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Abstract: Projects are rarely executed exactly as planned. Often, the actual duration of a project’s 

activities differ from the planned duration, resulting in costs stemming from the inaccurate 

estimation of the activity’s completion date. While monitoring a project at various inspection points 

is pricy, it can lead to a better estimation of the project completion time, hence saving costs. 

Nonetheless, identifying the optimal inspection points is a difficult task, as it requires evaluating a 

large number of the project’s path options, even for small-scale projects. This paper proposes an 

analytical method for identifying the optimal project inspection points by using information theory 

measures. We search for monitoring (inspection) points that can maximize the information about 

the project’s estimated duration or completion time. The proposed methodology is based on a 

simulation-optimization scheme using a Monte Carlo engine that simulates potential activities’ 

durations. An exhaustive search is performed of all possible monitoring points to find those with 

the highest expected information gain on the project duration. The proposed algorithm’s complexity 

is little affected by the number of activities, and the algorithm can address large projects with 

hundreds or thousands of activities. Numerical experimentation and an analysis of various 

parameters are presented. 
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1. Introduction 

Project management is often defined as the discipline of initiating, planning, executing, and 

controlling the work of a team to achieve specific goals and meet specific performance measures. It 

is one of the most applied paradigms in various and diverse areas, such as construction, 

manufacturing, transportation, education, and software products. A project is defined as a temporary 

endeavor designed to produce a unique product, service, or result with defined objectives that 

usually need to be completed within a specified time and under resource and budget constraints [1]. 

Typically, during the project planning phase, a project is defined by its activities, deliverables, 

resources, and timelines. From the project plan, the project manager derives the estimated project 

duration, which is a key factor in measuring the project’s success and often has a significant impact 

on the project’s costs and revenues [2–4]. For example, in many cases, a delay of the project 

completion date results in fines as well as additional costs. Unfortunately, few projects are executed 

exactly as planned. In most cases, the actual duration of the project activities differs from the planned 

duration, impeding an exact estimation of the project completion date. 

Enabling a better prediction of a project’s duration and its completion date is thus a major 

advantage that facilitates better decision making, more accurate risk management, and often leads to 
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higher profitability. This can be achieved by proper monitoring of project activities to provide more 

information on a project’s status, particularly on the estimated duration and completion date. 

Continuous monitoring of a project is often impossible practically and might also disrupt the 

project itself. Therefore, a germane question concerns when to allocate inspection points under a 

given, often fixed, monitoring budget. Despite the obvious advantages of such a monitoring 

procedure, few studies have addressed project management monitoring systematically, alongside 

providing a practical method to find the optimal time points for such inspections. Possibly, one of 

the reasons for such a gap is that the identification of the optimal inspection policy is a difficult task, 

as it requires the evaluation of all of the potential project’s scenarios or paths a priori. Depending 

upon the project duration and the allowed number of inspection points, designing an optimal 

monitoring plan may require the evaluation of thousands of paths’ options, even for small-scale 

projects. 

The project management literature provides general guidance for determining the control 

policy, mostly based on practical, non-analytical approaches. Ordinarily, the project milestones are 

defined as the recommended monitoring points, where the output of a phase and its time frame are 

compared to the desired output. Another common practice in project monitoring is to set periodic 

monitoring points (e.g., weekly or monthly) to monitor a project’s progress. To reduce cost and save 

precious time while allowing the project manager enough information, careful planning is required 

when defining the frequency and timing of these monitoring points. As we will show in this work, 

such a periodic monitoring scheme, as well as project milestone monitoring, might be far from 

optimal when considering the gathered information with respect to the monitoring budget. 

This paper presents a numeric analytical approach for identifying a project’s optimal inspection 

points by using information theory metrics , such as entropy reduction and expected mutual 

information. It aims to measure the information gathered by the outcome of an inspection point about 

the estimated project duration, which is considered a random variable. We follow the terminology of 

project management papers and often term these monitoring points as “control points” (henceforth, 

the terms monitoring point, inspection point, and control point are used interchangeably), although 

in many times the monitoring is passive (namely, inspecting the ongoing tasks and estimating their 

completion rates) with no action taken by the project manager to modify the actual time required to 

accomplish an activity. However, the new information obtained about the activities’ completion rates 

usually reduces the uncertainty about the project completion time. 

The proposed methodology is based on a simulation and optimization model using a Monte 

Carlo procedure, which replicates the project paths with various expected activities’ durations based 

on their distributions. For small-scale projects, an exhaustive search can be performed over all 

potential inspection points, and the potential information gain can be calculated for each point exactly 

based on the entropy reduction of the project’s completion time. Relying on simulation runs, the times 

that statistically provide the highest expected information gain are selected as the best candidates for 

the monitoring points. We show that the proposed algorithm’s complexity is not significantly affected 

by the number of activities, and thus the algorithm can be applied to large projects with hundreds or 

thousands of activities. However, the complexity is sensitive to the number of required monitoring 

points and the project’s total duration as well as the relations between them. 

This paper includes numerical experimentation for simulating various types of projects and 

activities. As mentioned above, previous studies did not directly measure the expected information 

about the project completion time. Instead, common heuristics for setting the inspection points were 

used, both in the literature and in the field, such as the ‘maximal number of activities in progress’ 

and ‘maximal variance of the activities in progress’ policies, and are used here as benchmark 

methods. We show that, even in relatively small and noncomplex projects, it is not trivial to identify 

the optimal inspection points, and conventional heuristics can be highly misleading, as they 

recommend monitoring times whose information gain is far from optimal, or even when no new 

information can be obtained by such an inspection. 

Another interesting observation is that when comparing the same project with different 

distribution types for its activities’ durations, e.g., by applying the commonly used beta or uniform 
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distribution, the former leads to more coherent and robust policies for the selection of the monitoring 

points. This observation points to the benefit derived from the additional information that the “most 

likely” value (the mode) of the beta distribution provides regarding the project duration and its effect 

on the obtained information. This phenomenon is further addressed when comparing two identical 

projects, both with similar beta distribution parameters, where one differs from the other only by 

their mode values in some of the activities. Such a change leads to allocating different monitoring 

points, demonstrating such a parameter’s importance. 

The rest of this paper is organized as follows. Section 2 provides an overview of previous related 

studies. In Section 3, we present the proposed method for finding the optimal monitoring points, and 

in Section 4, we discuss the method’s implementation, using examples to further clarify the proposed 

approach. In Section 5, numerical experiments are presented, and the simulation results are 

compared to those of other heuristics. Finally, in Section 6, we conclude the paper with a discussion 

and suggestions for future research. 

2. Literature Review 

The design of a project monitoring system has been  mentioned in the literature as a vital part of 

project management efforts to achieve projects’ objectives [3,5–7]. According to these studies, the 

need for monitoring the project plan arises due to the nature of projects executed in dynamic 

environments. Among the factors that affect a project’s plan, we find the revision of activities’ 

duration estimates, delivery failures, changes in technical specifications, technical difficulties, 

unexpected weather conditions, and labor unrest, to name just a few factors. To react to 

environmental changes, and as project schedules are often not deterministic, a monitoring system 

that generates feedback for corrective actions [6] is necessary. Moreover, it is widely recognized that 

planning and monitoring a project plays a major role in reducing project failures [8]. 

An important aspect of project control systems is their ability to determine when and where to 

allocate monitoring points. Although continuous feedback enables modifying plans as soon as 

deviation occurs, it is costly and increases the possibility of resistance to what may be considered 

excessive control measures [9]. The project management literature provides general guidance on 

control policies, mostly based on non-analytical approaches. For example, King and Cleland [10] 

suggested that the frequency of periodic monitoring depends upon the project size, i.e., small projects 

should be controlled on a monthly basis, large projects should be controlled on a weekly basis, and 

medium-size projects presumably should fit in between. Meredith and Mantel [2] recommended that 

monitoring points be linked to the occurrence of important events, i.e., project milestones, and not 

only to the calendar; however, the question of how to determine the extent and frequency of control 

is not addressed in their work. Raz and Erel [5] considered a case wherein n monitoring points must 

be selected during a project’s lifespan. Their objective was to determine the timing of the monitoring 

points to maximize the total amount of extracted information. Accordingly, the authors focused on 

the reporting delay, which refers to the amount of time elapsed from the moment an activity 

commenced up to the time of the measurement. One of their simplifying assumptions was that data 

on the status of activities that occurred in the past are less informative than data gathered on recent 

activities. Note that in our study, we do not apply such an assumption, as the project duration and 

completion time are affected by the past, current, and future activities in the project. Moreover, in the 

proposed approach, we aim to define a policy that can be implemented at any time point, including 

at the beginning of the project. 

Raz and Erel [5], as well as Tareghian and Salari [11], presented an analytical framework for 

determining the timing of project control based on maximizing the total amount of information 

generated by the monitoring points. In particular, Raz and Erel [5] presented an analytical framework 

for determining the timing of control points, such that to maximize the number and the intensity of 

the activities that are taking place at that time point. The authors developed an optimal solution 

procedure based on dynamic programming and a typical s-curve that, for a given number of control 

points, determines the timing of each control point. Tareghian and Salari [11] proposed a model that 

first identifies the optimum number of control points and then determines the timing of the points 
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based on the information gathered at each control point using attraction-repulsion mechanisms 

borrowed from electromagnetism theory. The benefit yielded by the gathered information is then 

calculated based on the variance of the beta distribution, which is also used in this study. Note that 

both aforementioned studies relied on simple heuristics to estimate the gathered information rather 

than using a more precise information theory measure, as done in this study. 

Another study that compared the effectiveness of five control timing policies (i.e., ‘equal 

intervals’, ‘front loading’, ‘end loading’, ‘random’, and ‘no control’) over a project’s duration showed 

that, while no significant difference was observed between the policies in terms of the required cost 

to recover from project plan deviations, the ‘end loading’ policy outperformed the others in 

controlling time overruns [6]. Another quantitative approach proposed by Falco and Macchiaroli [8] 

is based on the definition of an effort function, which is linearly dependent upon the total number of 

executed activities within a given period and is inversely related to the total slack time. They assumed 

that the control intensity is distributed along a bell-shaped curve around the point of maximum 

effort. This method accords with the conventional industry practice of locating control points at 

periods wherein the number of activities in progress is maximal and assumes that the maximal 

information can be extracted at these points. 

Sabeghi et al. [12] proposed a dynamic control approach in which they used an adapted facility 

location model (FLM) coupled with a computer simulation tool and a project crashing model to 

dynamically determine the timing of the control points in a project’s lifecycle. Weights were assigned 

to each project activity based on the degree of its importance and criticality. The adapted FLM was 

used to dynamically determine the timing of the control points. A simulation model measured the 

project’s progress and predicted possible disruptions. The activity weights were determined by the 

number of critical paths that contained the activity. The model assumed that the information gathered 

at the activities’ completion times is more accurate and accordingly considered the time instances at 

which one or more project activities are completed according to schedule as the potential control 

points. 

The method proposed herein uses concepts of information theory [13], which provides a 

qualitative and quantitative model of communication depicted as a statistical process. A key measure 

of information is entropy, which quantifies the information’s expected value. Using entropy, mutual 

information �(�; �), which measures the amount of information that one random variable contains 

about another, can be calculated. 

A key element in the proposed approach is the re-evaluation of a given activity’s duration based 

on the information gathered at a control point. The estimation of a required activity’s duration is key 

in enabling the project manager to determine the project length. The project management body of 

knowledge (PMBOK) [1] assumes that the project manager, possibly with the help of experts, can 

analyze each activity and estimate its anticipated duration. Most project managers use traditional 

project management techniques such as the project evaluation review technique (PERT) and critical 

path method (CPM) to plan, schedule, budget, and control the activities associated with projects [2,3]. 

An important feature of the PERT, which is used in this research, is its ability to address the 

uncertainty in an activity’s duration [14]. The PERT model contains three time estimates for each 

activity, namely: optimistic time (Min)—the optimistic time to execute the activity; most likely time 

(Mode)—the completion time having the highest probability; and pessimistic time (Max)—the 

longest time required to complete the activity. The beta shape parameters are derived using these 

three estimates. The PERT model’s stochastic nature suggests that (nearly) any path may be critical, 

especially if the activity durations are approximated by the distributions, which can extend to infinite 

(or at least very large) durations. 

In many projects, a stage gate control approach is used. This method provides vibrant decision 

points of go-no go, providing focus in the development process and enabling senior management to 

review projects in their main phases [15–17]. 

The commonly used control methodology earned value management (EVM) [18,19], originally 

developed for cost management, cannot be applied in this study, as it forecasts the project schedule 

by measuring project progress in monetary terms [20]. Moreover, EVM measurements always 
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converge and result in perfect performance, even if the project is behind schedule. In an attempt to 

overcome these assumptions, earned schedule (ES) was introduced [21,22]. 

While ES was derived from EVM, instead of measuring the schedule’s performance, it measures 

the elapsed time. Unfortunately, however, ES cannot be applied in this study, as it relies heavily on 

the allocated budget to calculate activity performance and does not provide a tool for predicting any 

future performance based on current measurements and trends. In contrast, this study proposes 

estimating the activity duration by relying on the relative progress of each activity at the monitoring 

time while estimating the activities’ distribution parameters. Thus, the proposed approach assumes 

that the activity duration can be approximated by some probability distribution, while the project 

manager can estimate its parameters. Note that, even if the project activities are known, the 

distribution of the overall project duration and thus its completion time cannot be obtained 

analytically in many cases. 

3. The Proposed Model 

3.1. Overview 

The proposed model is straightforward in that it uses entropy reduction measures to allocate the 

project’s inspection points such that they maximize the amount of information on the estimated 

project’s completion time. The required number of inspection points is determined by the project 

manager, usually based on a predefined control budget, and provided as an input to the algorithm, 

along with the project plan that contains a list of activities based on the PERT model [14]. For each 

activity, the distribution probability, as well as the duration parameters, are defined. Note that, even 

if the distributions of all of the project’s activities are known a priori, the distribution of the overall 

project duration, which is determined by the length of the project’s maximal path, is not trivial to 

obtain analytically. The estimated project duration, denoted by x, for a project with � = 1, … , � 

possible paths, where the duration of each path is denoted by ��, is determined by the duration of 

the critical path (����), i.e., the longest path in the project, as follows: 

 � = ���� = ���
�

{��} = ���
�

� � ��

��∈��

� , � = 1, … , �; ��Î��.   (1) 

where �� is the duration of activity �� that belongs to path �� with a duration ��. 

It is assumed that the activity durations can be described by some parametric distribution 

��~�(�) . In particular, and without loss of generality, we will use both the uniform and beta 

distributions to represent those durations. In addition, it is assumed that all activities share the same 

distribution type, i.e., they are all distributed uniformly or according to the beta distribution. 

A centralized project control policy is assumed, by which the project manager receives updates 

on the ongoing activities and plugs them into the model to re-estimate the project duration. At each 

control/inspection point, the project manager obtains the actual durations of the completed activities 

as well as the updated estimated durations of the ongoing activities based on their percentage of 

completion (i.e., what percentage of the activity is completed at the time of the inspection). However, 

no new information is obtained on the duration of activities not yet begun. It is further assumed that 

the information obtained on one activity does not affect that of other activities, and thus, the 

information measures of various activities are independent. 

Concepts of information theory are used in this study to measure the gained information on the 

estimated project duration at specific inspection points. A basic measure of information gain is the 

reduction in entropy, which measures a random variable’s uncertainty or its unpredictability, which 

in this case represents the possible values of the project duration, each of which can be obtained from 

a set of realization � = 1, . . . , � of the time of the activities that are part of the critical path. These values 

are either deterministic, if they were executed already, or stochastic, represented by random variables 

(random variables are often denoted by capital letters, while their realizations are denoted by lower-

case letters) if they have not yet occurred. Accordingly, the project duration’s entropy �(�) is: 
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 �(�) = − � �t ���(�t),

�

t��

  (2) 

where 

 � is a random variable representing the project duration, taking possible values � ∈ {��, … , ����} 

 � is the total number of realizations measured (e.g., by a Monte Carlo simulator) 

 � is the maximal possible project duration (the ‘longest path’ scenario) 

 ��  is the estimated project duration for a specific realization �, 0 ≤ �� ≤ �, 1 ≤ � ≤ � 

 �t  is the probability of �  being within the range ∆t , where ∆t = [t − 1, t] ; �t = �(� ∈ ∆t) =

�(t − 1 ≤ � < t). For example,  �� º �(� ∈ ∆8) º �(7 ≤ � < 8). 

In cases where the variables are independent and identically distributed (i.i.d.), the probability 

mass function is the following: 

 �(� = �) = �(���� = �) = (�
����

(�))
�

. (3) 

A critical path’s estimated duration is equal to the sum of the estimated durations of the critical 

activities, i.e., those that are part of the critical path. The critical path’s variance is equal to the sum of 

the critical activities’ variances if they are independent. By applying the central limit theorem (CLT), 

it can be assumed that in a simplified scenario, wherein a project has a single critical path, the project 

duration follows a normal distribution. Note, however, that such a scenario is often not realistic, as 

there might be several alternative critical paths. Another approximation is to use the fact that often a 

project’s activities have estimated mean and variance values. Note that the log-normal distribution is 

the maximum entropy probability distribution for a random variate � for which the mean, �, and 

variance, ��, of ��(�) are specified. Therefore, it makes sense to use this distribution in the case in 

which only the expected mean and variance are known or can be estimated. This is justified by 

considering the central limit theorem in the log domain, where for the multiplication of positive, 

independent, and identically distributed factors, � follows a log-normal distribution, and � = ��(�) 

is normally distributed. Accordingly, the log-normal distribution’s entropy is given by a simple term: 

�(�) = � +
1

2
+

1

2
��(2����), (4) 

while �’s entropy is the following: 

H(Y) = ��(2����) (5) 

Thus, in such a case, one can measure the reduction in the entropy as a function of the variance, 

which can be better estimated as more realizations are observed. Nonetheless, note that even if the 

project activities are independent and their variances are known, different paths that share the same 

activities are not i.i.d. any longer and, in fact, might be highly correlated. Hence, the above 

uncertainty measures cannot be applied in many real-world projects. 

Marshall and Olkin [23] suggested a closed-form distribution for the sum of a few positively 

correlated Gaussian terms, this result cannot be extended to a large number of terms. Thus, in the 

general case, such a direct approach cannot be applied to obtain �t analytically, as ���� itself is the 

outcome of a stochastic process that can be determined for specific cases only. In general, no closed-

form expression can be derived analytically for the entropy of such a random variable. 

A practical approach is to use a Monte Carlo simulation to numerically estimate the project 

duration’s probability function, ��t, and its related entropy. This is obtained by simulating enough 

realizations, estimating the project duration for each realization, and counting the number of 

instances �t for which the project duration is within the range ∆t. The duration probability is then 

simply estimated by its frequency as follows: 

 ��t =
�t
�

. (6) 
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The estimated entropy of the project duration at a given inspection time �, denoted by  ���, can 

be derived by plugging �t�  into Equation (2) as follows: 

 ��� º���(�) = − � ��t ���(��t ).

�

t��

 (7) 

Thus, the project duration’s entropy varies at different inspection times depending upon the 

estimated probability function ��t , which changes over time (for simplicity of notation, we avoid a 

more precise notation �� t
� that denotes the estimated probability function at time t), where the a priori 

estimated entropy before the project commences, at time � = 0, is denoted as ���. Using the above 

measures, the information gain about the estimated project duration � at inspection point �, denoted 

by ���, can be measured as the difference between the a priori estimated entropy and the estimated 

entropy at time �, as follows: 

  �̃� =  ��0 − ���. (8) 

In the next section, we present the proposed algorithm, which is used to find the inspection 

point(s) that yield the maximal information gain. In other words, these are the inspection points that 

will generate more information for the project manager regarding the estimated project duration. For 

the selection of a single inspection point, such a procedure is straightforward: Simply calculate ��� for 

each potential point � = 1, … , �  and select the one having the highest value. For the selection of 

� inspection points that will lead (jointly) to the maximal ��� value, a greedy brute force approach is 

not feasible due to the combinatorial complexity over K and T, and therefore a suboptimal heuristic 

is proposed. 

3.2. The Proposed Algorithm 

As indicated above, the proposed approach consists of two main stages: (i) a Monte Carlo 

simulation procedure and (ii) an optimum-seeking procedure for selecting the best inspection points. 

In the Monte Carlo stage, � simulations are executed, each over R realizations of activities’ 

durations, generating multiple scenarios that represent the state of the project at various time points. 

� and � are provided as input parameters to the model and determine the level of significance of the 

best inspection points. In the second stage, an exhaustive search over all possible monitoring points 

(or combinations of monitoring points in the case of multiple monitoring points) is performed to 

determine which point(s) provide the maximal information gain on the anticipated project duration. 

The procedure is executed over all of the realizations in each simulation, and the output is the selected 

observation point(s) per simulation, usually based on the majority rule. That is, the selected 

observation point is the one that, in most of the simulated cases, generated the maximal information 

gain. Thus, this point statistically obtained the highest information gain compared to the other 

inspection points. Such replications reduce the likelihood of selecting the wrong monitoring point 

based on a non-representative simulation. Note that the selection of the monitoring point is based on 

the potential information gain on the project duration and does not take into account possible actions 

that can reduce the project duration. In addition, it is assumed that the ‘physics’ of the project remain 

the same, i.e., the project network and the activities’ distribution parameters are not modified as a 

result of the inspection. 

Figure 1 shows a flow chart of the algorithm for a single simulation run followed by a step-by-

step detailed description of the proposed method. 
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Figure 1. Flow chart of the proposed method. 

1. The first step is to obtain the project network (using the PERT) and the distribution type with its 

relevant parameters for each activity. 

2. The second step is to obtain the list of realizations, where in each set of realizations, � describes 

the possible duration of each activity. The model performs Steps 3–6 listed below for each 

realization � = 1, … , �. 

3. For each activity �, the activity duration’s initial value, �� , is defined according to the realization 

duration, ��,�: �� = ��,�. 

4. An exhaustive search is performed by evaluating every possible monitoring point � within the 

range 1 ≤ � ≤ �, where T is the maximal possible length of the project. Steps 5 and 6 below are 

performed for each potential monitoring point. 

5. The project status is re-evaluated by reviewing the status of each activity � in the project plan 

and identifying the relevant activities in progress. In the event that the activity is still ongoing, 

the estimated duration is updated (Step 5b in Figure 1) by randomizing a new estimated 

duration. In contrast (see Figure 1), if the activity has not begun or is already completed, the 

estimated duration remains as per the initial realization duration or is updated accordingly. 

Section 3.3 below provides further insights into how the duration is re-evaluated based on the 

activity’s distribution parameters and the observed status of that activity. 

6. Once all activities are reviewed at time � for realization �, the estimated project duration, �� , is 

calculated based on the new critical path. For benchmark purposes, at this stage, we also 

calculate the number and sum of the variance terms of the activities in progress. Later, we 
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compare the results of the proposed algorithm to those of heuristics that are based on these 

measures. 

7. Once all possible monitoring points and all realizations are evaluated, the potential information 

gain, ��, is calculated for each potential inspection point �. 

8. Based on the above, the � monitoring points with the maximal information gain are selected. 

The algorithm’s complexity depends upon the following parameters: � —the number of 

simulations; �—the maximal project duration; �—the number of required monitoring points; and 

�—the number of realizations. As mentioned above, the algorithm is exhaustive, and when searching 

for � monitoring points, it evaluates all possible combinations to find the one that guarantees the 

maximum overall information gain. Finding � points with a maximal project duration of � time units 

requires evaluating 
�!

�!(���)!
 such combinations. Hence, the algorithm complexity is O �� × � ×

�!

�!(���)!
�. As such, it is clear that � and � are the main drivers that impact the run time. 

3.3. Re-Evaluating an Activity’s Duration 

As described above, when examining a monitoring point �, the durations of ongoing activities 

are re-evaluated. While the exact randomization of the new durations differs from one distribution 

type to another, it follows the same logic: First, one calculates the percentage (rate) of the completed 

work, and then this rate is applied to the remaining work. The steps to calculate the new duration of 

activity � at time � are as follows: 

1. Calculate the percentage of completion (���) of activity � at time � by dividing the amount of 

work performed (��,�) defined in time units by the initial estimated duration of activity �� as 

follows: 

 ����,� =
��,�

��

. (9) 

2. Based on the percentage of completed work and the minimal/maximal duration of the activity, 

���� and ���� , respectively, re-evaluate the new minimal remaining work, ������,�, and the 

new maximal remaining work, ������,�, as follows: 

 ������,� = �1 − ����,�� × ���� (10) 

 ������,� = �1 − ����,�� × ����  (11) 

In the event that a distribution is used to generate the forecasted activity’s duration (as said, we 

use both the uniform and beta distributions, but other distributions can be applied by following the 

same logic), recalculate the most likely remaining work, �������,� , based on the activity’s 

distribution mode value, �����, as follows: 

 �������,� = �1 − ����,�� × �����. (12) 

3. Randomly generate a new value for the remaining work, ��(�), within the following new range: 

(a) In the case where a uniform distribution is used, randomly generate a new value for the 

remaining work between the minimal and maximal remaining work, and calculate the new 

duration as follows: 

 �� = ��,� + ����������,�, ������,��. (13) 

(b) In the case where a beta distribution is used, first, update the beta parameters based on the 

amount of work already performed, ��(�), as follows: 

  ���� = ��,� + ������,� (14) 

 ���� = ��,� + ������,� (15) 

 ����� = ��,� + �������,� (16) 
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Based on the new minimal, maximal, and mode values, recalculate the beta shape parameters α 

and β. Randomize a new probability value �~U [0,1], and use the beta distribution’s inverse function 

with the new parameters to generate a new activity duration as follows: �� =

����. ���(�, �, �, ����, ����). 

Note that the estimated durations of the ongoing activities are based not only on their 

completion percentages but also indirectly on the activities completed before that inspection time. 

The reason is that if a completed activity ended earlier or later than expected, it could affect the 

completion percentage of future project activities at that inspection time. That is, if a predecessor 

activity was completed earlier (later) than expected, then more (less) of the ongoing activity that 

started earlier (later) could be completed at a given inspection time. As a result, the estimation of 

completing the ongoing activity earlier (later) is updated accordingly. Surely, an earlier/later 

completed activity that does not belong to the critical path should not necessarily change the 

completion percentage of later activities. 

3.4. Searching for Multiple Monitoring Points 

The same guiding principles presented above are followed when searching for a number of 

monitoring points, with a few exceptions that are due to one monitoring point’s effect on the other 

points. Thus, the information obtained at an inspection point should be measured based on the new 

information gathered since the last inspection. For example, in the case of two monitoring points �� 

and ��, at ��, only the new information obtained since �� should be measured, not all information 

since � = 0, as in the case of a single monitoring point. As explained in step 3 of the proposed 

algorithm’s flow chart (Figure 1), when searching for a single monitoring point, the duration’s initial 

value is set to the realization value ��,� . Therefore, at the first monitoring point �� , this initial 

realization value, ��,�, is used to determine the activity’s state; later on, this value is used to randomize 

a new estimated duration value v. When re-evaluating the same activity at the second monitoring 

point  �� , the updated duration value �� = �  is used as a baseline, instead of ��,� , while the base 

realization duration is not used as in the case of a single monitoring point search. 
An interesting outcome of the experiments suggests that a possible heuristic may be applied to 

narrow the search domain and drastically simplify the algorithm run time and its complexity when 

searching for multiple points. More details on this outcome are shared in Section 5, where we review 

the results and discuss the conclusions. 

4. Implementation Example 

To search for the optimal inspection protocol, conventional project details are required as inputs, 

i.e., the project’s activities and their characteristics, such as ID, list of predecessor activities, minimal 

duration, maximal duration, and most likely duration (provided in the case of a beta distribution). In 

such an implementation, the project and activity details are provided in a tabular format, as shown 

in the example detailed in Table 1. This project is used as an illustrative running example throughout 

this section to explain and demonstrate the various algorithm steps. A network diagram depicting 

this example project is presented in Figure 2. 

Table 1. The illustrative running example: a project with beta-distributed activities. 

Activity (�) Predecessors Min Duration (����) Max Duration (����) Likely Duration (�����) 

1  2 5 4 

2  1 8 6 

3  1 4 3 

4 3 2 7 3 

5 1,2,4 1 1 1 
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Figure 2. The illustrative running example: the network diagram. 

Similarly, the realizations are also provided in the form of a table of randomized values for each 

activity’s duration based on the distribution parameters (often in a spreadsheet file). For instance, 

Activity 1 in the project described in Table 1 is randomized using the underlying beta distribution, 

i.e., assuming a duration of between 2 and 5 time units and with a most likely (mode) value of 4 time 

units. Table 2 provides an example of � = 10 realizations of the running example project. 

Table 2. The illustrative running example: realization values based on the underlying beta 

distributions. 

Realization (�) �� �� �� �� �� 

1 4.68 5.85 3 3.83 1 

2 3.77 7 2.83 4.11 1 

3 4.18 4.87 2.36 2.82 1 

4 3.41 4.55 3.41 5.95 1 

5 4.3 7.23 3.24 2.52 1 

6 3.5 7.24 2.94 5.04 1 

7 4.27 4.55 3.18 3.33 1 

8 3.92 4.34 3.14 4.77 1 

9 4.33 5.07 2.78 3.95 1 

10 2.89 5.55 3.33 2.84 1 

Using the realization values, each path’s duration �� (� = 1,2,3) is calculated, as anticipated 

prior to the project’s commencement (i.e., at time t = 0). Table 3 shows the duration of each path (��) 

in each realization, where the maximal path duration is shaded. The maximal duration over the 

critical paths determines the project duration, �� , which is given in the last column in the table. 

Table 3. The illustrative running example: possible project duration realizations. 

Realization (�) �� �� �� Critical Path �� 

1 5.68 6.85 7.83 �� 7.83 

2 5.18 8 7.94 �� 8 

3 4.77 5.87 6.18 �� 6.18 

4 4.41 5.55 10.36 �� 10.36 

5 5.3 8.23 6.76 �� 8.23 

6 4.5 8.24 8.98 �� 8.98 

7 5.27 5.55 7.51 �� 7.51 

8 4.92 5.34 8.91 �� 8.91 

9 5.33 6.07 7.73 �� 7.73 

10 3.89 6.55 7.17 �� 7.17 
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From the results presented in Table 3 we can now calculate the project duration’s empirical 

distribution. For example, in the shortest realizations (with � = 3), the project duration is 6.18 time 

units, thus within the range of [6,7]. Accordingly, the probability of the value lying in this range is 

estimated empirically as ��� =
��

�
= 0.1. Similarly, one can estimate the probability of the project’s 

duration being within the range [7,8] as ��� = 0.4; within the range [8,9] as ��� = 0.4; and within the 

range [10,11] as ���� = 0.1. Using the estimated probabilities, the base (initial) entropy, ��� , which 

measures the uncertainty prior to the project initiation, is calculated as follows: 

 ��� = − � ��� ���(���) = 

�

− ��� ���(���) − ��� ���(���) − ��� ���(���) − ���� ���(����) = 0.518 (17) 

As ��� is calculated using the initial realization values, it does not change from one simulation 

run to another as long as there are enough realizations (i.e., the realization values remain the same as 

long as the underlying distribution is fixed). 

Let us now demonstrate how the algorithm evaluates a potential inspection point. Consider, for 

example, an inspection point at � = 4  evaluated for realization � = 2 . Note that while for some 

realizations, Activity 1 might still be in progress at � = 4, in this realization, the activity duration is 

�� = 3.77, and hence, this activity is already completed. Activity 3 is completed as well (as �� = 2.83), 

while Activities 2 and 4 are still ongoing. Due to the project dependencies, Activity 5 cannot begin 

until all of the above activities are completed. Moreover, note that 4 time units of Activity 2 were 

completed at that time, as well as 1.17 time units of Activity 4. From the amount of work performed 

on Activity 2 at � = 4, ��,� = 4, it is possible to derive the percentage of work completed, ����,� =
��,�

��
=

�

�
, which is used to calculate the minimal, maximal, and most likely remaining work, as 

indicated in Equations (14)–(16), as follows: 

������,� = �1 − ����,�� × ���� = (1 −
4

7
) × 1 =

3

7
  

������,� = �1 − ����,�� × ���� = (1 −
4

7
) × 8 = 3

3

7
  

�������,� = �1 − ����,�� × ����� = (1 −
4

7
) × 6 = 2

4

7
  

Using the new range for the remaining work, a new value of the estimated activity duration is 

generated. In this example, as 4 time units of work were already performed, the new minimum and 

maximum values are calculated as follows: ���� = 4 +
�

�
= 4

�

�
, and ���� = 4 + 3

�

�
= 7

�

�
. In the case 

of the uniform distribution, the new duration value for Activity 2 will be randomized within the 

range ��~[U
�

�
, 7

�

�
]. In the case of the beta distribution, in addition to the minimum and maximum 

values, the most likely value will be calculated as follows: ����� = 4 + 2
�

�
= 6

�

�
. Using the new beta 

parameters, the new estimated duration generated from the updated distribution is 

��~���� �1
�

�
, 7

�

�
, 6

�

�
�. 

The above procedure is repeated for each realization and each potential inspection point, 

resulting in a list of possible project durations. Similar to how ��� was evaluated, ��� is calculated by 

using Equation (7), i.e., estimating all possible project durations at time � for each realization and 

calculating the empirical probability, ��� , of each range ∆� . The information gain per potential 

monitoring point can now be obtained, and in this specific example, the result is ��� = ��� − ��� =

0.518 − ���. Table 4 shows the output of a single simulation run and gives the information gain for 

each of the possible monitoring points. Note that the maximal information gain ���  is obtained at 

monitoring point � = 5 (bolded) in this simulation   scenario; therefore, the recommended monitoring 

point for this run is selected as 5. A zero information value for � > 6 implies that the realization does 

not change the estimation of the prior distribution of the project duration; thus, no new information 

is obtained with respect to the initial entropy ���. 
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Table 4. The illustrative running example: entropy and information gain per monitoring point. 

� �� � ��� 

0 0.518 0 

1 0.473 0.045 

2 0.639 −0.120 

3 0.533 −0.015 

4 0.447 0.071 

5 0.348 0.170 

6 0.408 0.110 

7 0.518 0 

8 0.518 0 

9 0.518 0 

10 0.518 0 

11 0.518 0 

12 0.518 0 

As the entropy at time � is calculated based on the specific realizations, a possible outcome can 

be ��� ≤ ���, resulting in ��� ≤ 0 for a specific simulation (as in the case of � = 2 in Table 4). This may 

occur in a single simulation wherein the common critical path has drastically deviated from the 

realization’s initial estimated value. From a practical perspective, a negative information value can 

result from how ��  is estimated, i.e., by counting the number of occurrences in a specific range. Thus, 

it is possible that due to randomization effects, there might be cases where ���  is skewed and leads to 

a value of ��� that is lower than ���. Such a situation represents an increased level of uncertainty at 

time � leading to a “loss” of information in comparison to � = 0. Having many such cases reflects a 

situation wherein the initial distributions do not represent well the expected scenarios. Thus, a 

refinement of these initial distributions is needed. Note, however, that if the initial distributions are 

realistic and the simulations are executed multiple times, scenarios with negative information will 

hardly occur and thus will barely affect the optimal point selection, as seen below. 

The above simulations are executed � times. The output of the algorithm is, again, a table listing 

the selected optimal inspection points and the number of simulations in which each point was 

selected. For example, Figure 3 show the results of 10 simulations of the illustrative running example, 

in which monitoring points � = 5  and � = 6 were selected in 9 out of the 10 simulations as the 

optimum observation points for obtaining the maximal expected information gain. Further 

simulations can reveal that monitoring point  � = 5  has a higher probability of resulting in the 

maximum information gain. 

 

Figure 3. The illustrative running example: simulation results. 

  

4
5%

5
50%

6
45%
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5. Numerical Experiments and Results 

This section details the results of numerical experimentation using the above model. The 

experiments compare the proposed algorithm to other commonly used heuristics, using a variety of 

projects having different distributions and parameters. Various projects ranging from short projects 

with few activities to long projects with dozens of activities were examined. The experiments 

represent actual projects from various industries, such as IT and construction projects. Each 

experiment contained � = 10/20 simulations per project with � = 200 realizations per simulation. 

Both the uniform and beta distributions were used to examine the effects of the activity durations’ 

underlying distributions on the selected inspection points. The simulation model was implemented 

using VB.net, and the simulation runs were executed on a dual-core 8 GB PC. 

5.1. Single Monitoring Point 

5.1.1. Example Project No. 1: Simple Project 

The following project, detailed in Table 5 and Figure 4 follows the running example listed above 

and shows that even for relatively small-scale projects, it is not always trivial to identify the inspection 

point(s). Moreover, this project demonstrates that common heuristics based on the number of parallel 

activities or their variance can be misleading. 

Table 5. Example Project No. 1: Activity details. 

Activity (i) Predecessors Min Duration (����) Max Duration (����) Most Likely (�����) 

1  2 5 4 

2  1 8 6 

3  1 4 3 

4 3 2 7 3 

5 1,2,4 1 1 1 

 

Figure 4. Example Project No. 1: Network Diagram. 

Figure 5 shows the results of the heuristics as well as the project’s activities. The dark gray area 

of an activity represents the minimal activity duration, whereas the light gray area represents the 

elapsed time until reaching the maximal activity duration. The figure also shows the ‘worst-case 

scenario’ for which the critical path is maximal. The heuristics are calculated at the start of each time 

interval, and each heuristic’s maximal value is highlighted. As seen, common-practice heuristics 

locate the monitoring point at the beginning of the project, at � = 1, where both the number of 

activities (3 activities) and the sum of their variances are the maximum. Intuitively, this appears to be 

a good inspection point, as it reveals information on 3 of the 5 activities. Thus, potentially more 

information can be gathered at this point. Note, however, that this is a relatively early stage of the 

project, for which most of the uncertainty related to the project duration remains the same based on 

the inspected activities. Moreover, as any of these three activities can impact the critical path, 

knowing that one or even two of them are progressing well does not necessarily affect the critical 

path’s duration, which is based on the maximal path. This intuition and logic are well reflected in the 
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proposed information gain method: Although new information can be obtained at � = 1 , more 

information is gained by locating the monitoring point at a later time point, as indicated in Figure 6. 

The graph shows a slightly higher information gain at � = 1, with a large variance due to the ongoing 

variances of the ongoing activities. Note, however, that a much higher information gain is obtained 

at � = 5/6/7. This increase is mainly due to the fact that by � = 5, Activities 1 and 3 are already 

completed, and the project manager is likely to have a better idea of the duration of Activity 2 and 

thus can better evaluate the project’s expected duration. Similarly, at t  = 6 , in addition to the 

information gained on Activities 1, 2, and 3, the inspector obtains a better estimation of the duration 

of Activity 4, in turn making it easier to predict the critical path and the project duration. 

 

Figure 5. Example Project No. 1: heuristics. 

  

Figure 6. Example Project No. 1—Information Graph for a Single Monitoring point, (left) uniform vs. 

(right) beta.  

Figure 6 summarizes by box plot graphs the results of all simulations for both the uniform and 

beta distributions. The graphs show the amount of information gained, ���, at each potential inspection 

point �. Figure 7 shows the distribution of the selected monitoring points over 20 simulations. Both 

figures demonstrate the importance of the “most likely” parameter, provided by the beta distribution, 

for the expected information gain and the selection of the monitoring points. As shown in the figures, 

the beta distribution results are more coherent in recommending � = 5 or 6, whereas the uniform 

t 0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

Uniform

No. of activities in 

progress 0 3 2.87 2.325 1.835 1.36 1.045 0.775 0.555 0.315 0.135

variance of activities 

in progress 0 5.583 5.499 4.854 4.466 3.424 2.282 1.563 0.656 0.281 0.063

Beta

No. of activities in 

progress 0 3 3 2.915 2.295 1.615 1.205 0.78 0.37 0.12 0.02

variance of activities 

in progress 0 1.861 1.906 2.044 2.01 1.557 0.988 0.324 0.083 0.014 0
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distribution results show an equal preference for inspection points at � = 5, 6 , or 7 . This is an 

important outcome that justifies the additional overhead required by both the project manager and 

the team, enabling defining and maintaining additional information on the “most likely” value 

instead of merely providing the minimum and maximum values. 

  

Figure 7. Example Project No. 1—Selected Single Monitoring point, (left) Uniform vs. (right) beta. 

5.1.2. The Effect of the “Most Likely” Parameter 

In an attempt to further explore and understand the sensitivity of the model to the “most likely” 

value, Project No. 1 was slightly altered, and Activity 2′s “most likely” value was updated from 6 to 

2. This new project is henceforth referred to as the ‘Beta B’ example. 

The box plot graphs in Figure 8 and the pie charts in Figure 9 compare the results before and 

after the change, further demonstrating the importance of the “most likely” value and its effect on 

the selected inspection point. As shown in these figures, when shortening the duration of Activity 2, 

the potential information obtained at � = 5\6\7  decreases, whereas the potential information 

obtained at � = 2\3 increases. This is because Activity 2 is shorter, and therefore the project manager 

can learn more about the expected project duration earlier in the project. 

 

Figure 8. Simple Project No. 2: box plot graph for a single monitoring point, (left) Beta A vs. (right) 

Beta B distributions. 
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Figure 9. Simple Project No. 2: selected single monitoring point, (left) beta vs. (right) beta B. 

5.1.3. Underestimating the Project Duration 

In this subsection, the example of Project No. 1 is further expanded to evaluate the proposed 

method in cases wherein the activities’ durations are underestimated. In this example, the realization 

times are deliberately modified such that they are longer vis-à-vis the planned times. Table 6 shows 

the differences between the original assumed minimal and maximal durations, which are used by the 

proposed method when re-evaluating the activities’ durations, versus the values actually used to 

generate the simulated realizations. 

Table 6. Project No. 2 Activities: project underestimation, new range. 

Activity 

(�) 
Predecessors 

Assumed Min 

Duration 

Assumed Max 

Duration 

Actual Min 

Duration 

Actual Max 

Duration 

1  2 5 3 7 

2  1 8 4 10 

3  1 4 3 6 

4 3 2 7 5 9 

5 1,2,4 1 1 1 1 

Figures 10 and 11 compare the results of the original project to those of the underestimated 

project. The two figures clearly show that the model has readjusted the selected monitoring points 

and the potential information gain as a result of the realizations, which show that the project manager 

initially underestimated the activities’ durations. The box plot graphs and the pie charts are 

drastically changed from those of the original project. Based on the original project estimations, the 

monitoring points should have been located at � = 5, 6,  or 7. However, when using the 

underestimated project times, the selected points change, and while 5, 6, and 7 are still found to be 

relevant in some of the scenarios, new time points such as � = 1, 2, 8, and 10 are now added as 

potential inspection points. 

4
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6
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4
30%
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Figure 10. Simple Project No. 2: a box plot graph for a single monitoring point, (left) uniform vs. 

(right) an underestimated uniform distribution. 

  

Figure 11. Simple Project No. 2: selected single monitoring point, (left) uniform vs. (right) 

underestimated uniform. 

5.1.4. Sensitivity Analysis: Number of Realizations 

To better estimate the effect of the number of realizations on the accuracy of the selected 

inspection point, Example Project No. 1 is used with various numbers of realizations. In this 

experiment, �, the number of realizations, is increased from 200 to 300. 

As shown in Figure 12, the increase in the number of realizations affected the results only 

slightly, such that the confidence level of the recommended monitoring point increased. In the 

experiments with R = 200, the algorithm equally indicated 5/6/7 as the selected inspection point. 

However, when � was increased to 300 realizations, in 55% of the cases, � = 6 was indicated as the 

preferred inspection point. Note, however, that for the beta distribution (see Figure 13), the same 

increase in the number of realizations had almost no effect on the results. 
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Figure 12. Example Project No. 1: selected single monitoring point, uniform dist. with (left) R = 200, 

(right) R = 300. 

  

Figure 13. Example Project No. 1—selected single monitoring point, beta dist. with (left) R = 200, 

(right) R = 300. 

Accordingly, when using the proposed algorithm, if the results are not decisive, the project 

manager may want to increase the number of realizations to potentially obtain more consistent 

results. It may very well be that an increase will not affect the results, and in such cases, using the 

lowest value for R is recommended due to its effect on the algorithm’s run time. 

5.1.5. Example Project No. 2: Simultaneous Activities 

The next medium-size project, given in Table 7, has more activities than the previous projects, 

and its network diagram is more complex. 

Table 7. Example Project No. 2: activity details. 

Activity (i) Predecessors Min Duration (����) Max Duration (����) Most Likely (�����) 

1  2 5 3 

2 1 1 5 3 

3 1 1 3 1.5 

4 1 2 4 3.5 

5 1 1 3 2 

6 1 1 3 1.5 

7 1 2 5 4 

8 2,5 1 3 2 

9 2,3 1 3 2.5 

10 3,4 1 4 2 

11 3,6 1 3 2 
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12 2,7 1 3 1.5 

13 2,4 1 3 2.2 

14 8,9,10,11,12,13 1 2 1.7 

The information gain graphs presented in Figure 14 are quite interesting and present a non-

intuitive result. The information gain is not unimodal, i.e., it has some ups and downs, with potential 

information loss as time goes by. This observation contradicts the common notion that information 

gain should increase as a project progresses until the end of the project is near, when little uncertainty 

exists. As shown in Figure 14, there are time points that lead to a peak in the expected information 

gain, with a drop between these areas. In both information gain graphs, as well as in the pie charts 

presented in Figure 15, the proposed method shows a clear indication for locating the monitoring 

point at the beginning of the project. This result is due to the major effect of Activity 1 on the critical 

path, and thus on the overall project duration, as completing this activity is a prerequisite for moving 

on to the remaining activities. However, in later stages of the project, there are many more activities 

that are ongoing simultaneously, and their immediate and individual effects on the total project 

duration are not as high as that of the first activity. That is, if many activities are happening at the 

same time, there is a high enough probability that one or more of them will be delayed, causing the 

overall project duration to increase anyway. Another observable peak in the potential information 

gain can be obtained at � = 9 (in the beta distribution), as by that time, Activities 1 to 7 are already 

completed and the remaining activities (8 to 13) are either ongoing or possibly completed as well, 

thus providing the project manager more clarity regarding the expected project duration. 

  

Figure 14. Example Project No. 2: box plot graph for a single monitoring point, (left) uniform vs. 

(right) beta distributions. 

  

Figure 15. Example Project No. 2: selected single monitoring point, (left) uniform vs. (right) beta 

distributions. 

1
85%

2
10%

3
5%

Uniform

1
30%

2
50%

9
20%

Beta



Entropy 2020, 22, 905 21 of 25 

5.1.6. Example Project No. 3: Long, Complex IT Project 

To evaluate the applicability of the proposed model in a real-life scenario, we used data collected 

based on a real IT deployment project that consisted of 112 stochastic activities with an estimated 

duration of approximately one year. The project network is relatively complex, and the critical path 

is frequently changing as time passes and the activities’ durations are updated. There is no doubt that 

a project manager would find it extremely difficult to identify the optimal monitoring points and is 

likely to use one of the common heuristics presented above (i.e., the maximum number of 

simultaneous critical activities). 

The proposed algorithm was applied to the data, and despite the relative complexity, it 

identified the optimal monitoring points from 240 potential points. Figure 16 shows the selected 

monitoring points for both the beta and uniform distributions. As shown in this figure, the 

distribution type affects the outcome as well as the selected points, which are not necessarily similar, 

with the exception of a monitoring point at � = 20, which is recommended by both cases and obtained 

the highest information gain in 50% of the simulations based on the uniform distribution and 20% of 

the simulations based on the beta distribution. This example shows again the complexity in 

evaluating the monitoring points in real-life projects a priori. 

  

Figure 16. Example Project No. 3: Selected monitoring point: (left) uniform vs. (right) beta distribution. 

5.2. Multiple Monitoring Points 

In many scenarios, there is a need and possibility of monitoring the project along its progression 

at several monitoring points. Note, however, that when looking for multiple inspection points, the 

brute force search problem with K monitoring points requires analyzing all possible combinations 

and can become too complex for a straightforward optimal policy. The experiments below show that 

often, when searching for multiple monitoring points, the previous monitoring points are found to 

be a subset of the set of final recommended points. For example, when searching for two points, one 

of the two recommended monitoring points is one of the selected monitoring points when searching 

for a single point. This observation can be used to propose a simple heuristic that reduces the 

computational complexity of the algorithm for multiple monitoring points and to narrow the search 

domain such that when searching for � points, the � − 1 previous search points are used, and only 

the �th point has to be located. Such a heuristic is described in Figure 1. 

In this numerical study, further experiments were conducted to allocate multiple monitoring 

points for the project management examples above (mainly, Example Project No. 1 shown in Table 5 

and Example Project No. 2 shown in Table 7). Table 8 compares the obtained results when searching 

for two monitoring points vs. those obtained when searching for a single monitoring point. For each 

project, the table shows the selected points and the corresponding percentages of the simulations in 

which those points were selected as those expected to generate the highest information gains. For 

example, in Simple Project No. 1 with a beta distribution, when searching for a single monitoring 

point, the results were {5 [50%], 6 [45%], and 4 [5%]}, implying that � = 5 was selected as the optimal 

20
50%

43
10%

52
20%

91
20%

Uniform

20
20%

34
50%

33
20%

59
10%

(blan
k)

0%

Beta



Entropy 2020, 22, 905 22 of 25 

monitoring point in 50% of the simulations, � = 6 was selected in 45% of the simulations, and � = 4 

was selected in 5% of the simulations. 

Table 8. Single vs. two monitoring points: summary of results. 

# Project Distribution Single Monitoring Point Two Monitoring Points 

1 Example 

Project No. 1 

(Table 5) 

Uniform 
{7 [35%], 6 [30%], 5 [30%], 

4 [5%]} 

{(5,6) [20%], (5,7) [10%], (5,8) [10%], (6,7) [10%], (6,12) 

[10%], (5,10) [5%], (6,8) [5%], (6,9) [5%], (7,8) [5%], 

(7,9) [5%], (2,5) [5%], (2,7) [5%], (4,7) [5%] 

2 Beta {5 [50%], 6 [45%], 4 [5%]} 
{(5,6) [45%], (5,7) [20%], (5,8) [10%], (5,9) [5%], (5,11) 

[5%], (4,9) [5%], (4,11) [5%], (6,11) [5%]} 

3 
Example 

Project No. 2 

(Table 7) 

Uniform {1 [85%], 2 [10%], 3 [5%]} 

{(1,3) [25%], (1,6) [15%], (1,2) [10%], (1,15) [10%], (1,9) 

[10%], (1,5) [5%], (1,7) [5%] (1,10) [5%], (1,11) [5%], 

(1,12) [5%], (2,7) [5%] } 

4 Beta {2 [50%], 1 [30%], 9 [20%]} 

{(1,9) [20%], (2,9) [15%], (1,14) [15%], (1,12) [10%], 

(2,8) [10%], (1,2) [5%], (1,3) [5%], (1,5) [5%], (1,7) 

[5%], (1,11) [5%], (2,7) [5%]} 

In all of the experiments, when searching for two monitoring points, one of the two selected 

points was identified in the search for a single monitoring point as an optimal point (these points are 

bolded in the last column of the table). For example, in Experiment No. 4, when searching for two 

monitoring points in Example Project No. 2 with a beta distribution, in all of the results, one of the 

two recommended monitoring points is located at � = 1, 2 or 9, which is one of the selected points 

when searching for a single monitoring point. However, note that the point that was most frequently 

selected when searching for a single monitoring point may not be as frequently selected when 

searching for two monitoring points. For example, in the same experiment (No. 4), while � = 2 was 

the most frequently selected point when searching for a single point, it only appeared in 35% of the 

cases when searching for two monitoring points, while � = 1, which had a lower frequency when 

searching for a single monitoring point, was recommended in 70% of the cases when searching for 

two monitoring points. Nonetheless, in cases where the search for a single monitoring point resulted 

in a very high preference for a specific point, a similar preference was observed in the search for two 

monitoring points. For example, in Experiment No. 3, � = 1 was selected in 85% of the cases when 

searching for a single monitoring point, and � = 1 was also one of the selected points in 95% of the 

results when searching for two monitoring points. 

This observation leads to a simple heuristic that can narrow the search domain when looking for 

multiple monitoring points, so that one of the two monitoring points will be taken from the set of 

points that were already selected when searching for a single monitoring point. To further test the 

above outcomes, another experiment, shown in Table 9, was conducted to search for three monitoring 

points for Example Project No. 1. As shown in Table 9, when searching for three monitoring points, 

one of the points in this example is always one of the recommended points obtained by the search for 

two monitoring points. Note that while two of the points are recommended when searching for two 

monitoring points, the combination of the two may not be optimal. 

For example, in Experiment No. 2, the combination (6,7,10) was recommended by 10% of the 

simulations when searching for three monitoring points under a beta distribution. Note that none of 

the subset combinations, i.e., (6,7), (7,10), or (6,10), was recommended by the simulations when 

searching for two points. However, monitoring points � = 6 and � = 7 were selected in combination 

with other points, e.g., (5,6) and (5,7). This observation again implies that the heuristic suggested 

above may be used to narrow the search domain, yet without guaranteeing a global optimization 

solution. 

Table 9. Three Monitoring Points Results: Example Project No. 1. 

# Distribution 
Single 

Monitoring Point 
Two Monitoring Points Three Monitoring Points 

1 
Example Project No. 

1 with a normal 

{7 [35%], 6 [30%], 

5 [30%], 4 [5%]} 

{(5,6) [20%], (5,7) [10%], (5,8) 

[10%], (6,7) [10%], (6,12) [10%], 

(5,10) [5%], (6,8) [5%], (6,9) 

{(6,7,8) [30%], (6,7,11) [15%], 

(6,7,9) [10%], (6,7,10) [10%], 

(6,7,12) [10%], (3,5,7) [5%]), 
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distribution 

(Table 5) 

[5%], (7,8) [5%], (7,9) [5%], (2,5) 

[5%], (2,7) [5%], (4,7) [5%]} 

(5,9,12) [5%]), (6,10,11) [5%]), 

(7,8,12) [5%]), (7,8,9) [5%])} 

2 

Example Project No. 

1 with a beta 

distribution 

(Table 5) 

{5 [50%], 6 [45%], 

4 [5%]} 

{(5,6) [45%], (5,7) [20%], (5,8) 

[10%], (5,9) [5%], (5,11) [5%], 

(4,9) [5%], (4,11) [5%], (6,11) 

[5%]} 

{(6,7,10) [15%], (5,8,9) [10%], 

(5,8,10) [10%], (5,8,11) [10%], 

(6,7,8) [10%], (6,7,9) [10%], 

(5,10,11) [5%], (5,10,12) [5%], 

(5,6,12) [5%], (5,8,12) [5%], (6,8,9) 

[5%], (6,9,12) [5%], (6,11,12) 

[5%]} 

6. Conclusions 

In this paper, an information-theoretic approach is proposed for identifying potentially good 

project inspection points. The objective of the inspection is to better estimate a project’s overall 

duration by a given number of inspection points. Accordingly, the proposed approach measures the 

expected information gain about the estimated project duration at each potential inspection point and 

selects the most informative inspection points. Previous studies that also aimed to obtain informative 

monitoring points considered, for example, some simplifying assumptions regarding project 

activities [5], partially related heuristics taken from electromagnetism theory [11], and an intensity 

measure of the activities as an indirect indication of the anticipated information gain [5]. Other 

practical approaches did not use a clear mathematical formulation to address the monitoring 

optimization problem and instead proposed locating the inspection points by practical rule-of-thumb 

measures, such as the ‘number of activities in progress’ or ‘total variance of ongoing activities’. These 

methods were shown to result in non-optimized inspection points in terms of their expected 

information gain. Moreover, we show by just a few examples that popular rule-of-thumb practices 

can result in non-informative outcomes, such as locating the monitoring points at times with many 

activities running in parallel, where the information gathered provides (at that point) a poor 

estimation of the overall project’s duration, e.g., there is a high probability that, even if almost all 

activities are progressing as expected at that time, one or more activities will be delayed later, causing 

the overall project duration to be extended. In any case, none of the above methods applied a 

straightforward, systematic, information-theoretic approach to the project plan as proposed herein. 

Several experiments were conducted on multiple projects varying in length, size, and complexity 

to analyze the model’s output. Each project was studied by using both the uniform distribution, 

which is the maximal entropy distribution when only the minimal and maximal activity durations 

are known, and the beta distribution, which is commonly used to represent projects’ activity 

durations. The effect of the beta distribution’s ‘most likely’ value on the information gain suggests 

that the overhead required to obtain and maintain information on such a value is justified, as it often 

leads to finding optimal inspection points. This phenomenon was further demonstrated by 

comparing two identical projects both following a beta distribution in terms of their activity duration, 

yet with differing ‘most likely’ values. 

The proposed algorithm can be applied to find a single monitoring point as well as a 

combination of monitoring points. In terms of complexity, it is mainly sensitive to the maximal length 

of the project and the required number of monitoring points and not necessarily to the number of 

activities. Based on the experimental results, a heuristic was proposed to reduce the algorithm’s 

complexity when searching for � monitoring points by using the results of the � − 1 previous points 

to narrow the search domain significantly. In addition, one can reduce the complexity by changing 

the granularity of time units, for example, by searching for the optimal control weeks instead of the 

optimal control days. This allows for solving large problem instances and finding an optimal 

inspection protocol for long and complex projects in a shorter run time. 

Future research may include investigating the effectiveness of the suggested multiple control 

point heuristics vs. the greedy approach, as the suggested method is still computationally challenging 

for guaranteeing multiple optimal control points. The study of the effects of various time scales and 

discretization methods on the obtained information can shed more light on the robustness of the 

method. Another direction is to expand the proposed model to address not only the information gain 

for the overall project duration but also the information’s applicability and ability to be used to 
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overcome potential risks and delays. This last point is also related to our activity independence 

assumption, which implies that, at inspection point t, any information about the ongoing or 

completed activities is not considered relevant for estimating the duration of future activities at that 

time. This is a limiting assumption since there are cases where the information gathered on the 

ongoing or completed activities at an inspection point can be used to re-estimate the duration of 

related future activities. For example, if future activities involve similar resources, tasks, or teams, 

then an earlier/later completion of related ongoing or completed activities could provide valuable 

insights into their duration. 
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