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Abstract—In this paper, we evaluate, for the first time, the potential
of a scheduled seeding strategy for influence maximization in a real-
world setting. We first propose methods for analyzing historical data to
quantify the infection probability of a node with a given set of properties
in a given time, and assess the potential of a given seeding strategy to
infect nodes. Then, we examine the potential of a scheduled seeding
strategy by analyzing a real-world large-scale dataset containing both
the network topology as well as the nodes’ infection times. Specifically,
we use the proposed methods to demonstrate the existence of two
important effects in our dataset: a complex contagion effect and a dimin-
ishing social influence effect. As shown in a recent study, the scheduled
seeding approach is expected to benefit greatly from the existence of
these two effects. Finally, we compare a number of benchmark seeding
strategies to a scheduled seeding strategy that ranks nodes based on
a combination of the number of infectious friends they have, as well as
the time that has passed since they became infectious. Results of our
analyses show that for a seeding budget of 1%, the scheduled seeding
strategy yields a convergence rate that is 14% better than a seeding
strategy based solely on their degrees, and 215% better than a random
seeding strategy, which is often used in practice.

Index Terms—Influence Maximization; Social Networks Analysis;
Scheduled Seeding

1 INTRODUCTION

Social networks offer a powerful tool for information shar-
ing with friends, family, and colleagues. Along with their
role as a major social communication channel in our lives,
social networks redesigned the way individuals consume
content, acquire their personal preferences, and make deci-
sions.

One of the main mechanisms that empowers social net-
works is social influence [2], [36], [21], [49]. This mechanism
enables individuals to diffuse their messages in the social
network passively through a viral process that resembles
a virus’s spread. A highly studied problem that arises in
this context is finding influential nodes, that if seeded (i.e.,
infected intentionally), may further infect a large fraction of
the network through the viral contagion process. This prob-
lem is commonly referred to as the influence maximization
problem.

While many solutions were suggested for the influence
maximization problem (e.g., [10], [46], [48]), most of these
solutions focus on selecting the set of nodes to be seeded at
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the initial phase of the contagion process. As such, they are
often based on examining static properties of nodes, such as
properties derived from the network topology.

Several recent studies [44], [47], [24], [33], [45], [26],
[23], [39], [12], [35], [8], [25], [38] suggested using a sched-
uled/adaptive/sequential seeding approach to find not
only the best set of nodes to be seeded but also the right
timing to seed them. The key idea behind these methods is
that by spreading the seeding budget over time, it becomes
possible to consider the dynamic states of nodes in addition
to their static topological properties, when choosing the
nodes to be seeded. This typically leads to a substantial
improvement in the overall number of infections.

To the best of our knowledge, all existing scheduled
seeding works thus far, tested the potential of scheduled
seeding in theory and/or by simulations. While most of
these studies did examine real-world network topologies,
they assumed a particular underlying mathematical conta-
gion model, and simulated the infection process based on
this model. Here, we examine for the first time, the potential
of scheduled seeding, by analyzing a unique real-world
dataset, provided to us by a relatively large mobile net-
work operator. This dataset contains both the call network
between a sampled set of customers (which can be used
to infer the social network topology), as well as the time
in which each customer joined a specific service offered by
the mobile network operator (which represents the infection
times).

For that purpose, we first propose a method to quan-
tify the infection probability of a node with a given set
of properties in a given timestamp, using historical data.
While infection probability of nodes can be calculated in
a relatively straightforward manner when node properties
remain static over time, here we are interested in proper-
ties that can change over time, making such a calculation
more challenging. Then, we use the proposed method to
demonstrate the existence of two important effects in our
dataset: a complex contagion effect and a diminishing social
influence effect. Put together, these effects imply that a node
has a higher probability to become infected if it has a
relatively high number of infectious neighbors, and if the
time passed since its neighbors became infected is relatively
short. As shown in a recent study by Goldenberg et al.
[16], when these two effects co-exists, the scheduled seeding
approach is expected to perform considerably better than
the traditional initial seeding approach.



2

We then suggest a method to assess the potential of a
given seeding strategy to infect nodes using historical data.
The suggested method is then applied to compare between
a number of benchmark seeding strategies and a scheduled
seeding strategy that ranks nodes based on the number of
infectious friends they have, as well as the time that has
passed since they became infectious. The score of nodes
used for ranking in this case are taken as their infection
probabilities, obtained by applying the method described
above. Results of our analyses show that for a seeding
budget of 1% (i.e., seeding 1% of the examined population),
the scheduled seeding strategy, yields a convergence rate
that is 14% better than a seeding strategy based solely
on their degrees, and 215% better than a random seeding
strategy, which is often used in practice.

The contribution of this paper can be summarized along
two axes:

• Methodologically: we propose methods for analyz-
ing historical data to: 1) quantify the infection prob-
ability of a node with a given set of properties in
a given time, and 2) assess the potential of a given
seeding strategy to infect nodes.

• Empirically: for the first time, we examine the poten-
tial of a scheduled seeding strategy by analyzing a
real-world dataset. Specifically, we demonstrate the
existence of both a complex contagion effect and a
diminishing social influence effect, and that the sched-
uled seeding strategy considerably outperforms all
other benchmark seeding strategies.

The remainder of this paper is organized as follows. In
section 2, we present the relevant background and related
work for this paper. In section 3, we describe the proposed
methods, including toy examples to demonstrate their use.
In section 4, we describe the unique dataset used in our anal-
yses. Section 5 reports the results of our analyses. Section 6
summarizes this paper and suggests directions for future
research.

2 BACKGROUND AND RELATED WORK

In this section, we provide the relevant background to our
work.

2.1 Contagion Models
Over the years, with the emergence of globally infectious
diseases, mathematical contagion models were proposed
in the literature to understand the disease dynamics and
predict the possible outcomes of future outbreaks [1]. Due
to the great success of these models in the field of disease
modeling, their usage was extended to other fields, such as
information diffusion and product adoption.

Existing contagion models can be broadly classified
into two categories: (1) compartmental models and (2)
individual-based models.

The primary assumption underlying compartmental
models is that the population is fully interconnected, where
any two individuals can interact and potentially infect one
another. Perhaps the most-studied compartmental conta-
gion model is the SIR model [30]. In this model, the
entire population is divided into three compartments: S -

Susceptible, I - Infected, and R - Recovered. Transitions
between compartments can occur in one of the following
manners: (1) susceptible individuals may change their state
to infected with probability β, and (2) infected individuals
may change their state to recovered with a constant pace γ.

Another well-studied compartmental contagion model
is the Bass diffusion model [34], which was proposed to
describe the process of adopting new products. This model
introduced the innovation factor, which represents indi-
viduals’ ability to adopt the product regardless of their
infected neighbors. Therefore, according to this model, the
population can be divided into two groups: (1) innovators
who adopt the product at early stages, and (2) imitators who
adopt the product after interacting with adopters.

As mentioned above, the second type of contagion
models is individual-based models. The main assumption
behind these models is that the population is not fully
connected, and that different individuals are limited in
terms of other individuals that they may interact with or
infect. These potential interactions are typically described
using a network structure where individuals are represented
as nodes, and an interaction between two individuals is
represented as an edge.

The Linear Threshold model is one of the most stud-
ied individual-based models in the context of information
diffusion [21], [29]. This model’s main assumption is that
an individual’s behavior depends to a great extant on the
number of neighbors that share this behavior. Therefore, if
the number (or weighted sum) of infected neighbors of node
v at timestamp t is greater than a predefined threshold of v
(θv), at the next timestamp v will become infected and begin
to infect its own neighbors.

The Independent Cascade model is another fundamental
individual-based model [17], [18]. This model assumes that
any infected node has a single attempt to infect its unin-
fected neighbors at the next timestamp after its infection. In
any future timestamps, this node will not be able to further
infect its neighbors.

It is important to emphasize that many other models
were suggested in the literature. Most of them are merely
extensions of the basic models reviewed in this subsection,
tailored to more specific settings.

2.2 The Influence Maximization Problem
One of the most important problems in the information dif-
fusion field is the search for important or influential nodes
in the social network. These nodes may have the potential
to considerably enhance a viral process in the network, and
therefore it is important to identify such nodes. Formally, the
influence maximization problem can be defined as selecting
a subset of nodes from a given network G, whose seeding
(intentional activation) will start a viral contagion process,
which is likely to result in activation of a significant number
of nodes in the network. This problem may have different
objective functions. For example, to maximize the number
of activated nodes in a given time frame, or with a given
seeding budget, or to minimize the number of seeding
attempts needed to obtain a specified number of activated
nodes.

For example, modern marketing efforts use social net-
works for market analysis and for defining promotion
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strategies. Unlike classical mass-marketing methods that
address a wide market segment, social networks’ promotion
is often characterized by micro-segmentation, attempting to
utilize detailed information about each of the involved indi-
viduals [19]. The main motivation behind such an approach,
is that influencing the opinion of only a few individuals
may shape the opinion of the majority, by following a viral
contagion process [28].

The task of identifying influential nodes is still widely
investigated, but the identification of influential nodes is
not always easy. In many cases, nodes are referred to as
“influential” when past evidence show that their involve-
ment in the contagion process contributes significantly to
the spread. Nonetheless, in most real-world cases, this type
of information is missing, and most of the data available
to the marketers is the topological structure of the social
network and past adoption history.

2.3 Traditional Seeding Strategies

Kempe et al. [29] studied the influence maximization prob-
lem under the Linear Threshold and Independent Cascade
models and their generalizations. They prove that finding
the optimal solution to the problem is NP-hard in both
settings. Consequently, they presented a greedy algorithm
that obtains a (1 − 1/e) approximation of the optimal solu-
tion. While the greedy algorithm ensures a reasonably good
result in terms of coverage, it is still very expensive in terms
of run-time when executed on large-scale data-sets.

The complexity of the problem and the non-scalability of
the greedy approximation algorithm opened the chase after
scalable seed selection heuristics. One of the most popular
heuristics is identifying influential nodes, based only on
the network structure. This solution can be addressed via
graph-based metrics, such as centrality measures [6].

One way to measure a node’s centrality is by counting
the number of its connections (known as the node’s degree).
While calculating the degree of a node is a relatively trivial
task, such an approach is limited since it considers only the
first-order effect, without considering higher-order effects.
Other frequently used centrality measures that take into
account high-order effects include the PageRank [41], the
Betweenness Centrality [7] and the Eigenvector Centrality
[5]. Each of these measures has its own attributes and
represents a different type of importance that characterizes
a node. For a good source on centrality measures, the reader
is referred to [6] and [37].

With respect to influence maximization, several works
investigated the efficiency of seeding central nodes. The
work by Hinz et al. [22], for example, investigated four
seeding strategies: Hubs (Degree/EigenVector Centrality),
Bridges (Betweenness Centrality), Fringes (Edge Nodes) and
Random. The authors conducted three experimental studies
of adoption using a small controlled network; a real social
network of selected students; and a large-scale cellular net-
work. The study found that targeting Hubs is the most ef-
fective strategy in terms of influence maximization, with the
Bridges strategy right afterwards, both with a big gap above
the Random strategy (150-200%) and a huge gap above the
Fringes strategy. Similar results were obtained by Banerjee
et al. [3], where the authors investigated empirically the

spread of financial loan systems within a social network of
Indian villagers. The authors found that villagers with high
Eigenvector Centrality scores are more likely to influence
others in their surroundings, in comparison to the other
measures of centrality.

Another notable group of seeding heuristics are the CELF
[31] and CELF++ [20] algorithms, which are based on a
“lazy-forward” optimization scheme for selecting the seeds.
Their underlying idea is based on bounding the marginal
contribution of a node in a future iteration, with its marginal
contribution in a previous iteration due to monotonicity and
sub-modularity properties of the influence maximization
problem. These heuristics provide an efficient variation of
the greedy approximation algorithm by improving the order
of evaluating nodes to be added to the “seed set”. Empirical
evaluation showed that the proposed heuristics outperform
(in terms of influence maximization) and run faster than the
greedy algorithm, while still guaranteeing a constant factor
approximation of the optimal solution. Similarly, [15], [14]
show the advantages of using a marginal gain of influence
to form the seed set that will provide better propagation
throughout the network.

Chen et al. suggested a different group of seeding heuris-
tics [10], [9], [27], [11]. In [10] they presented an improved
greedy algorithm for seeding outcome evaluation by reduc-
ing the search space per each evaluation, and showed a
700-times faster performance on the independent cascade
model. In [9] they suggested the Maximum Influence Path
(PMIA) algorithm. Using this method under the indepen-
dent cascade model, the authors suggested to locate the
nodes whose seeding will result in a long chain of cas-
cades with the highest probability. In [27] they proposed
the Influence Rank Influence Estimation (IRIE) algorithm,
which performs an estimation of the influence function for
any given seed set, using precomputed influence estimated
values for iterative seed set ranking. Empirical simulations
have shown that the IRIE heuristic performance is similar
to that of the Greedy, PMIA and Pagerank influence heuris-
tics, while its memory consumption provides a significant
improvement over that of the other heuristics.

For up-to-date surveys on traditional seeding strategies
for influence maximization, the reader is referred to [42],
[32], [4].

2.4 Adaptive Seeding Strategies

The majority of existing works that dealt with the influence
maximization problem, focused on selecting a subset of net-
work nodes, that if seeded simultaneously at the beginning
of the process, would maximize the adoption rate at the end
of the process. Recently, numerous works presented a new
adaptive approach, which spreads the seeding actions over
time, and therefore allows to reassess the contribution of the
seeds’ selection in each timestamp, in order to improve the
overall adoption rate.

For example, Seeman et al. [43] presented a two-stage
framework for influence maximization. The underlying as-
sumption of this model is that besides of the “non-active”
(susceptible) and “active” (infective) states there is an in-
termediate state referred to as “available”: a node v is
considered available for seeding only if one of its neighbors
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w ∈ N(v) is active. Given an initial set of available nodes
X ⊆ V , the goal of the first stage is to select a seeding set
S ⊆ X in order to extend the set of available nodes, so that
the seeding actions in the second stage will maximize the
expected influence. The idea behind it relies on the known
fact that selecting a neighbor of a random node v is likely to
have a higher degree than v itself and thus one would like
to include those higher-degree nodes in the set of available
nodes for seeding.

In another study, Tong et al. [47] suggested an adaptive
seeding strategy for a variant of the Independent Cascade
model. In this variant, referred to as “Dynamic Independent
Cascade” model, the authors assume that the activation of a
node v by seeding occurs with a probability pv . Therefore,
in contrast to the models surveyed above, a seeding action
may fail, keeping the node in a non-active state. Under this
setting, the authors suggest an adaptive seeding approach,
in which the selection of nodes to be seeded at each times-
tamp, is performed while taking into account the realization
of the previous seeding attempts.

Jankowski et al. [24], [25], [26] suggested an adaptive
seeding approach to the influence maximization problem
under the Independent Cascade model. The authors show
that, regardless of the chosen strategy for selecting influ-
ential nodes, spreading the seeding actions along different
timestamps of the diffusion process can improve the overall
adoption rate and these results are further supported by
Iyer et al. [23]. Moreover, they present an inherent trade-off
between the obtained adoption rate and the duration of the
diffusion process.

In another study by Ni [39], the author proposed a
Markov decision process optimization within an “Incremen-
tal Chance” diffusion framework. According to the con-
tagion model, the probability of a node to get activated
is proportional to the fraction of its infected neighbors,
and once a node becomes active, it remains infective. The
goal in this case is to minimize the time taken to reach a
complete influence by selecting the seeding set, under the
constraint that only a portion of the budget is available at
each timestamp. In more recent research by Ni et al. [38],
the authors proposed an improved entropy-based centrality
measure which takes into account the weight of connections
and a confidence level. They show the superiority of their
method for sequential seeding compared to other state-of-
the-art centrality measures in terms of diffusion speed and
influence convergence.

Chierichetti et al. [12] introduced a different diffusion
model in which there are two competing ideas, each aiming
at maximizing its spread over a social network. The goal of
the marketer in this setting is to determine the best order
to address the individuals in order to maximize the amount
of adopters. The authors also provide an efficient greedy
algorithm that ensures the best achievable solution to the
problem.

Lin et al. [33] suggested the “Push-Driven Cascade”
model in which the probability that a node will become
active after a seeding action is determined by the activation
state of its neighbors including the node’s bias towards the
adoption. The marketer’s role in this setting is to choose
a single node to seed at each timestamp to maximize the
overall adoption in the network.

Sela et al. [45] proposed a diffusion model, named Ac-
tive Viral Marketing (AVM), which better fits real-world
marketing scenarios. According to this model, adoption of
products relies on continuous active promotion efforts by
the marketer, and the success of a marketing attempt to
infect a potential customer (uninfected node), depends on
the number of adopting friends (infected neighbors) of this
customer. Specifically, a customer is more likely to adopt
a product if more of his/her friends have already adopted
it, while taking into account that social influence diminishes
over time due to a memory-loss effect. The authors also pro-
posed a set of heuristics to schedule the marketing attempts.
The main idea behind these heuristics is to consider both
the information on the dynamic adoption-states of neighbor
nodes, as well as the static topology of the social network,
when choosing the next node to seed.

It is important to emphasize that in the three latter
models, each node has an accumulated influence in favor of
the product, but only the seeding act itself is considered to
be the trigger for activation, where the viral spread serves
only as a positive effect on the activation probability. This
contradicts classical diffusion models where nodes could
become active as a result of a viral infection without any
external intervening operation.

Goldenberg et al. [16] identified three different proper-
ties of existing contagion models that can be utilized by a
scheduled seeding approach to improve the total number
of activated nodes: (1) stochastic dynamics, (2) complex con-
tagion and diminishing social influence effects, and (3) state
dependent seeding. By analyzing each of these properties
separately, they demonstrate the advantages of the sched-
uled seeding approach over the traditional initial seeding
approach, both in theory and by empirical evaluation.

Several studies considered the use of sequential studies
in networks with more complex structures. For example,
Michalski et al. [35] presented the advantage of using se-
quential seeding in temporal networks. As another example,
Bródka et al. [8] suggested to use sequential seeding in
multi-layer networks.

To the best of our knowledge, all existing scheduled
seeding works tested the potential of scheduled seeding in
theory and/or by simulations (with or without real-world
network topologies).

3 METHODOLOGY

This work examines the potential of scheduled seeding by
analyzing a real-world large-scale dataset, containing both
the network topology as well as the infection times of nodes
in that network.

In particular, we first propose a method to quantify the
infection probability of a node with a given set of properties
in a given timestamp, using historical data (subsection 3.1).
Then, we suggest a method to assess the potential of a given
seeding strategy to infect nodes by using historical data
(subsection 3.2).

For the illustrative examples discussed in this section,
we will consider the network depicted in Fig. 1, which
comprises of six nodes and eight undirected edges, and the
infection times of these nodes.
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Fig. 1. An illustrative example of a network with six nodes and eight
edges. The infection times of these nodes are presented in the table on
the right, where each entry represents a node and its infection time (in
case it became infected).

3.1 Quantifying Infection Probabilities

We are interested in quantifying the infection probability of
a node with a given set of properties in a given timestamp,
using historical data. The infection probability of nodes can
be calculated in a relatively straightforward manner when
node properties remain static over time (e.g., the number
of neighbors a given node has). This can be obtained, for
example, by calculating the number of infected nodes with
that property, divided by the total number of nodes with
that property (i.e., not necessarily infected), at the end of
the diffusion process. In contrast, here we are interested in
properties that can change over time, such as the number
of infectious neighbors a given node has, making such a
calculation more challenging.

To illustrate this point, consider the network and infec-
tion times from Fig. 2. Simply calculating the number of
infected nodes with m infectious neighbors, divided by the
total number of nodes with m infectious neighbors at the
end of the diffusion process, would provide a false repre-
sentation of reality. Specifically, node B became infected at
timestamp t = 3, and had 0 infected neighbors at timestamp
t = 0, 1 infected neighbor at timestamp t = 1, 2 infected
neighbors at timestamps t = 2 and t = 3, and 3 infected
neighbors at timestamp t = 4. According to the simple
calculation, the infection of node B would be associated
with the property of 3 infectious neighbors (which is the
number of infectious friends B had at the end of the
diffusion process), while clearly node B became infected
at timestamp t = 3 when it had less than 3 infectious
neighbors.

To cope with this challenge, the method we propose here
(QIP ) creates a series of snapshots, where each snapshot
represents a static point in time. Each such snapshot con-
tains static information about the properties of nodes, and
therefore can be analyzed easily.

QIP receives as input the network topology (G(V,E)), a
hash table indicating the infection timestamp of nodes (I),
the set of node attributes of interest (F ) - e.g. the number

Algorithm 1 Quantify Infection Probability (QIP )
Input: G(V,E) - The network topology

I - The hash table indicating for each node its timestamp
of infection
F - The set of attributes
ts - The start time
te - The end time
step - The timestamp interval

Output: AF - a hash table indicating for each combination
of attribute values, its corresponding infection probabil-
ity

1: n← {}
2: nI ← {}
3: for (t = ts; t < te; t = t+ step) do
4: nt ← {}
5: ntI ← {}
6: for v ∈ V do
7: if v 6∈ I ∨ I[v] ≥ t then
8: f ← extract attribute value(G, v, t, F )
9: if f /∈ nt then

10: nt[f ]← 0
11: ntI [f ]← 0
12: end if
13: nt[f ]← nt[f ] + 1
14: if I[v] ∈ [t, t+ step) then
15: ntI [f ]← ntI [f ] + 1
16: end if
17: end if
18: end for
19: for f ∈ nt do
20: if f 6∈ n then
21: n[f ]← 0
22: nI [f ]← 0
23: end if
24: n[f ]← n[f ] + nt[f ]
25: nI [f ]← nI [f ] + ntI [f ]
26: end for
27: end for
28: AF ← {}
29: for f ∈ nI do
30: AF [f ]← nI [f ]/n[f ]
31: end for
32: return AF

of infectious neighbors a node has, the start time and end
time of the time period we plan to analyze (ts, te), and
the timestamp interval which determines the length of each
snapshot (step).

Then, the algorithm initializes two hash tables (lines 1
and 2). The first, n, stores for each possible combination of
values for F (recall that F is a set of attributes), the total
number of nodes that were observed with that combination
of values. The second, nI , stores for each possible combina-
tion of values for F , the total number of infected nodes that
were observed with that combination of values.

Next, in lines 3-27, the algorithm iterates over the var-
ious snapshots (starting at timestamp t = ts to timestamp
t = te with jumps of size step). For each such snapshot,
the algorithm initializes two hash tables (lines 4 and 5).
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The first, nt, stores for each possible combination of values
for F , the number of nodes that were observed with that
combination of values, during this snapshot. The second,
ntI , stores for each possible combination of values for F , the
total number of non-infected nodes that were observed with
this combination of values and will become infected in the
next timestamp. Then, in lines 6-18, the algorithm iterates
over the different nodes, retrieves the combination of values
for F for that node (f ) using the extract attribute value
function in line 8, increments the corresponding entry in nt

by 1 (line 13) and similarly increments the corresponding
entry in ntI by 1 if the node became infected during the
next timestamp (lines 14-15). The iteration ends in lines 19-
26, where the values in nt and ntI that were accumulated
during this snapshot, are added to n and nI which contain
information about the entire diffusion process.

Finally, when done iterating over all snapshots, the algo-
rithm calculates the ratio for each observed combination of
values for F (lines 28-31), and returns the result (line 32).

Fig. 2 illustrates the operation of QIP . For that purpose, we
use the same network topology (G) and the same infection
times (I) from Fig. 1. The (single) attribute we are examining
in this example (F ) is the number of infectious neighbors.
Finally, ts = 0, te = 3, and step = 1.

The figure contains four subfigures, each representing a
single snapshot. In each subfigure, nodes who are going to
be infected in the next snapshot are marked in yellow, nodes
who are already infected in the current snapshot are marked
in red and susceptible nodes are marked in white. The table
at the right-top corner of each subfigure represents nt and
ntI , and the table at the right-bottom corner represents the
aggregated values for n and nI over all snapshots so far
(including the snapshot at timestamp t).

At timestamp t = 0, all nodes have 0 infectious neigh-
bors, and the only node that is going to become infected in
the next timestamp is A. Therefore, for f = 0 (where f rep-
resents a concrete combination of values for the attributes in
F ) we have n0 = 6 and n0I = 1.

At timestamp t = 1, nodes D and E have 0 infectious
neighbors, and nodes B, C and F have 1 infectious neigh-
bor. Therefore, for f = 0 we have n1 = 2 and because node
D will get infected in the next timestamp, we have n1I = 1.
Similarly, for f = 1 we have n1 = 3 and because node F
will get infected in the next timestamp we have n1I = 1.

At timestamp t = 2, nodes B, C and E have 2 infectious
neighbors. Therefore, for f = 2 we have n2 = 3 and because
node B will get infected in the next timestamp we have
n2I = 1.

At timestamp t = 3, node E has 2 infectious neighbors,
and node C has 3 infectious neighbors. Therefore, for f = 2
we have n3 = 1 and because node E will not get infected
in the next timestamp we have n3I = 0. For f = 3 we have
n3 = 1, and because node C will get infected in the next
timestamp, we have n3I = 1.

Finally, for f = 0 we have n = 8 and nI = 2; for f = 1
we have n = 3 and nI = 1; for f = 2 we have n = 4 and
nI = 1; and for f = 3 we have n = 1 and nI = 1.

Now, based on all snapshots, we can estimate the con-
ditional probability of a node to become infected given the
number of infectious neighbors it has: for f = 0 we have

AF = 2/8 = 0.25; for f = 1 we have AF = 1/3 = 0.33; for
f = 2 we have AF = 1/4 = 0.25; and for f = 3 we have
AF = 1/1 = 1.0.

Another way, perhaps more intuitive, to characterize AF [f ]
is the following. We denote the set of all nodes in V that
had an attribute value of f at timestamp t and did not get
infected before timestamp t by:

Sf,t = {v ∈ V |extract attribue value(G, v, t, F ) = f∧
(v 6∈ I ∨ I[v] ≥ t)}

Similarly, we denote the set of all nodes in V that had an
attribute value of f at timestamp t and got infected between
timestamp t and timestamp t+ step by:

SI
f,t = {v ∈ V |extract attribue value(G, v, t, F ) = f∧

v ∈ I ∧ I[v] ∈ [t, t+ step)}

Therefore, AF [f ] is simply:

AF [f ] =

∑te
t=ts
|SI

f,t|∑te
t=ts
|Sf,t|

3.2 Assessing the Potential of a Seeding Strategy

QIP allows us to quantify the infection probability of a
node with a given set of properties in a given timestamp,
using historical data. In principle, such probabilities can
be used to rank nodes to be seeded, where nodes with
higher infection probabilities are ranked higher. However,
it is important to note that the highest infection probability
obtained by QIP by itself is insufficient to determine the
performance of such a seeding strategy.

To illustrate this point, consider again the example from
Fig. 2. Since the infection probability of a node with 3
infectious neighbors is 100%, one may infer that using a
seeding strategy which ranks nodes based on these infection
probabilities, can lead to a 100% infection rate. However,
this inference is wrong. For example, examining Fig. 3, we
see that at timestamp t = 0, none of the nodes have 3 infec-
tious neighbors. In fact, all nodes have exactly 0 infectious
neighbors, and therefore, no matter which node is selected
to be seeded, its infection probability is considerably lower
than 100%. Consequently, the infection rate at the level of
the entire strategy will also be lower than 100%.

To cope with this challenge, the method we propose here
(APSS) takes into account both the seeding budget as well
as the the entire set of susceptible nodes and their scores at
each snapshot.

APSS receives as input the network topology (G(V,E)),
a hash table indicating the infection timestamp of nodes
(I), the set of node attributes of interest (F ), the start time
and end time of the time period we plan to analyze (ts, te),
the timestamp interval which determines the length of each
snapshot (step), and the seeding budget (B).

Then, the algorithm initializes the set of nodes that were
seeded thus far, S, to an empty set (line 1). In line 2, the
algorithm determines the seeding budget Bt for each snap-
shot, by distributing the overall seeding budget B evenly
over the various snapshots (line 2).
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Fig. 2. Illustration of the operation of QIP .

Next, in lines 3-20, the algorithm iterates over the var-
ious snapshots (starting at timestamp t = ts to timestamp
t = te with jumps of size step). For each such snapshot, the
algorithm initializes the set of nodes to be seeded during
this snapshot (St), and a hash table that stores the score of
each node (score) to be empty (lines 4 and 5). In lines 6-12,
the algorithm iterates over all nodes that were not seeded
and have not become infected thus far (line 7). For these
nodes, the algorithm retrieves the combination of values
for F for that node (f ) using the extract attribute value
function (line 10), applies the calc attribute score(f) func-
tion to obtain a score for that combination of values, and
stores the obtained score in the score hash table (line 11).
In line 13, the algorithm sorts the nodes by their scores
in descending order using the sort keys by values(score)
function. Then, in lines 14-18, the algorithm chooses nodes
to be seeded and adds them to St, until reaching the seeding
budget for this snapshot. After reaching the seeding budget
of this snapshot, all nodes in St are added to S (line 19).

Finally, when it finishes the iteration over all snapshots,
the algorithm counts how many of the nodes that were
chosen to be seeded, actually became infected (lines 21-26)
and returns the result in line 27.

Fig. 3 illustrates the operation of APSS. For that purpose,
we use the same network topology (G) and the same infec-
tion times (I) from Fig. 1. The attribute we are examining
in this example (F ) is the number of infectious neighbors.
Finally, ts = 0, te = 3, and step = 1.

The figure contains four subfigures, each representing a
single snapshot. In each subfigure, nodes who were chosen

to be seeded at that snapshot are marked with green dashed
outline, nodes who were chosen to be seeded in the past are
marked with green solid outline, infected nodes are marked
in red and susceptible nodes are marked in white. The
table at the right-top corner of each subfigure represents the
sorted list of nodes by their scores, and the set at the right-
bottom corner represents the set of nodes who were chosen
for seeding in all snapshots thus far. The table in the last
snapshot shows the nodes that were selected to be seeded
(over all snapshots) and whether they became infected.

In this example, we use the infection probabilities from
Fig. 2 as the scores for nodes. Furthermore, we assume that
the seeding budget for each snapshot is Bt = 1.

At timestamp t = 0, all nodes have f = 0 infectious
neighbors, and therefore they all have score = 0.25. After
sorting the nodes by their scores, node E was (arbitrarily)
chosen to be seeded and was added to St, as well as to to S.

At timestamp t = 1, node D has f = 0 infectious
neighbors, and nodes B, C and F have f = 1 infectious
neighbor. Therefore, node D has score = 0.25, and nodes
B, C and F have score = 0.33. Note that node A is not
considered since it became infected, and node E is not
considered since it was already seeded previously. After
sorting the nodes by their scores, node F was chosen to
be seeded and was added to St, as well as to to S.

At timestamp t = 2, nodes B and C have f = 2 infec-
tious neighbors, and therefore they both have score = 0.25.
After sorting the nodes by their scores, node C was chosen
to be seeded and was added to St, as well as to S.

At the end of this process we can see that the set of nodes
that were chosen to be seeded is S = {E,F,C}. Nodes F
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Algorithm 2 Assessing the Potential of a Seeding Strategy
(APSS)
Input: G(V,E) - The network topology

I - The hash table indicating for each node its timestamp
of infection
F - The set of attributes
ts - The start time
te - The end time
step - The timestamp interval
B - The seeding budget

Output: R - The total number of seeded nodes that became
infected

1: S ← {}
2: Bt ← B/[(te − ts)/step]
3: for (t = ts; t < te; t = t+ step) do
4: St ← {}
5: score← {}
6: for v ∈ V do
7: if v ∈ S ∨ (v ∈ I ∧ I[v] < t) then
8: continue
9: end if

10: f ← extract attribute value(G, v, t, F )
11: score[v]← calc attribute score(f)
12: end for
13: ranked← sort keys by values(score)
14: for v ∈ ranked do
15: if

∣∣St
∣∣ < Bt then

16: St ← St ∪ {v}
17: end if
18: end for
19: S ← S ∪ St

20: end for
21: R← 0
22: for v ∈ S do
23: if v ∈ I then
24: R← R+ 1
25: end if
26: end for
27: return R

and C became infected after their seeding, while node E
did not become infected at all. Therefore, out of 3 seeding
attempts, only 2 were successful, and the algorithm returns
R = 2.

3.3 Runtime Complexity Analysis

The runtime complexity of the QIP algorithm is given by:

O(
te − ts
step

· |V | ·Oeav)

where Oeav is the runtime complexity of the
extract attribute value function. More specifically,
the loop in lines 3-27 has te−ts

step iterations, the loop
in lines 6-18 has V iterations, the loop in lines 19-26
has |nt| ≤ |V | iterations, and the loop in lines 29-31
has |nI | ≤ |V | iterations. All other operations, except
extract attribute value have a runtime complexity of
O(1). The extract attribute value function may have an
arbitrary runtime complexity which we denote as Oeav .

Similarly, the runtime complexity of the APSS algo-
rithm is given by:

O(
te − ts
step

· |V | · log(|V |) ·Oeav)

More specifically, the loop in lines 3-20 has te−ts
step itera-

tions, the loop in lines 6-12 has V iterations, the loop in
lines 14-18 has |ranked| ≤ |V | iterations, and the loop in
lines 22-26 has |S| ≤ |V | iterations. All other operations,
except extract attribute value and sort keys by values
have a runtime complexity of O(1). The runtime com-
plexity of extract attribute value was denoted by Oeav ,
and sort keys by values has a runtime complexity of
O(|V | · log(|V |)).

4 THE DATASET

The dataset used in this study was provided to us by a rela-
tively large mobile network operator. Data originating from
mobile network operators was found to be very appealing
for the purpose of this study since such companies hold
information about the social network of their customers that
can be derived from the communication network (i.e., calls
and text messages), as well as information on the adoption
time of products or services that these companies offer to
their customers1.

With regard to the adoption information, we focus on
a specific service that the mobile network operator offers
to its customers, namely, the repair service, which can be
seen as an insurance plan for customers’ mobile devices. We
chose this service over other products and services that the
company offers since the company does not actively adver-
tise this service as part of its ongoing marketing campaigns.
This allowed us to neutralize various effects that might have
interfered with this study’s objective and isolate the effect of
the viral marketing process over the network.

In the following subsections we describe the data that
we received in details (subsection 4.1) and explain the
adjustments made to the data to fit this study (subsection
4.2).

4.1 Data Description

The received dataset contains the metadata for calls and text
messages (in-going and out-going records) of 9,549 sampled
customers between September 1, 2018 and November 26,
2018 (we denote this group of sampled customers by W ).
Customers in W were sampled randomly over all the cus-
tomers who satisfied the following criteria: customers who
had a successful repair in the given period, thus, used the
repair service between September 1, 2018 to November 26,

1. We would like to emphasize that in general, it is very difficult
to obtain combined information about both the structure of the social
network as well as on the adoption of a product over this network.
Clearly, companies such as Facebook hold similar data, but such
data is typically not publicly available. When it comes to publicly
available data, various samples of networks (including Facebook) are
available. However, while these samples typically include the network
structure, they do not include information about products’ adoption.
Nevertheless, it should also be noted that we believe our methods can
be generalized to other products and other settings such as that of
Facebook.
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Fig. 3. Illustration of the operation of APSS.

2018, did not use the repair service again in the following
week, and did not pay additional charges for their repair.

For each customer in W , we received all of its inter-
actions (calls or text messages) with other customers of
the company during the mentioned period. Overall, we
received 6,283,938 interactions, where customers in W inter-
acted with 259,106 unique customers (we denote this group
of unique customers by U ).

In addition, for each customer inW we obtained the date
of its most recent successful repair, and for each customer
in U we received the date in which they joined the repair
service (if at all).

To summarize, the dataset provided to us included
6,283,938 records, where each record (a single interaction
between w ∈ W and u ∈ U ) in the dataset contained the
following attributes:

• W’s customer encrypted id
• U’s customer encrypted id
• Date and time of the interaction
• Interaction type (call or text message)
• Duration of the call (0 for text messages)
• Incoming or outgoing record
• The last repair date for W
• Date and time of U joining the repair service (or null

if U did not join the repair service at all)

It is important to note that the data was provided to us
under strict privacy guidelines, which included among the
rest: (1) using pseudo-identifiers instead of real customer
identifiers, (2) limiting the sample size (group W ) up to

10,000 customers only, (3) limiting the call network to one
hop from the sampled population (i.e., only to the circle of
customers that interacted with the sampled population, and
not with additional circles), and (4) personal information
about the customers such as gender, age, address, etc. was
not shared with us at all.

4.2 Data Adjustments
Recall that the proposed algorithms in section 3 expect to
receive two data structures, G(V,E) which represent the
social network topology and I which contains information
about the time in which each node w ∈W got infected.

In order to derive the social network from this dataset,
we followed two approaches. The first was to extract an
interaction network which included a node for each cus-
tomer in W ∪ U and an edge (v1, v2) between the two
nodes v1 and v2 was created if there was at least one mobile
interaction (i.e., call or text message) between the customers
v1 and v2 in the dataset. The second approach was based
on a friendship network that was built in a very similar
manner to the interaction network, except that an edge (v1,
v2), representing a friendship relationship between the two
nodes v1 and v2, was created only if there was a reciprocal
interaction between the customers v1 and v2 (i.e., at least one
interaction that v1 initiated and at least one interaction that
v2 initiated) in the dataset. This is a common approach used
in network science literature to transform interactions into
friendship relationships [13], [40]. It should be noted that we
also experimented another approach to extract friendship
relationship, by which an edge (v1, v2), is created only if
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the average call duration between v1 and v2 is higher than
the median call duration in the entire dataset. The main
results of this paper remained consistent under this altered
definition of friendship.

The calculation of I is straightforward: it contains a
single entry for each node u ∈ U which joined the repair
service and include u as well as the time in which u joined
the repair service. That is, I does not contain entries for
nodes u ∈ U which did not joined the repair service.

It is important to emphasize that unlike other studies in
this field, we make a clear distinction between an infected
node, which in our case represents a customer that joined
the repair service, and an infectious node, which in our case
represents a customer who had a successful repair in the
given time period. Accordingly, we also use a third dataset,
J which contains a single entry for each node w ∈ W .
Each such entry contains w as well as the time of w’s latest
successful repair. The use of J will become clearer in section
5.1.

5 RESULTS

5.1 Quantifying Infection Probabilities
In this subsection, we demonstrate the use of QIP on our
dataset.

In particular, we focus on three attributes of interest. The
first attribute is the number of infectious friends a node has
at any given point in time. ApplyingQIP with this dynamic
attribute in mind, allow us to evaluate whether the complex
contagion effect is present in the dataset. The second attribute
is the mean time that has passed since the friends of a given
node became infectious. Applying QIP with this dynamic
attribute in mind, allow us to evaluate whether a diminishing
social influence effect is present in our dataset. The third set of
attributes is a combination of these two dynamic attributes,
which would allow us to evaluate whether a joint effect is
present in our dataset.

For that purpose, friendship relationships were calcu-
lated as described in subsection 4.2; a customer was con-
sidered infectious in a given time if they had a successful
repair earlier in time (i.e., as indicated by J , see section 4.2);
and a customer is considered infected in a given time, if
they joined the repair service at that time (i.e., as indicated
in I , see section 4.2). Finally, we note that when we applied
the QIP algorithm, we considered a time resolution of two
weeks (i.e., 14 days). That is, in order to have enough data in
each snapshot, we divided the time frame into consecutive
periods, each of two weeks, and extracted a single snapshot
of the network for each such period. We also considered
other time resolutions (e.g., 7 days) and the results were
consistent.

5.1.1 Number of Infectious Friends Attribute
Fig. 4 shows the results of applying QIP on the dataset,
while considering the number of infectious friends dynamic
node attribute. As can be seen, the likelihood of a customer
to become infected grows with the number of infectious
friends it has. Specifically, the likelihood of a customer with
3 or more infectious friends to become infected is almost
3 times higher than that of a customer with 0 infectious
friends (2.4% vs. 0.82% respectively). This result implies the
existence of the complex contagion effect.

0 1 2 3 or more
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n I
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2.4015

Fig. 4. Infection likelihood of customers as a function of the number of
infectious friends they have. The X-axis represents the number of infec-
tious friends a customer has, and the Y-axis represents the likelihood
of a customer with that given ”number of infectious friends” to become
infected (join the repair service), as calculated by QIP . The colored
area represents the 95% confidence interval of the proportion.

5.1.2 Mean Time from Infectiousness Attribute
Fig. 5 shows the results of applying QIP on our dataset,
when considering the mean time from infectiousness dy-
namic node attribute. As can be seen, the likelihood of nodes
to become infected generally decreases with the mean time
that has passed since its friends became infectious. Specifi-
cally, in the case of 2 time periods that have passed (i.e., 1
month), the likelihood of a customer to become infected is
60% higher than in the case of 4 time periods or more (i.e.,
2 months or more), 1.22% vs. 0.76% respectively. This result
implies the existence of the diminishing social influence effect.

An interesting exception to the decrease in infection
likelihood is the case of a single time period (i.e., 2 weeks),
for which the infection likelihood is 14% lower than that of
2 time periods (i.e., 1 month): 1.22% vs. 1.05% respectively.
We conjecture that this happens since the infection operation
itself takes some time. Specifically, in our setting, customers
that had a successful repair, might prefer to wait a bit before
recommending the service to their friends (e.g., to make sure
the repair is indeed successful), and their friends might take
a while to join the service (e.g., since it requires a certain
amount of effort, like calling the service provider).

5.1.3 Number of Infectious Friends and Mean Time from
Infectiousness Attributes
Fig. 6 shows the results of applying QIP on our dataset,
when considering both the number of infectious friends and
the mean time from infectiousness dynamic node attributes.
As can be seen, the highest likelihood for a customer to
become infected is obtained in the case of 3 or more in-
fectious friends and 2 time periods that have passed on
average since these friends became infectious (3.24%). The
infection likelihood in this case is almost 4 times higher
than in the case of 0 infectious friends (3.24% vs. 0.82%).
This result strengthen the existence of the complex contagion
and diminishing social influence combined effect. As shown
by Goldenberg et al. [16], the scheduled seeding approach
is expected to benefit greatly from such a combined effect.

Fig. 6 highlights another important property which mo-
tivated the development of APSS: while the case of 3
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Fig. 5. Infection likelihood of customers as a function of the mean
time from infectiousness. The X-axis represents the mean time from
infectiousness (in time periods of 2 weeks each), and the Y-axis rep-
resents the likelihood of a customer with that given ”mean time from
infectiousness” time periods to become infected (join the repair service),
as calculated by QIP . The colored area represents the 95% confidence
interval of the proportion.
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Fig. 6. Infection likelihood of customers as a function of the number
of infectious friends and the mean time from infectiousness. The rows
represents the number of infectious friends a customer has, and the
columns represents the mean time that has passed since they became
infectious (in time periods of 2 weeks each). Each entry represents the
likelihood of a customer with that given “number of infectious friends”
and “mean time from infectiousness” values to become infected (join the
repair service), as calculated by QIP . In parenthesis, we present the
percentage of cases we observed with such values.

or more infectious friends and 2 time periods presents an
infection likelihood which is 4 times higher than that of 0
infectious friends, it appears only in 0.29% of the observed
cases, whereas in the vast majority of the observed cases are
associated with 0 infectious friends.

5.2 Assessing the Potential of Scheduled Seeding
In this subsection, we demonstrate the use of APSS on
our dataset, with the goal of evaluating the potential of the
scheduled seeding approach. To that end, we considered 7
different seeding strategies. The first three strategies, which
are commonly used as benchmark seeding strategies in the
literature, use static node attributes, and include:

• Random - Nodes to be seeded are selected randomly.
• Degree (Interactions) - Nodes to be seeded are selected

according to their degree in the interaction network
(see section 4.2).

• Degree (Friends) - Nodes to be seeded are selected
according to their degree in the friendship network
(see section 4.2).

The remaining four strategies use dynamic node at-
tributes, and rely on QIP to obtain a score for a given node
in a given timestamp based on its attributes values at that
timestamp. Three of these strategies consider the dynamic
node attributes that were described in section 5.1:

• Number of Infectious Friends (NIF) - Nodes to be
seeded are selected according to the infection like-
lihood that QIP calculates for the number of infec-
tious friends they have (see subsection 5.1.1 for more
details).

• Mean Time from Infectiousness (MTI) - Nodes to be
seeded are selected according to the infection like-
lihood that QIP calculates for the mean time that
has passed since their friends became infectious (see
subsection 5.1.2 for more details).

• Number of Infectious Friends and Mean Time from In-
fectiousness (NIF&MTI) - Nodes to be seeded are
selected according to the infection likelihood that
QIP calculates for the combination of number of in-
fectious friends they have and the mean time that has
passed since they became infectious (see subsection
5.1.3 for more details).

The fourth strategy, Number of Infectious Interactions (NII),
is considered for completeness purposes. This strategy se-
lects nodes to be seeded according to the infection likelihood
thatQIP calculates for the number of infectious interactions
(i.e., not necessarily friends) they have.

Fig. 7 shows the results of executing APSS with the
seven strategies described above and for varying seeding
budgets. The X-axis represent the seeding budget as a per-
centage of the network size in a logarithmic scale. The Y-axis
represents the percentage of successful seeding attempts
(i.e., the percentage of nodes, out of those who were seeded,
that became infected). The vertical dashed line represents a
seeding budget of 1%.

As can be seen, for smaller seeding budget percentages,
the NIF&MTI strategy outperforms all the other consid-
ered strategies. For example, for a seeding budget of 1%,
the NIF&MTI strategy obtains 7.74% successful seedings
attempts, compared with 6.79% obtained by the Degree
(Friends) strategy, and only 2.45% obtained by the Random
strategy, which is often used in practice. The following best
performing strategy is NIF, which is only slightly worse
than NIF&MTI. This implies that NIF can be used as a
simplified variation of NIF&MTI while obtaining similar
results.

In addition, we also observe the advantage of using a
friendship network rather than an interaction network. For
example, for a budget of 1%, the NIF strategy obtains 7.51%
successfully seedings attempts compared with 6.81% ob-
tained by the NII strategy, while the Degree (Friends) obtains
6.79% successfully seedings attempts compared with 5.28%
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Fig. 7. Percentages of successful seeding attempts for the seven exam-
ined strategies.

obtained by the Degree (Interactions) strategy. This implies
that the friendship definition we presented in subsection
4.2 does manage to capture some real aspects of friendship
relationships.

Finally, we notice that for most strategies, the percentage
of successful seeding attempts declines when increasing the
seeding budget2, until it roughly converges with that of
the Random strategy for a seeding budget of 100%. This
is quite expected since for a seeding budget of 100%, for
example, all nodes are selected to be seeded, regardless of
their likelihood to be seeded successfully, thereby making
all seeding strategies equivalent.

Fig. 7 demonstrates the ability of APSS to identify
nodes that have a high likelihood to become infected.

The next step in the analysis is focused on showing what
would happen if such nodes are indeed seeded. Ideally, this
can be achieved by performing a live experiment to compare
different seeding strategies. Here, we try to achieve a similar
goal via simulations based on real-data. To that end, we
assume that seeding a node (e.g., calling a customer, sending
them a text message, or giving them a discount) increases
its likelihood to become infected by ε%. Such an assumption
can be used to simulate the percentage of successful seeding
operations for different seeding strategies.

Fig. 8 shows the results of executing APSS, for varying
seeding budgets. This time we focus on the NIF&MTI strat-
egy which was found to be the best performing strategy, and
we assume that seeding operation increases the likelihood of
a node to become infected by ε%, for ε ∈ {5, 10, 25, 50, 100}.
The X-axis represent the seeding budget as a percentage
from the network size in a logarithmic scale. The Y-axis rep-
resents the percentage of successful seeding attempts (i.e.,
the percentage of nodes, out of those who were seeded, tha
became infected, where their likelihood to become infected
is increased by ε %). The vertical dashed line represents a
seeding budget of 1%.

Clearly, the higher the value of ε is, the higher is the
percentage of successful seeding attempts. Specifically, for a
seeding budget of 1% and ε = 100%, 15.47% of the seeding
attempts are successful.

2. Note again that the Y-axis represents the percentage, rather than the
number, of successful seeding attempts.
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Fig. 8. Percentage of successful seeding attempts for various values of
ε (the increase in the likelihood of a node to become infected due to
seeding).

Interestingly, under the assumption that a seeding oper-
ation increases the likelihood of a node to become infected
by ε%, if we want to assess how good the seeding strategy is,
we can ignore the value of ε, by calculating the performance
of a strategy relatively to another strategy (e.g., Random).
Fig. 9 shows the results of executing APSS with the six
strategies described above (excluding the Random strategy)
and for varying seeding budgets. The X-axis represent the
seeding budget as a percentage of the network size and is
presented in in a logarithmic scale. The Y-axis represents the
percentage of successful seeding attempts obtained by each
strategy, divided by that of the Random strategy. The vertical
dashed line represents a seeding budget of 1%.
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Fig. 9. Ratio of successful seeding attempts for for the 6 examined
strategies divided by Random.

As can be seen, for a seeding budget of 1%, the proposed
NIF&MTI strategy performs 1.14 times better (i.e., 14%
better) than the Degree (Interactions) strategy, and 3.15 times
better (i.e., 215% better) than the Random strategy, which is
often used in practice. These results hold regardless of the
value of ε.

6 SUMMARY AND CONCLUSION

This work examined the potential of scheduled seeding by
analyzing a real-world large-scale dataset, containing both
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the network topology as well as the nodes’ (customers’)
infection times. We first proposed a method to quantify the
infection probability of a node with a given set of prop-
erties in a given timestamp, by analyzing historical data.
Then, we used the proposed method to demonstrate the
existence of both a complex contagion effect and a diminishing
social influence effect in the considered real-world example.
Finally, we suggested a method to assess the potential of
a given seeding strategy to infect nodes by using historical
data, and compared a scheduled seeding strategy that ranks
nodes based on a combination of the number of infectious
friends they have, as well as the time that has passed since
they became infectious, to a number of benchmark seeding
strategies. Results of our analyses showed that this sched-
uled seeding strategy considerably outperform the other
benchmark seeding strategies.

It is important to note that the methodology proposed in
this paper considers a setting in which data is available on
both the social network topology as well as the infection
time of nodes during the diffusion process. Since in this
work, our experiments were based on a single proprietary
dataset, an important research direction would be to re-
peat our experiments on additional datasets. However, in
many settings, such combined data is not available or is
only partially available. Therefore, a closely related research
direction would be to adjust the proposed methodology and
evaluate it in cases of partial and/or noisy data.

The dataset used in this study was limited to a sample
of roughly 10,000 customers (and the customers they inter-
acted with) for a period of roughly three months, and con-
tained information about the adoption of a specific service.
Future research effort should be devoted to obtain a larger
sample for a longer period of time. Such effort should also
be devoted to examine other types products or services.

While this study can be seen as an important milestone
in understanding the potential of scheduled seeding strate-
gies, the entire evaluation made in this study was based on
historical data. Another important research direction would
be to compare scheduled seeding strategies and traditional
initial strategies in live experiments relying on A/B testing
that was unavailable in the current study.
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