, 2010 ; Shiju and Remya, 2014 ;

ernández-Delgado et al., 2014 ; Jin and Deng, 2015 , Zhao et al.,

016 , Bacher and Ben-Gal, 2017 ). 

In this research, we explore publicly-known classification

atabases. Each dataset contains an ordinal categorical class (tar-

et) variable, as well as possible explanatory attributes that can

ake different numbers of values, ranging from just a few to a

ery large number of values. Some of the datasets are also ex-

osed to monotonic noise over the attributes. In the experiment,

e benchmark the proposed Weighted- Information Gain-Ratio

WIGR) against the conventional Information-Gain Ratio (IGR). In

articular, the WIGR is used to select a branching attribute at each

ode of the decision tree, in a similar procedure to which is ap-

lied in conventional decision trees. The proposed WIGR can be

onsidered as an extension of the information-gain measure, in the

ense that it adjusts to the case of an ordinal target and takes into

ccount the value deviation among different target classes. Let d be

n m -row dataset with J + 1 columns, columns 1, …, J representing

he attributes, where each attribute A j holds one of αj possible val-

es (not necessarily ordinal), so that dom ( A j ) = { A 

r 
j 
, r = 1 , . . . , α j } ,

here dom denotes the domain. Column J + 1 represents the class
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variable C with n possible classes, so that dom ( C ) = { C i , i = 1, …,

n } is an ordered numeric set with ordinal property of the class

variable, such that V ( C i ) ≤ V ( C l ), ∀ i < l , where V ( C i ) is the reward

value or the cost value associated with class C i reflecting the or-

dinality of the class variable. In the example presented in Table 1 ,

V ( C i ) reflect the return percentages of an investment, where 40%

< 80% < 120% < 180%. Furthermore, when relying on these val-

ues one can calculate the value deviation among different target

classes, as explained above, and reflect the critical consequences of

the magnitude of the classification error. Thus, for the investments

in Table 1 , classifying a ‘Hard Loss’ investment (with a 40% return)

as a ‘High Profit’ investment (with a 180% return) reflects a higher

error than classifying a ‘Medium Profit’ investment (with a 120%

return) as a ‘High Profit’ investment. Recall that Shannon’s entropy

is a function of the random variable probabilities only, and does

not consider the dispersion of the outcomes and their associated

rewards. Note, however, that in a real usecases not only that each

event has a certain occurance probability, but also it is associated

with a different reward or cost value. 

Accordingly, in the first step of the proposed approach, we de-

fine a weighted entropy (WH) measure that allocates weights (often

unequal) to different classes, namely 

WH ( D ) = −
n ∑ 

i =1 

k i ( D ) p i log p i , 0 ≤ k i ( D ) ≤ 1 

n ∑ 

i =1 

k i ( D ) = 1 , (3)

where p i is the probability for a record to be associated with class

C i over a consider dataset D , while k i is the corresponding non-

negative weight of class C i for D . Note that in the context of a

decision tree the weighted entropy is calculated in each node with

respect to its associated subset D ⊆ d . In the root node, prior to

any partitioning, the distribution of the classes is calculated over

the entire dataset d . However, in descendant nodes that follow a

selection criterion of branching attribute(s), the distribution of the

classes is calculated over subsets D ⊆ d following the dataset par-

titioning by the tree. In this research, we propose a simple cal-

culation to allocate weights to the different classes according to

their reward values and dispertion with respect to the class mode.

This measure implies that an attribute with a denser distribution

around the mode value, i.e., the value of the class with the high-

est probability (the highest frequency in D ), obtains a smaller WH

value, since it represents a lower risk. Specifically, we propose that

the values of the weights k i will be derived by the difference be-

tween the value of each class V ( C i ) and the value of the most prob-

able class, in the dataset D , as follows: 

k i ( D ) = 

∣∣V ( C i ) − V ( C mode ( D ) 
)∣∣∝ ∑ n 

i =1 

∣∣V ( C i ) − V ( C mode ( D ) 
)∣∣∝ , (4)

where V ( C mode ( D )) is the value of class mode thus the value of the

most probable class in D . Thus, k i ( D ), represents the absolute de-

viation of the value of the i- th class from the value of the class

mode in the considered dataset, divided by the sum of all abso-

lute deviated values over all possible classes in the dataset, such

that the sum of the weights is equal to one and ∝ ( ∝ > 0), is a

normalization factor that smooths the weights’ distribution over

the different classes. The larger is ∝ , the larger are the weights

of the classes that are distant from the most-probable class (the

class mode), and the smaller are the weights of classes that are

closer to the most-probable class. In other words, this parame-

ter controls the sensitivity with respect to cases that are distant

from the class mode. For example, assume one has to choose be-

tween the distribution P = (0.51, 0.49, 0) derived from dataset D 1 

and the distribution Q = (0.95, 0, 0.05) derived from dataset D 2 .

Assuming V ( C i ) = i , i = 1, 2, 3 for ∝ = 1, one will prefer Q over

P (as WH( D 2 ) = 0.144 < WH( D 1 ) = 0.168), while for ∝ = 2 the

decision alters (as now WH( D ) = 0.173 > WH( D ) = 0.101), since
2 1 
he weight (thus the “penalty”) is higher for classes that are dis-

ant from the class mode. Note that the weight’s values, k i , of the

lasses are calculated by Eq. (4) , which is derived from the values

f each class V ( C i ) and the selection of the most-probable class,

 

mode . Such a selection is straightforward if there is one class that

as the highest-frequency in the dataset, but it is not clear if two

r more classes share the same highest-frequency in the dataset.

n such a case, any selection of the class mode will change the

eights’ values and as a result the weighted entropy, unless the

lass values are fully symmetric. Since for given a specific selection

f C mode the weights of the classes are fixed, a rule of the thumb

s to allocate the C mode to a class that can increase the prediction

references by the decision maker. For example, a risk-averse de-

ision maker will allocate the C mode such that the weighted en-

ropy is lower for attributes with higher predictability power of

lasses that can result in significant losses, since he wants to avoid

uch cases. Similarly, a risk-seeker will look for attributes with bet-

er predictability of classes that can lead to extensive gains, as

e wants to identify such opportunities ahead. Allocation of the

 

mode over the median class, even if it is not the most probable

lass, could be the strategy in case that the decision-maker has

o preferable prediction class. Another approach that could be fol-

owed, is to calculate the weighted entropy over all the different

llocations of the C mode , while averaging them to a single weighted

easure. Doing so, the weighted measure represents the average

arginal contribution over all possible allocations in a manner

imilar to the calculation of the known shapley value. Part of this

esearch is left for future studies and addressed in the Conclusions

ection. 

Now, following a conventional decision-tree procedure, suppose

ne aims to partition the dataset D represented in some node by a

ranching attribute A j having αj distinct values. The partition is de-

ned by the different branching branches from the node that rep-

esent all the records in dataset D, where each branch is defined

y one out of αj distinct values of the branching attribute A j . The

onditional entropy of the partitioning attribute A j is given by 

 H j ( D ) = 

a j ∑ 

r=1 

∣∣D 

r 
j 

∣∣
| D | × W H 

(
D 

r 
j 

)
(5)

here WH j ( D ) is the weighted-entropy measure of a possible par-

itioning over the attribute A j , and D 

r 
j 

is the subset of records of

 for which A j = A 

r 
j 
, thus D 

r 
j 
= { D | A j = A 

r 
j 
} . The Weighted Informa-

ion Gain of attribute A j over D , denoted by WIG j , indicates how

uch information is gained by branching D over the values of A j ,

.e., 

I G j ( D ) = W H ( D ) − W H j ( D ) (6)

Note that this measure can be negative for specific branches of

 j . 

The associated partition entropy of A j is given by 

 j ( D ) = −
a j ∑ 

r=1 

∣∣D 

r 
j 

∣∣
| D | × log 2 

( ∣∣D 

r 
j 

∣∣
| D | 

) 

. (7)

Since the attribute A j is not necessarily ordinal, we use here a

onventional information measure in Eq. (1) . Finally, by dividing

q. (6) by Eq. (7) , the normalized Weighted Information Gain Ratio

WIGR), when attribute A j is selected as the branching attribute

ver dataset D , is calculated as follows 

IG R j ( D ) = 

WI G j ( D ) 

H j ( D ) 
(8)

The attribute with the highest (non-negative) normalized

eighted information gain ratio is selected by the proposed pro-

edure as the branching attribute of the node that represents the
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Fig. 1. The Meta-code of the proposed WIGR Algorithm for tree growing. 
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Table 2 

The entropy and the weighted entropy measures of the 

two investments portfolios shown in Table 1 . 

H (Investment) WH (Investment) 

Investment #1 1.85 0.46 

Investment #2 1.85 0.39 
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opulation D. If all attributes have a zero or a negative value, the

ree-construction procedure is stopped. For comparison purpose,

et us denote the normalized classic information gain ratio, when

ttribute A j is selected as the branching attribute over dataset D ,

y IGR j ( D ). This measure is based on the conventional entropy

easure in Eq. (2) where all the weights are equal, k i = 1, ∀ i

 Quinlan,1986 ). 

G R j ( D ) = 

H ( D ) − H(D | A j ) 

H 

(
A j 

) (9) 

The proposed tree-construction algorithm is relatively simple.

nstead of using the conventional information gain ratio as a

ranching criterion over all the possible branching attributes, it

ses the normalized weighted information gain ratio in Eq. (8) to

elect the branching attribute. The WIGR algorithm is described in

ig. 1 . As seen in the pseudo code, the tree building is a recursive

rocedure. Starting with the entire dataset D . Then in in each step,

he procedure finds the attribute with the highest weighted infor-

ation gain ratio. Once such an attribute is found with a positive

eighted information gain, the procedure call itself, using the rel-

vant partition as the new dataset, while splitting on each value of

he selected attribute. 

Table 2 presents both the conventional Shannon’s Entropy,

ased on Eq. (1) , as well as the proposed weighted entropy, based

n Eqs. (3) (4) with ∝ = 2, assuming V ( C i ) = i , for the two in-

estments given in Table 1 . Note that in this example, both invest-

ents obtain the same conventional information gain. Nonetheless,
nvestment #2 is preferable over investment #1 once the associ-

ted risks and gains are considered, as measured by the weighted-

nformation gain scores and as explained below. Such a selection is

n oppose to the one which is based solely on the expected return

hat places investment #1 as preferable. 

Let us continue further with the running example from

able 1 to describe the proposed WIGR measure and its use for

electing the classifying (branching) attributes for the decision-tree

onstruction. Table 3 shows the dataset associated with Investment

2, which was presented in Table 1 , where in 40% of the invest-

ents result in loss (eight rows with the value “1”), 40% of the in-

estments result in medium profit (eight rows with the value “2”)

nd 20% of the investments result in High Profit (four rows with

he value “3”). Accordingly, the third column represents the class

ariable of each record as follows: “1” represents the consolidated

Loss” and “Hard Loss” cases; “2” represents “Medium Profit” cases, 

nd “3” represents “High Profit” cases. The branching attribute has

o be selected among columns A , A that represent the classify-
1 2 
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Fig. 2. A one-level C4.5 decision tree for the dataset D , given in Table 3 , based on the conventional information-gain ratio that is applied to Investment #2 in Table 1 . 

Table 3 

An illustrative dataset with 20 instances based on the 

values in Table 1 . 

Attribute 1 Attribute 2 Class (Investment #2) 

L H 1 - Loss 

H H 1 - Loss 

L H 1 - Loss 

H H 2 - Medium Profit 

H H 2 - Medium Profit 

H L 2 - Medium Profit 

H H 2 - Medium Profit 

H L 2 - Medium Profit 

L H 1 - Loss 

H H 2 - Medium Profit 

H H 3 - High Profit 

L H 1 - Loss 

H H 1 - Loss 

H L 3 - High Profit 

H H 3 - High Profit 

H L 1 - Loss 

L L 3 - High Profit 

H L 2 - Medium Profit 

H H 1 - Loss 

L H 2 - Medium Profit 
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ing (explanatory) attributes. The WIGR j ( D ) represents the potential

weighted-information gain when selecting A j as the branching at-

tribute over dataset D, while consolidating for simplicity reasons

the two loss states in Table 1 into one loss state with a respec-

tive return of 50%. This new measure can be benchmarked against

the conventional information-gain measure, IGR j ( D ), which is often

used as a branching criterion by many decision tree algorithms, in-

cluding the classical C4.5. 

At this stage one has to select the branching attribute for the

20-instances dataset D that consists of the class variable and two

input attributes, A 1 and A 2 . According to the classical information-

gain ratio in Eq. (9) , IGR 1 ( D ) = 0.12 if A 1 is selected as the branch-

ing attribute, and IGR 2 ( D ) = 0.09, if A 2 is selected as the branch-

ing attribute. Thus, relying the classical information gain measure

(e.g., see Maimon and Rokach, 2005 ), one should select attribute

A 1 over A 2 as the branching attribute, resulting in the one-level

C4.5 decision tree shown in Fig. 2 . Note, however, that when using

the weighted-information gain-ratio (WIGR) by Eq. (8) , attribute

A 1 obtains a value of WIGR 1 ( D ) = 0.015, if it is selected as the

branching attribute, while attribute A 2 obtains a corresponding

WIGR 2 ( D ) = 0.04. Thus, when using the WIGR measure, A 2 should

be selected as the branching attribute, resulting in the weighted

one-level C4.5 decision tree shown in Fig. 3 . As seen, Fig. 3 rep-
esents a less-risky decision tree compared to the tree in Fig. 2 .

ore specifically, in Fig. 2 , both leaves represent a gain distribu-

ion which is more likely to generate a lower return, since when

 1 = L, there is a probability of 67% for a loss with an expected re-

urn of 83.3%, and when A 1 = H, there is a probability of 29% for

 loss with an expected return of 112.3%. Obviously, a rational de-

ision maker will select the A 1 = H branch, resulting in the higher

eturn value. In Fig. 3 , when A 2 = L, there is a probability of 17% for

 loss with an expected return of 127.9% and when A 2 = H, there is

 probability of 50% for a loss with an expected return of 93.4%.

ere a rational decision maker will select the first branch with the

ighest expected return over all the other options. Thus, based on

he decision maker selections A 2 is preferable. 

In the next section we apply the proposed tree-generation al-

orithm based on the WIGR measure to twelve publicly-known

atabases to classify the ordinal targets. The purpose of these ex-

eriments is to assess the performance of the proposed algorithm

n comparison to the conventional, non-ordinal decision-tree al-

orithms. In the considered examples, there are various attributes

ith different numbers of values, including both ordinal and cate-

orical class variables. 

. Experimental results 

To test the new ordinal classification approach, we conducted a

lassification test over twelve publicly known datasets, which were

reviously tested by Gutierrez et al. (2016) . For simplicity of expo-

ition, we mapped the 10-class problems into 3-class problems,so

he probabilities of the different new classes will be roughly uni-

ormly distributed, labeling classes 1-3 as ‘Low’, classes 4-7 as

Medium’ and classes 8-10 as ‘High’, such that each run is per-

ormed over three ordinal classes. We benchmarked the ordinal-

eighted C4.5 decision tree, which is based on the proposed WIGR

easure with a normalization factor of ∝ = 1 in Eq. 4 , for select-

ng the branching attributes against the conventional and popu-

ar C4.5 decision tree version. Nevertheless, note that the WIGR

easure could also be implemented with other trees. To evalu-

te the best classification model, we used a 20-fold ‘leave-one-out’

est, as suggested by Gutierrez et al. (2016) . The classification accu-

acy is evaluated and averaged over the 20 folds, each time leaving

ut one of the sub-samples and using it as a test case. The recall,

he precision and the errors metrics are calculated for each class.

able 4 presents the average recall over the entire testing sets ob-

ained from the 20 folds test, using both the conventional and the

eighted-ordinal C4.5 classifier. As can be seen from the table, the

roposed weighted-ordinal classifier tends to yield a better recall

or the boundary classes (i.e., those labeled as ‘Low’ and ‘High’),
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Fig. 3. A one-level C4.5 decision tree for the dataset D , given in Table 3 , based on the proposed weighted information-gain ratio that is applied to Investment #2 in Table 1 . 

Table 4 

Average recall over the tested datasets, comparing both the conventional C4.5 and the proposed ordinal 

weighted classifier for each of the classes. Higher values are bolded. 

Dataset Regular C4.5 Weighted-ordinal C4.5 

Class = Low Class = Med Class = High Class = Low Class = Med Class = High 

Abalone 56.9% 54.0% 62.4% 76.8% 41.2% 71.8% 

Bank1 84.6% 67.9% 65.6% 91.9% 68.4% 82.1% 

Bank2 61.4% 51.8% 54.9% 82.0% 49.1% 78.9% 

Calhousing 71.0% 53.5% 69.0% 78.4% 49.1% 80.0% 

Census1 73.8% 67.1% 69.6% 87.4% 51.0% 82.8% 

Census2 73.8% 59.1% 70.4% 88.8% 48.1% 83.7% 

Computer1 79.8% 71.2% 79.8% 90.2% 60.5% 89.5% 

Computer2 79.1% 69.6% 80.1% 90.4% 60.1% 89.5% 

Housing 81.6% 67.9% 72.9% 84.5% 69.7% 73.2% 

Machine 66.9% 60.4% 75.6% 75.6% 58.5% 79.5% 

Pyrim 44.6% 56.3% 6.7% 56.8% 39.2% 22.5% 

Stock 91.5% 84.5% 85.4% 94.6% 77.3% 94.7% 

Table 5 

Average precision over the tested datasets, comparing both the conventional C4.5 and the weighted or- 

dinal classifier for each of the classes. Higher values are bolded. 

Dataset Regular C4.5 Weighted-ordinal C4.5 

Class = Low Class = Med Class = High Class = Low Class = Med Class = High 

Abalone 65.1% 51.8% 58.3% 69.7% 57.9% 56.2% 

Bank1 85.9% 64.8% 70.2% 87.4% 78.8% 75.3% 

Bank2 63.1% 49.5% 57.0% 69.3% 73.3% 63.9% 

Calhousing 63.2% 60.1% 68.4% 67.1% 69.2% 66.4% 

Census1 68.7% 64.3% 81.1% 68.4% 75.1% 73.0% 

Census2 66.2% 61.8% 75.2% 69.1% 78.2% 68.8% 

Computer1 79.6% 71.3% 80.6% 74.7% 81.9% 80.2% 

Computer2 79.2% 70.2% 79.8% 74.0% 81.0% 80.8% 

Housing 77.2% 68.8% 77.9% 77.3% 70.9% 80.3% 

Machine 68.0% 63.2% 77.5% 66.1% 67.5% 83.3% 

Pyrim 43.4% 41.9% 34.6% 39.3% 45.5% 47.4% 

Stock 91.8% 83.5% 87.9% 88.4% 90.8% 84.6% 
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hile the regular C4.5 tree yield a better recall for the central class

labeled as ‘Med’). 

Table 5 presents the average precision over the entire test-

ng sets obtained from the 20-folds test, for both types of classi-

ers. In 24 out of the 36 comparisons (67%), the weighted-ordinal

lassifier outperformed the regular C4.5 algorithm. For the central

Med’ class, the weighted-ordinal classifier obtained superior pre-

ision over the entire collection of datasets. Combining the results

rom Tables 4 and 5 , in 50 out of the 72 comparisons (69.4%), the

eighted-ordinal classifier outperformed the popular C4.5 method

n both the recall and the precision, while, in 14 out of the 36 com-

arisons, the weighted-ordinal classifier outperformed the popu-

ar C4.5 method in both the recall and the precision simultane-
 t  
usly. Conversely, there were no cases in which the conventional

4.5 classifier outperformed the weighted-ordinal classifier in both

easures. 

To derive a measure of performance that takes into account

oth the precision and the recall simultaneously, we calculate, per

ach dataset, the F-Score : 

 − Scor e = 

2 P r ecision Recall 

Recall + P r ecision 

, (10)

hich can be is interpreted as a weighted average of the preci-

ion and recall, ranging between zero to one as its highest score.

able 6 presents the F-Score for each of the datasets. As seen,

he weighted-ordinal C4.5 classifier outperformed the conventional
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Table 6 

Average F-scores over the tested datasets, comparing both the conventional C4.5 and the weighted ordi- 

nal classifier for each of the classes. Higher values are bolded. 

Dataset Regular C4.5 Weighted-ordinal C4.5 

Class = Low Class = Med Class = High Class = Low Class = Med Class = High 

Abalone 57.5% 52.0% 60.2% 73.0% 48.0% 63.0% 

Bank1 84.9% 66.0% 67.5% 89.4% 72.7% 77.9% 

Bank2 62.0% 50.3% 55.5% 74.8% 58.1% 70.4% 

Calhousing 66.7% 56.4% 68.6% 72.1% 57.2% 72.5% 

Census1 71.0% 65.6% 74.7% 76.6% 60.5% 77.5% 

Census2 69.7% 60.2% 72.5% 77.6% 59.1% 75.4% 

Computer1 79.5% 71.1% 80.0% 81.3% 69.1% 84.4% 

Computer2 79.0% 69.7% 79.7% 81.3% 68.7% 84.8% 

Housing 79.0% 68.0% 74.9% 80.5% 69.9% 76.3% 

Machine 68.2% 59.6% 77.8% 69.2% 60.8% 80.4% 

Pyrim 40.7% 53.0% 40.6% 50.9% 45.5% 48.8% 

Stock 91.5% 83.8% 86.3% 91.3% 83.4% 89.3% 
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one in 28 out of the 36 comparisons (78%). Note also that the

weighted classifier outperformed its conventional counterpart in

all but one of the boundary classes (‘Low’ and ‘High’). For the ‘Med’

classes, the performance of the two classifiers is approximately

equal, emphasizing again the contribution of the WIGR in ordinal

cases. 

To test whether the overall difference in the performance met-

rics between the two classifiers is significant, we conducted paired

t-tests. For each dataset, a paired t-test was carried out using 20

pairs of results, each of which was based on the average perfor-

mance over all classes for a given cross-validation. Table 7 sum-

marizes the t-test results for each of the datasets for the precision,

the recall and the F-Score. p -values lower than 0.05 are in bold font

and those lower than 0.1 are in italic font. For all datasets, the av-

erage values of all the three-performance metrics – the recall, the

precision and the F-score – are higher when applying the proposed

weighted-ordinal C4.5 classifier. This difference is found to be sig-

nificant at a 90% level for the recall in 100% of the datasets, for the

F-score in 92% of the datasets and for the precision measure in 75%

of the datasets. 

Another alternative benchmark approach was discussed in

Cardoso and Sousa (2011) . In particular, the authors surveyed dif-

ferent approaches for measuring the success of an ordinal classi-

fication over a group of datasets. A proposed approach the men-

tioned is to calculate the mean square error (MSE), defined as: 

MSE = 

1 

N 

∑ 

n ∈ N 

(
V ( C n ) − V 

(
ˆ C n 
))2 

(11)

where N is the number of samples, C n is the real class of sample

n , ˆ C n is the estimated class of sample n and V (.) corresponds to a

number assigned to each class, in our case, V ( C i ) = V ( ̂  C n ) = i, i =
1 , 2 , 3 . A lower MSE score represents a smaller classification er-

ror. The MSE measure was calculated for each cross-validation over

each dataset. Table 8 presents the average MSE for each dataset,

for the two classification methods, along with the p -value of the

corresponding t-test . Once again, this paired t-test rely on the 20

pairs of cross-validations results. As seen from the table, the pro-

posed ordinal decision tree performed better in all but one of the

datasets, 9 of which have a significantly better MSE score. 

Another interesting performance measure is Kendall’s correla-

tion coefficient, τ b , which is a measure of concordance or the or-

dinal association between two measured quantities. It is defined

as: 

τb = 

B − Z 
√ 

B + Z + e t 
√ 

B + Z + e b 
, (12)

where B refers to the number of concordant pairs in the classifica-

tion, i.e., pairs in which the relative ordering of the “real” classes
 ( C i ) and V ( C j ) is the same as the relative ordering of the classified

lasses V ( ̂  C i ) and V ( ̂  C j ) , and Z refers to the number of discordant

airs in the classification, i.e., pairs in which the relative ordering

f the “real” classes is opposite to the relative ordering of the clas-

ified classes. 

The parameter e t refers to the number of samples that are

ied on the true class and e b refers to the number of samples

hat are tied on the estimated class. Pairs that hold the same real

nd estimated classes are ignored. τ b ranges from -1 to 1. The

igher the performance measure, the better the classification per-

ormance. We calculated the Kendall’s correlation score for each

ross-validation of each dataset. Table 9 presents the average corre-

ation score for each dataset and classification method, along with

he p -value of a t-test . As before, the t-test was based on the 20

aired scores from the cross-validations. As seen from the table,

he proposed ordinal decision tree showed superior performance

ver all datasets, with a significant p -value. 

As suggested in the above experiments, the weighted informa-

ion gain may replace the classic information gain as the decision

riterion for selecting the most suitable branching attribute in an

rdinal decision tree. 

In the above series of experiments based on known datasets,

he comparative analysis showed that the proposed weighted-

rdinal decision tree significantly outperforms its non-ordinal

ounterpart. To evaluate the effect of increasing the number of

ymbols on the model performance, we repeated the 3-classes ex-

eriment study, with different mapping into 5-class problems, such

hat the probabilities of the new classes are uniformly distributed,

abeling classes 1-2 as ‘Very Low’, classes 3-4 as ‘Low’, classes

-6 as ‘Medium’, classes 7-8 as ‘High’ and classes 9-10 as ‘Very

igh’. Thus, each run is performed over five ordinal classes. Tables

0–12 present the average recall, precision and F-scores of the

eighted-ordinal decision tree vs. the conventional C4.5 decision

rees over all the twelve datasets. Similar to the 3-classes results,

he weighted-ordinal C4.5 classifier yield better recall, precision

nd F-score for most of classes in all the studied datasets except of

he Abalone dataset. Considering the results from Tables 10 and 11 ,

n 107 out of the 120 benchmark comparisons (i.e., in 89.2% com-

ared to 69.4% in the 3-classes problems), the weighted-ordinal

lassifier outperformed the C4.5 trees both in the recall and in the

recision outcomes. Moreover, in 49 out of the 60 comparisons, the

eighted-ordinal classifier outperformed the popular C4.5 method

n both the recall and the precision simultaneously. As seen from

able 12 , the weighted-ordinal C4.5 classifier outperformed the

onventional tree in 54 out of the 60 comparisons (90% of the

ases compared to 78% in the 3-calss problems). 

Table 13 summarizes the t-test results for each of the datasets

or the precision, the recall and the F-Score measures. p -values
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Table 7 

Paired t-test results for each of the datasets for the precision, the recall and the F-Scores of the conventional 

C4.5 vs. the proposed weighted-ordinal C4.5. p -values lower than 0.05 are bolded and those lower than 0.1 are 

in italic font. 

T-Test on the Recall Measure Regular C4.5 Weighted-ordinal C4.5 p -value 

abalone10 57.8% 63.3% 0.0048 

bank1-10 72.7% 80.8% 0.0000 

bank2-10 56.0% 70.0% 0.0000 

calhousing-10 64.5% 69.2% 0.0000 

census1-10 70.1% 73.7% 0.0000 

census2-10 67.7% 73.5% 0.0000 

computer1-10 76.9% 80.1% 0.0013 

computer2-10 76.3% 80.0% 0.0003 

housing10 74.1% 75.8% 0.0007 

machine10 67.6% 71.2% 0.0668 

pyrim10 35.8% 39.5% 0.0223 

stock10 87.1% 88.9% 0.0017 

T-Test on the Precision Regular C4.5 Weighted-ordinal C4.5 p -Value 

abalone10 58.4% 61.3% 0.0240 

bank1-10 73.6% 80.5% 0.0000 

bank2-10 56.6% 68.8% 0.0000 

calhousing-10 63.9% 67.6% 0.0000 

census1-10 71.4% 72.2% 0.0898 

census2-10 67.8% 72.0% 0.0000 

computer1-10 77.1% 78.9% 0.0246 

computer2-10 76.4% 78.6% 0.0185 

housing10 74.6% 76.2% 0.0384 

machine10 68.4% 72.3% 0.0403 

pyrim10 39.2% 41.7% 0.2263 

stock10 87.7% 87.9% 0.3643 

T-Test on F-Score Measure Regular C4.5 Weighted-ordinal C4.5 p -Value 

abalone10 56.5% 61.3% 0.0203 

bank1-10 72.8% 80.0% 0.0000 

bank2-10 55.9% 67.8% 0.0000 

calhousing-10 63.9% 67.3% 0.0000 

census1-10 70.4% 71.5% 0.0564 

census2-10 67.5% 70.7% 0.0002 

computer1-10 76.9% 78.3% 0.0612 

computer2-10 76.1% 78.3% 0.0156 

housing10 74.0% 75.6% 0.0061 

machine10 68.0% 70.1% 0.0804 

pyrim10 48.9% 50.4% 0.2811 

stock10 87.2% 88.0% 0.0702 

Table 8 

Paired t-test results for each of the datasets for the MSE of the conventional 

C4.5 vs. the proposed weighted-ordinal C4.5. p -values lower than 0.05 are 

bolded and those lower than 0.1 are in italic font. 

T-Test on MSE Regular C4.5 Weighted-ordinal C4.5 p -value 

abalone10 0.5021053 0.4917 0.2278 

bank1-10 0.2778947 0.2042 6.427E-07 

bank2-10 0.5585965 0.4421 0.0004 

calhousing-10 0.4722807 0.4358 0.0003 

census1-10 0.3627068 0.3474 0.0365 

census2-10 0.3921053 0.3739 0.01617 

computer1-10 0.2521053 0.2332 0.05144 

computer2-10 0.2568421 0.2286 0.0057 

housing10 0.3012281 0.2788 0.0244 

machine10 0.3680702 0.3418 0.1426 

pyrim10 0.9873684 0.9937 0.4572 

stock10 0.1328947 0.123 0.0393 

l  

i  

t  

s  

C  

c  

Table 9 

Paired t-test results for each of the datasets for the Kendall’s T b of the conventional 

C4.5 vs. the proposed weighted-ordinal C4.5. p -values lower than 0.05 are bolded. 

T-Test on Kendall Tau Regular C4.5 Weighted-ordinal C4.5 p -value 

abalone10 0.3756957 0.4463804 0.0025 

bank1-10 0.5758866 0.7033707 3.293E-08 

bank2-10 0.3325643 0.5264548 2.147E-08 

calhousing-10 0.4437126 0.5194949 7.415E-09 

census1-10 0.5232702 0.593204 8.039E-08 

census2-10 0.494754 0.5888644 1.797E-08 

computer1-10 0.6344298 0.6920542 0.0005592 

computer2-10 0.6263166 0.6917236 1.613E-05 

housing10 0.5909572 0.6209705 0.0004587 

machine10 0.5023906 0.5624576 0.0429549 

pyrim10 0.0359967 0.1391175 0.0094361 

stock10 0.7920192 0.819621 0.0011681 

s  

t

 

t  

t  

t  

F  

a  
ower than 0.05 are in bold font and those lower than 0.1 are in

talic font. For all datasets except one, the average values of all the

hree-performance metrics – the recall, the precision and the F-

core – are higher when applying the proposed weighted-ordinal

4.5 classifier. This difference is found to be significant at a 90%

onfidence level for the recall in 83% of the datasets, for the preci-
ion in 75% of the datasets and for the F-score measures in 83% of

he datasets. 

Fine tuning the ordinal decision tree, including the normaliza-

ion factor ∝ in Eq. (4 ), was found to be useful also in cases when

he ordinal weighted C4.5 was compared against other state of

he art approaches, such as the popular Random Forest model.

or example, Tables 14–16 compare the average recall, precision

nd F-scores of the weighted C4.5 and the Random Forest for two
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Table 10 

Average recall values of both the conventional C4.5 classifier and the weighted ordinal classifier for each 

of the tested classes. Outperforming values are bolded. 

Dataset Regular C4.5 classifier 

Class = Very Low Class = Low Class = Medium Class = High Class = Very High 

Abalone 87.89% 34.18% 17.74% 46.03% 33.79% 

Bank1 75.79% 52.11% 36.84% 36.84% 46.32% 

Bank2 60.53% 30.92% 23.16% 24.44% 43.61% 

Calhousing 70.00% 32.28% 29.30% 37.02% 59.65% 

Census1 72.22% 39.04% 36.84% 38.39% 64.24% 

Census2 71.71% 39.34% 34.61% 42.50% 59.74% 

Computer1 77.63% 50.53% 45.79% 49.47% 78.95% 

Computer2 74.29% 47.98% 46.95% 48.90% 71.71% 

Housing 86.23% 28.86% 42.63% 27.19% 78.77% 

Machine 75.61% 17.89% 42.46% 19.65% 82.98% 

Pyrim 73.68% 23.16% 1.05% 0.00% 2.11% 

Stock 90.57% 61.14% 68.73% 70.83% 86.05% 

Dataset Weighted-Ordinal C4.5 classifier 

Class = Very Low Class = Low Class = Medium Class = High Class = Very High 

Abalone 39.26% 25.34% 21.29% 52.63% 36.76% 

Bank1 87.37% 57.37% 51.58% 68.95% 56.84% 

Bank2 80.59% 38.49% 41.40% 48.12% 69.92% 

Calhousing 78.77% 41.40% 37.54% 46.49% 70.35% 

Census1 82.60% 55.56% 44.81% 53.41% 74.46% 

Census2 88.29% 50.92% 50.53% 51.84% 75.53% 

Computer1 88.95% 60.00% 59.74% 62.63% 85.79% 

Computer2 87.25% 54.45% 61.68% 60.75% 86.18% 

Housing 86.67% 25.09% 53.86% 29.82% 83.60% 

Machine 76.84% 22.46% 45.79% 33.68% 80.00% 

Pyrim 75.79% 21.58% 2.11% 6.84% 9.47% 

Stock 95.31% 51.40% 71.40% 75.18% 86.97% 

Table 11 

Average precision values of both the conventional C4.5 classifier and the weighted ordinal classifier for 

each of the tested classes. Outperforming values are bolded. 

Dataset Regular C4.5 classifier 

Class = Very Low Class = Low Class = Medium Class = High Class = Very High 

Abalone 58.25% 32.61% 31.02% 37.14% 53.48% 

Bank1 80.00% 51.56% 35.71% 31.67% 54.66% 

Bank2 53.64% 30.62% 27.16% 27.31% 39.46% 

Calhousing 50.38% 37.55% 39.20% 40.11% 55.19% 

Census1 56.52% 42.31% 39.84% 40.92% 69.28% 

Census2 56.13% 39.97% 40.15% 45.75% 63.06% 

Computer1 70.74% 54.24% 48.07% 52.66% 73.17% 

Computer2 69.25% 52.09% 49.56% 45.60% 72.51% 

Housing 59.58% 34.63% 40.20% 50.90% 70.05% 

Machine 48.05% 38.06% 38.29% 40.88% 60.72% 

Pyrim 19.75% 19.13% 100.00% 0.00% 44.44% 

Stock 84.67% 69.08% 61.38% 73.71% 89.22% 

Dataset Weighted-ordinal C4.5 cassifier 

Class = Very Low Class = Low Class = Medium Class = High Class = Very High 

Abalone 40.64% 28.87% 26.70% 34.92% 43.18% 

Bank1 82.18% 67.70% 56.98% 49.06% 72.97% 

Bank2 59.47% 57.64% 53.39% 56.14% 51.52% 

Calhousing 57.27% 49.79% 50.95% 53.54% 59.23% 

Census1 61.35% 57.40% 60.20% 57.89% 73.89% 

Census2 59.96% 59.08% 61.64% 66.11% 71.13% 

Computer1 74.29% 69.30% 63.94% 68.79% 78.55% 

Computer2 71.00% 64.35% 68.46% 67.23% 77.06% 

Housing 60.87% 42.94% 41.24% 56.48% 72.20% 

Machine 50.29% 40.76% 39.13% 55.01% 70.26% 

Pyrim 22.40% 19.25% 21.05% 36.11% 46.15% 

Stock 76.95% 70.77% 65.51% 74.10% 93.45% 
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Table 12 

Average F-scores values of both the conventional C4.5 classifier and the weighted ordinal classifier for each of the tested 

classes. Outperforming values are bolded. 

Dataset Regular C4.5 classifier 

Class = Very Low Class = Low Class = Medium Class = High Class = Very High 

Abalone 70.07% 33.38% 22.57% 41.11% 41.41% 

Bank1 77.84% 51.83% 36.27% 34.06% 50.14% 

Bank2 56.88% 30.77% 25.00% 25.79% 41.43% 

Calhousing 58.59% 34.72% 33.53% 38.50% 57.34% 

Census1 63.41% 40.61% 38.28% 39.62% 66.67% 

Census2 62.97% 39.66% 37.17% 44.07% 61.35% 

Computer1 74.03% 52.32% 46.90% 51.02% 75.95% 

Computer2 71.68% 49.95% 48.22% 47.20% 72.11% 

Housing 70.47% 31.48% 41.38% 35.45% 74.15% 

Machine 58.76% 24.34% 40.27% 26.54% 70.13% 

Pyrim 31.15% 20.95% 2.08% 0.00% 4.02% 

Stock 87.52% 64.87% 64.85% 72.24% 87.61% 

Dataset Weighted-ordinal C4.5 classifier 

Class = Very Low Class = Low Class = Medium Class = High Class = Very High 

Abalone 39.94% 26.99% 23.69% 41.98% 39.72% 

Bank1 84.69% 62.11% 54.14% 57.33% 63.91% 

Bank2 68.44% 46.15% 46.64% 51.82% 59.33% 

Calhousing 66.32% 45.21% 43.23% 49.77% 64.31% 

Census1 70.40% 56.46% 51.38% 55.56% 74.17% 

Census2 71.42% 54.70% 55.53% 58.11% 73.26% 

Computer1 80.96% 64.32% 61.77% 65.56% 82.01% 

Computer2 78.29% 58.99% 64.89% 63.82% 81.37% 

Housing 71.52% 31.67% 46.71% 39.04% 77.48% 

Machine 60.79% 28.96% 42.20% 41.78% 74.82% 

Pyrim 34.57% 20.35% 3.83% 11.50% 15.72% 

Stock 85.15% 59.55% 68.33% 74.64% 90.10% 

Table 13 

Paired t-test results for each of the datasets for the precision, the recall and the F-Scores of the conventional C4.5 vs. 

the weighted-ordinal C4.5. p -values lower than 0.05 are bolded and those lower than 0.1 are in italic font. 

T-Test on Recall Measures Regular C4.5 Weighted-ordinal C4.5 p -Value 

abalone10 36.61% 29.21% 0 

bank1-10 41.32% 53.68% 0 

bank2-10 30.44% 46.42% 0 

calhousing-10 38.04% 45.76% 0 

census1-10 41.79% 51.81% 0 

census2-10 41.32% 52.85% 0 

computer1-10 50.39% 59.52% 0 

computer2-10 48.30% 58.39% 0 

housing10 43.95% 46.51% 0 

machine10 39.77% 43.13% 0.0 0 09 

pyrim10 16.67% 19.30% 0.0065 

stock10 62.89% 63.38% 0.1564 

T-Test on Precision Measures Regular C4.5 Weighted-ordinal C4.5 p -Value 

abalone10 42.95% 37.23% 0 

bank1-10 51.12% 67.16% 0 

bank2-10 36.07% 56.66% 0 

calhousing-10 44.90% 54.64% 0 

census1-10 60.24% 71.50% 0 

census2-10 49.22% 63.82% 0 

computer1-10 77.10% 78.90% 0 

computer2-10 58.16% 70.07% 0 

housing10 52.72% 55.87% 0.0 0 05 

machine10 48.22% 53.66% 0.0 0 04 

pyrim10 22.63% 24.16% 0.2638 

stock10 76.26% 76.42% 0.3998 

T-Test on F-Score Measures Regular C4.5 Weighted-ordinal C4.5 p -Value 

abalone10 34.59% 26.84% 0.0203 

bank1-10 41.67% 53.28% 0 

bank2-10 29.72% 45.14% 0 

calhousing-10 36.96% 44.66% 0 

census1-10 41.38% 51.22% 0 

census2-10 40.79% 52.04% 0 

computer1-10 49.91% 59.02% 0 

computer2-10 48.04% 57.84% 0 

housing10 42.91% 43.83% 0.10 0 0 

machine10 40.23% 43.05% 0.0109 

pyrim10 17.02% 21.24% 0.0049 

stock10 62.74% 62.85% 0.4217 
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Table 14 

Average recall of the proposed weighted-ordinal C4.5. vs. the Random Forest model for each of the classes in 

two datasets. 

Dataset Random Forest Weighted-ordinal C4.5 

Class = Low Class = Med Class = High Class = Low Class = Med Class = High 

Bank2 59.9% 71.9% 54.4% 82.0% 49.1% 78.9% 

Census1 70.6% 70.8% 69.9% 87.4% 51.0% 82.8% 

Table 15 

Average precision of the proposed weighted-ordinal C4.5. vs. the Random Forest model for each of the classes 

in two datasets. 

Dataset Random Forest Weighted-ordinal C4.5 

Class = Low Class = Med Class = High Class = Low Class = Med Class = High 

Bank2 75.3% 54.1% 72.0% 69.3% 73.3% 63.9% 

Census1 71.2% 63.0% 84.0% 68.4% 75.1% 73.0% 

Table 16 

Average F-scores of the proposed weighted-ordinal C4.5. vs. the Random Forest model for each of the classes 

in two datasets. 

Dataset Random Forest Weighted-ordinal C4.5 

Class = Low Class = Med Class = High Class = Low Class = Med Class = High 

Bank2 66.4% 61.7% 61.6% 74.8% 58.1% 70.4% 

Census1 70.8% 66.5% 76.1% 76.6% 60.5% 77.5% 

Table 17 

Paired t-test results for each of the datasets for the precision, the recall and the F-Scores of the random forest 

vs. the proposed weighted-ordinal C4.5. p -values lower than 0.05 are bolded and those lower than 0.1 are 

shaded. 

T-Test on the Recall Measure Random Forest Weighted-ordinal C4.5 p -Value 

bank2-10 62.1% 70.0% 3.11783E-09 

census1-10 70.4% 73.7% 2.2582E-05 

T-Test on the Precision Measure Random Forest Weighted-ordinal C4.5 p -Value 

bank2-10 67.2% 68.8% 0.075479116 

census1-10 72.7% 72.2% 0.210558305 

T-Test on the F-Scores Measure Random Forest Weighted-ordinal C4.5 p -Value 

bank2-10 63.2% 67.8% 2.99274E-05 

census1-10 71.1% 71.5% 0.293193973 
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datasets, namely bank2-10 and census1-10, that were large enough

to support the Random Forest learning. Similar to the above re-

sults, the weighted-ordinal C4.5 classifier often yield better recall

and F-score for the boundary classes (i.e., those labeled as ‘Low’

and ‘High’) in comparison to the Random Forest model, while the

Random Forest model often resulted in a better recall for the cen-

tral class (labeled as ‘Med’). This observation indicates, once again,

that for ordinal cases, where the boundary classes have high im-

portance or gain, the ordinal weighted model can be a good learn-

ing model to use. 

Table 17 summarizes the t-test results of the two datasets for

the precision, the recall and the F-Score. p -values lower than 0.05

are in bold font and those lower than 0.1 are in italic font. For the

two considered datasets, the average values of the recall and the

F-Score are higher when applying the proposed weighted-ordinal

p  
4.5 classifier and in one of the datasets for the precision metric

s well. Among the cases in which the weighted-ordinal C4.5 out-

erformed the Random Forest model, the difference is found to be

ignificant at a 90% level in 80% of cases (4 out of 5 cases). 

. Conclusions 

This paper addresses an ordinal multi-class classification prob-

em. In particular, it proposes a weighted-ordinal gain ratio (WIGR)

hat can be used for selecting the branching attribute in asso-

iated decision trees. The proposed WIGR is based on an infor-

ation theoretic measure, adjusted for the case where the target

s ordinal and often categorical. The classifying attributes, on the

ther hand, do not have to follow any natural ordering, as op-

osed to other known ordinal-classification algorithms. The mo-
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ivation for using the WIGR stems from the fact that the con-

entional information-gain measure takes into consideration only

he dispersion (or frequencies) of the classes in each node, while

gnoring the state values of the classes and their potential ef-

ects on gain and risk factors. Moreover, known ordinal classi-

cation trees that do consider the ordinal value of the classes

ostly assume some monotonic constraint over the explaining at-

ributes – an assumption that does not hold in many real-life

ases. 

In a series of experiments based on known datasets, a com-

arative analysis was performed. This showed that the proposed

eighted-ordinal decision tree significantly outperforms its non-

rdinal counterpart, when the classification target is ordinal and

here are no monotonic constraints on the explaining attributes,

or both the 3-classes problems as well as the 5-classes problems.

he proposed tree achieves higher precision and recall measures

or boundary classes of the 3-classes problems (tagged as ‘Low’

nd ‘High’) than for the central class. This observation is impor-

ant since boundary classes are often associated with higher/lower

isks/gains in an ordinal classification setting, such as an in-

estment portfolio. They are suited to a decision-making process

here one branch is selected by the decision maker. For the 5-

lasses problems the proposed tree achives higher precision and

ecall measures for all classes in 89% of the cases. The results of

his study seem promising, however there are two important as-

umptions regarding the allocated weights to the different classes

hat need to be carefully considered. First, in order to obtain a dis-

ribution with lower WH relative to the WH of the prior distri-

ution, it is often required that the class-mode’s probability will

e higher than the probability of that class in the prior distribu-

ion. Thus, initiating the algorithm with equi-probable distribution

ver the classes will result with more nodes in the decision tree.

econd, recall that the weight of each class is normalized rela-

ive to the weights of all the other classes and does not reflect

he value deviation between this class and the class-mode inde-

endently from the others. Therefore, to minimize the effect of

xtreme class values and obtain a more consistent weighted en-

ropy it is preferred that the class values will be symmetrically

istributed around the mode value. 

Future research can address complementary calculations of the

eights over the different classes, to better handle the limiting as-

umptions mentioned above. Future studies can also consider in-

egrating the entropy-weighted measures into others entropy-like

ased methods, such as Adaboost, CARTS, Gini impurity measure,

einforcement learning and even Entropy based Deep Network

odels. Furthermore, it could be interesting to examine the ad-

antages of using an ensemble approach based on ordinal vs. non-

rdinal algorithms that could leverage the performance of these

lassifiers. Other studies could further explore the effects of var-

ous classification parameters, such as the number of levels of the

lass, the value desperations and the decision-maker risk adversity

n the overall classification performance. 
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