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On the Use of Data Compression Measures to
Analyze Robust Designs

Irad Ben-Gal

Abstract—In this paper, we suggest a potential use of data com-
pression measures, such as the Entropy, and the Huffman Coding,
to assess the effects of noise factors on the reliability of tested sys-
tems. In particular, we extend the Taguchi method for robust de-
sign by computing the entropy of the percent contribution values
of the noise factors. The new measures are computed already at
the parameter-design stage, and together with the traditional S/N
ratios enable the specification of a robust design. Assuming that
(some of) the noise factors should be naturalized, the entropy of a
design reflects the potential efforts that will be required in the tol-
erance-design stage to reach a more reliable system. Using a small
example, we illustrate the contribution of the new measure that
might alter the designer decision in comparison with the tradi-
tional Taguchi method, and ultimately obtain a system with a lower
quality loss.

Assuming that the percent contribution values can reflect the
probability of a noise factor to trigger a disturbance in the system
response, a series of probabilistic algorithms can be applied to the
robust design problem. We focus on the Huffman coding algorithm,
and show how to implement this algorithm such that the designer
obtains the minimal expected number of tests in order to find the
disturbing noise factor. The entropy measure, in this case, provides
the lower bound on the algorithm’s performance.

Index Terms—Compression rate, control & noise factors, en-
tropy, experimentation, performance measure, robust designs,
S/N ratio, Taguchi method.

ACRONYMS1

S/N signal to noise
ANOVA analysis of variance
df degree of freedom
PC percent contribution
PMF probability mass function

standard deviation

NOTATIONS

system response
sample variance of the system response
quality loss function
quality loss coefficient
required target value
vector of control factors
sum of squares of factor x
degree of freedom of factor
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variance associated with factor
mean-square-error
percent contribution of factor
design ,
entropy of the ith design
expected number of tests

I. INTRODUCTION

A. Literature Review

THE MAIN objective in the Taguchi method [1]–[3], is to
design robust systems which are reliable under uncontrol-

lable conditions. The method aims to adjust the design param-
eters (known as the control factors) to their optimal levels, so
that the system response is robust; that is, the system response is
insensitive to noise factors, which are hard or impossible to con-
trol [3]. Although some of the statistical aspects of the Taguchi
methods are disputable (eg, [4]–[6]), there is no dispute that
they are widely applied to various processes. A quick search
in related journals, as well as the World Wide Web, reveals that
the method is being successfully implemented in diverse areas,
such as the design of VLSI; optimization of communication &
information networks, development of electronic circuits, laser
engraving of photo masks, cash-flow optimization in banking,
government policymaking, and runway utilization improvement
in airports [3], [7]–[9].

The Taguchi method has been extensively elaborated &
analyzed in published papers. Box & Meyer [10] suggested a
method to estimate the variance of the response, and identified
factors that affect it with small nonreplicated designs. Leon
[5] introduced the concept of PerMIA, a performance measure
independent of adjustments. Their measure was suggested as a
replacement for Taguchi’s S/N ratios during the analysis stage.
Box [11] criticized the statistical tools used by Taguchi, and
suggested working with two ratios based on the response mean
& variance, independently. He also introduced the Lambda
Plot as an efficient tool to obtain a compatible transformation.
Pignatiello [12] considered multiple quality characteristics, and
introduced priority-based approaches to be used in such cases.
Steinberg [13] mentioned important statistical considerations
that should be carefully addressed before implementing the
robust design method. McCaskey & Tsui [14] developed a
two-step robust design procedure for dynamic systems whose
target value depends also on an input signal that is set by the
system’s operator. Kenett & Zacks [15] illustrated how to
approximate the expected value & the variance of a known
nonlinear response by using a Taylor series. Consequently,
they found the robust solution analytically, and compared it to
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a solution found by a numerical Monte-Carlo sampling. Tsui
[16] investigated the response surface model (RSM) approach,
and compared it to the Taguchi method for a dynamic robust
design. Sanchez [17] considered a framework for robust design
using simulation tools. Following the above extensions to the
Taguchi method, in this paper we suggest new entropy-based
performance measures.

B. The Taguchi Method and the Proposed Approach

Taguchi characterized three types of quality loss functions for
a given system [1]–[3]:

i) nominal-the-best is where the designer wants to achieve
a particular target value, for example, a required output
voltage of a circuit.

ii) smaller-the-better is where the designer wants to min-
imize the system response because quality decrease as
the system response increases. Some examples are the
response time of a computer, or a radiation leakage from
a microwave oven.

iii) larger-the-better is where the designer wants to maxi-
mize the system response since quality increases with
the system response. For example, the bond strength of
a weld point.

In this paper, we focus on the nominal-the-best quality loss.
However, the suggested method can be well applied to all other
types of quality loss. In fact, our objective, which is to find a
system with a low entropy measure, does not depend on the type
of quality loss.

Taguchi’s motivation for continuous improvement emerged
from his definition of the quality loss function. Because the
nominal-the-best function implies a higher rate of quality loss as
the system response gets far from a required target, a quadratic
function was selected as the simplest mathematical function that
preserves the desired behavior. The quality loss is given
by

(1)

where is the system response, is a cost constant called the
quality loss coefficient, and is the required target. The response
of a system, and, as a result, its quality characteristics, are influ-
enced by three types of factors:

i) signal factors that are set by the operator of the system
in later stages of the product life;

ii) control factors, , that are set by the designer of the
system; and

iii) noise factors, that cannot be directly controlled by nei-
ther the designer nor the operator.

Both control & noise factors can take multiple values called
levels.

Control factors are those design parameters that can be freely
specified by the designer. Taguchi [2], [3] divided these control
factors into two subsets, & . Belonging to are those fac-
tors influencing both the response mean, and the response vari-
ance. Belonging to are those factors influencing only the re-
sponse mean. Taguchi used these subsets to obtain the robust de-
signs in a two-stage procedure, which is explained below. Later

robust design approaches further divided the control factors into
four subsets, depending on their influence on the mean, and on
the variance, as well as based on economic considerations [4],
[12], [18], [19].

Noise factors were usually classified by Taguchi into three
classes [2], [3]:

i) external noise factors that typically describe the environ-
mental conditions, such as temperature, dust, humidity
etc.;

ii) unit-to-unit variation that typically addresses the in-
evitable variations in a manufacturing process; and

iii) deterioration that typically refers to the deterioration in
functional characteristics of sold products as time passes.

Taguchi’s main idea was to control the noise factors indirectly
by examining how they are affected by different settings of the
control factors. He suggested analyzing the joint effects of con-
trol & noise factors, and for this purpose, proposed a perfor-
mance criterion called signal-to-noise ratio (S/N). The S/N ratio
for the nominal-the-best loss in the case where the response vari-
ance is related to the response mean is [3]

(2)

where is the average response, and is the variance of
the response over various experimented samples of designs.
Taguchi’s objective was to design a system such as to maximize
the S/N value while keeping the response on the target. In
particular, his method for robust design was divided into two
stages called parameter-design, and tolerance design.

In the parameter-design stage, the designer has to determine
the best setting of the control factors to minimize the quality
loss. This objective is achieved by a two-step procedure [2], [3].
First, set those control factors in to maximize the S/N ra-
tios in order to minimize the sensitivity of the response to noise.
Second, use the factors in to adjust the mean response to
the desired target, based on the assumption that the response
mean can be altered independently from the response variance
due to these tuning factors. The underlying assumption at this
stage is that the setting of control factors does not affect the man-
ufacturing costs. During parameter design, Taguchi assumed a
wide tolerance on the noise factors; and, under these conditions,
tried to minimize the sensitivity to noise. If at the end of the pa-
rameter-design stage the quality loss has to be further reduced,
which is the situation in most practical applications [3], the de-
signer has to continue to the tolerance design stage. Our pro-
posed approach is useful only if the tolerance of (some of) the
noise factors can be reduced (naturalized) during the tolerance
design stage.

In the tolerance design stage, the designer selectively reduces
the tolerances of the noise factors to further minimize the quality
loss. A trade-off is often considered between the reduction in the
quality loss, and the costs required to reduce the tolerances of
noise factors. Taguchi suggested to perform the tolerance design
stage only after the S/N-based optimal design has been selected
in the parameter-design stage [2], [3]. Otherwise, it was claimed
that the costly tolerance design will be somewhat “wasted” on



BEN-GAL: ON THE USE OF DATA COMPRESSION MEASURES TO ANALYZE ROBUST DESIGNS 383

TABLE I
ANOVA AND PCONT CALCULATIONS

a nonoptimized system, leading to a higher investment in tol-
erance reduction to achieve the desired low quality loss. Thus,
note that Taguchi’s approach optimizes the system in each of the
two design stages independently. It does not consider a possible
situation where a nonoptimal system in the parameter-design
stage achieves the lowest tolerance-reduction cost in the toler-
ance design stage. Here we aim to address such situations.

In this paper, we provide a measure of the expected toler-
ance-reduction efforts already at the parameter-design stage.
Consequently, instead of optimizing the system at the param-
eter-design stage according to the S/N ratios, and then carrying
on with the S/N-based optimal system to the tolerance design
stage, we propose a more unified approach for the design. We
suggest assessing in advance the number & effects of noise fac-
tors which will have to be naturalized in the tolerance stage. We
assume that the cost of tolerance minimization is proportional to
the number & effects of those noise factors that should be natu-
ralized in the tolerance design stage. Accordingly, in addition to
the S/N measure, we suggest a new entropy-based measure for
each design configuration, denoted by H(design). Simultaneous
inspection of both measures helps the designer to identify a
system configuration whose overall cost following both design
stages is low. Practically, we claim that in the parameter-design
stage it might be better to select a design configuration with a
slightly higher S/N ratio, yet a lower H value that requires rela-
tively lower efforts in the tolerance design stage. We now follow
with the description of how to obtain the proposed entropy
measure.

II. COMPRESSIBILITY OF THE PERCENT

CONTRIBUTION VALUES

Central to Taguchi’s parameter design stage is the implemen-
tation of designed experiments. The experiments are conducted
to identify the effects of the control factors on the system re-
sponse under various settings of the noise factors. In partic-
ular, the method suggests the use of a crossed array, which is a
product of dual experimental arrays: an inner array which deter-
mines the levels of the controllable factors, and an outer array
which indicates the levels of the noise factors, as they are con-
trolled during the experiment. The outer array deliberately intro-
duces a systematic noise during the experiment to identify the
design configurations that are less sensitive to the noise [1], [3].

Table I exemplifies such a crossed array with four system config-
urations in the inner array, and eight combinations of noise fac-
tors in the outer array. The experiment in the table is explained
later.

Once the experiments are executed, the Analysis of Variance
(ANOVA) is used to partition the total response variability into
components associated with different control factors, and to
identify the significant ones. The signal-to-noise (S/N) mea-
sures are then computed for each row in the inner array. These
S/N measures reflect the reliability of the various experimental
configurations under the systematic noise, which is imposed
by the outer array. Nonetheless, the S/N measures overlook the
individual contribution of each noise factor to the variability
in the response. Knowledge regarding the spread of the noise
effects is important when the designer has to determine the
required efforts to further optimize the system. For example, it
might be crucial for the designer to know whether the system
is sensitive to only one of the noise factors, or whether it is
sensitive to all of them. Thus, although the Taguchi method is
focused on the design of reliable systems, it cannot distinguish
at the parameter-design stage between two design configura-
tions having similar S/N ratios that are obtained from a totally
different divergence of noise effects. Next, we show how to
obtain the new entropy measures that can assist in bridging this
gap.

The percent contribution measures were used by Taguchi for
the interpretation of experimental results [3], [7]. The percent
contribution values reflect the relative portion of the total varia-
tion observed in an experiment which is attributed to each factor.
It is a function of the sums-of-squares, , for each factor ,
indicating its relative power to reduce the response variation. In
other words, the percent contribution of a given factor indicates
the potential reduction in the total variation that can be achieved,
if this factor is controlled precisely. Taguchi distinguished be-
tween , the variance associated with factor including the ex-
perimental noise (error), and , the variance associated purely
with this factor, reflecting the contribution to variability only
due to changes in the factor levels. Accordingly, the “pure” vari-
ance which is associated with factor is given by
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where is the mean-square-error. Equivalently, in terms of the
sum-of-squares

(3)

where denotes the degree of freedom (df) for the factor, and
are the sum-of-squares associated ‘purely’ with the factor

levels variation. The percent contribution of factor , denoted
here by , is obtained by the ratio between the ‘pure’ sum-of-
squares of the factor, and the total sum-of-squares, . Based
on (3) the percentage is computed as [7]

(4)

Note that the total percent contribution due to all factors, and
due to the error term, must add up to 100%. When using the
sum-of squares rather than the pure ones, a closely related mea-
sure is obtained, which is known as the eta-squared. In the pa-
rameter-design stage, Taguchi measures the percent contribu-
tion of the controllable factors, and uses a rule-of-the-thumb that
the sum of the percent contributions due to all significant factors
should be larger than 85% [7]. Such a threshold assures that no
significant controllable factor was forgotten & omitted from the
experiment. In the tolerance design stage, Taguchi uses the per-
cent contribution to see that the contribution of noise factors to
the response variance exhibits the typical Pareto principle [3].
Hence, Taguchi uses the percent contributions measure as an
estimation of the experiment adequacy. We suggest measuring
the entropy of the percent contributions of the noise factors in
the outer array. The reason is twofold: first, to measure the com-
bined contribution of the noise factors to the response variation
in the parameter-design stage, and second, to assess the poten-
tial reliability of the system, if some noise factors can be natu-
ralized in the tolerance-design stage. Our choice of the entropy
measure is explained next.

The entropy of the values provide a rational measure
to assess the contribution of different noise factors to the vari-
ability, or alternately, to the uncertainty in the system output.
In general, the entropy is an ultimate measure of the average
uncertainty in a random variable (r.v.) with probability mass
function , and is given by [20]

(5)

When the logarithm is base 2, the entropy is measured in bits.
Note that the entropy is a function of the distribution of the r.v.,
and does not depend on its actual values. It is a concave func-
tion of the distribution, and equals zero only in the deterministic
case, i.e., when the probability of one of the values is equal to
one. Moreover, it obtains a positive value within the bounds

(6)

where , i.e., the number of elements in the range of
[20], [21]. The upper bound is obtained i.f.f. has a uniform

TABLE II
ANOVA AND PERCENT CONTRIBUTION (PC ) VALUES OF NOISE

EFFECTS FOR SYSTEM D

distribution over the range. Shannon [20] used the above prop-
erties, and showed that the entropy function provides a lower
bound on the expected description length of the random vari-
able.

We apply the entropy function to each design configuration,
i.e., calculating the entropy of the percent contribution values of
all the factors as obtained in the design

(7)

Thus, we adopt a “probabilistic approach” with regard to the
contribution of each noise factor in each design to the response’s
uncertainty. The advantages in applying the entropy to the per-
cent contribution values can be demonstrated through the fol-
lowing numerical experiment.

Table I presents a crossed array that exemplifies the contri-
bution of the suggested performance measure. The experiment
investigates the effects of various controllable factors (that are
omitted for simplicity of presentation), as appeared in the inner
array that consists of four tested systems (designs): – . The

outer array shows the setting of three noise factors: A, B,
and C (noise factors’ interactions are ignored in this example).
Each entry in the crossed array presents the response of a tested
system under the specific setting of the noise factors. The last
three columns correspond to three performance measures (the
first two are traditionally proposed by the Taguchi method): i)
Mean is the mean of the response; ii) S/N is the signal-to-noise
ratio; and iii) is our suggested measure, the entropy of the
percent contribution values of the noise factors given in (7), in-
cluding (in parentheses) the respective percentage from the en-
tropy upper-bound given in (6). The percentage of the upper
bound is informative because the entropy function has a non-
linear rate in the distribution: it increases steeply for low values
(the almost “deterministic” cases), and is rather flat around its
maximal value. Thus, this percentage scales the differences be-
tween designs that are affected by a different number of noise
factors, relative to designs that differ one from another only due
to their distributions.

As explained above, the entropy measure for each design
is obtained from the ANOVA of its responses with respect
to the outer array. For example, the entropy measure of ,
the system with highest S/N value, is calculated by ANOVA
of ’s eight responses, as presented by columns 1–6 in
Table II. Column 7 presents the percent contribution values
calculated according to (4). For example, considering factor
A, ;
thus, 36.1% of the response variance is due to noise factor
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A, and could potentially be reduced if this factor could be
naturalized (eg, by adding a cooling unit to the system, if
factor A represents the environment temperature). Based on
all the percent contribution values, the designer uses (7) to
compute the entropy for each design. In this example,

. This value is equal to 76% of
the entropy upper bound for a system with noise & error
factors: .

The entropy measures of the values for each system are
presented in the last column of Table I, and reflect the contribu-
tion of various noise & error factors to the response variability.
As the entropy increases, more noise factors have to be natural-
ized in order to obtain a more reliable system. If a single factor
contributes most of the variability, the entropy of the mea-
sures will be close to zero, whereas, if the variability contribu-
tion is spread equally among the factors, the entropy increases
up to log(number of factors), as indicated in (6). Measuring var-
ious designs by their entropy measures thus provides an efficient
way to assess the future efforts in the tolerance design stage to
achieve a more reliable system that is independent of the design
area of specification. Note, on the other hand, that the entropy
value of a system, similar to its S/N value, is a relative measure,
which is mainly used for the comparison with other systems.
There is no clear-cut decision rule for selecting a system which
is solely based on its entropy value. A roughly derived “rule
of thumb” for a system selection, which based on the entropy
measure, is given in Appendix I. There we rely on the Pareto
principle, and find the -ary entropy bound (which is equivalent
to the percentage of the upper bound in (6)) of those systems
where 20% of the noise factors evenly contribute 80% of the re-
sponse variability. The derived entropy bound depends only on
the number of noise factors, and gives a point of reference to in-
dicate whether a system is a good candidate for the tolerance-de-
sign stage. In particular, the entropy bound for systems with 4
noise & error factors, as those systems considered in Table I, is
equal to 40%. Such a bound implies that any system for which
the percentage of the upper bound is lower than 40% (in this ex-
ample it applies only to system with a percentage of 7%) can
be considered as a good candidate for the tolerance design stage.
Once the design candidates are identified, the designer can sort
the factors according to their values, and apply the toler-
ance design to the factors that contribute most (e.g., 80%) to the
response variability.

Note that the use of the entropy performance measure can
alter the designer’s selection in comparison with the traditional
Taguchi method. In this example, although would tradition-
ally be chosen according to its highest S/N value (note that the
mean values for all designs are almost identical in this example),
its relatively high entropy measure indicates that the response
variability is affected by all noise factors. Such a spread of noise
effects increases the probability of a noisier response which is
less reliable. Even if the nosiest factor will be naturalized in the
tolerance design stage, the resulting system will still be affected
by the other noise factors. On the other hand, although the S/N
value of is lower than the S/N of , i.e., 13.58 vs. 16.76,
its lower entropy measure clearly indicates that most of the vari-
ability in the response is associated with a single noise factor,

TABLE III
ANOVA AND PERCENT CONTRIBUTION (PC ) VALUES OF NOISE

EFFECTS FOR SYSTEM D

factor A in this case, with , as can be seen in
Table III. Note that the value of factor C is negative be-
cause the factor is insignificant. One can add factor C to the
error term & rerun the analysis; however, this will result in a
similar entropy value which is practically identical to the one
presented in Table I. To conclude, it might be wiser to select
at the parameter design stage if it is known that factor A can be
naturalized later. The other two designs can be discarded based
on their joint S/N & H measures.

Further analysis for the comparison of systems & is
available by using the empirical models that are obtained for
each system. These empirical models can be used to predict the
potential S/N ratio once the most influential noise factor (in each
system) is naturalized. In particular, based on the experimental
results in Table I, the empirical response models for both sys-
tems (with the coded factors 1, 1) are, respectively

(8)

Note from Tables II & III that both these models are statisti-
cally significant, and obtain a low -value. Thus, the designer
can use these models to predict quite accurately the responses
of the system under various noise-factor configurations. These
values enable the estimation of the response mean, the response
variance, and thus, the potential S/N ratio & H values. Based on
the above empirical models, the predicted values, means, and
S/N ratios for both systems are practically identical to those cal-
culated from the experimental observations, as seen in Table IV
(columns 3 vs. 2, and 6 vs. 5). Note that the predicted H values
are lower than the experimental ones because the noise terms of
the former are equal to zero. Under the existing circumstances,
the designer can use the empirical model to predict the potential
S/N ratio in case the most influential noise factor is naturalized.
This is done by simply deleting the relevant term in the empir-
ical response model, and regenerating the responses for all the
noise factor combinations in the outer array. Table IV presents
the predicted responses of system with factor A being natu-
ralized (column 4), and system with factor B being natural-
ized (column 7); and compares both to the original responses in
Table I (columns 2 & 5 respectively). Note that in case of tol-
erance elimination, system obtains a much higher S/N ratio
compared to that of system . Namely, the potential increase
in the S/N ratio for system is from 13.58 to 32.90, while the
potential increase in the S/N ratio for system is from 16.76
only to 19.83. This result emphasizes once again that under the
assumption that the noise factors can be effectively naturalized,
and under relevant cost-benefit considerations, it might be wiser
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TABLE IV
ACTUAL AND ESTIMATED RESPONSES; AND S/N RATIOS FOR SYSTEMS D &

D , UNDER VARIOUS NOISE-FACTOR SETTINGS

in the parameter design stage to chose system ; a design
which achieves a slightly lower S/N ratio, but has a much larger
potential to be further optimized in the tolerance-design stage.
Hence, the proposed approach is valuable only if the S/N value
of 16.76 for system is not satisfactory, and there is a need
to proceed to the tolerance design stage. Note that the empirical
models enable us to address the conflict imposed by the alter-
nating values of the two decision criteria, namely, the SN ratio,
and the entropy of the original systems. Another possibility to
deal with such conflicts, which is left for future research, is to
use one of the multi-criteria decision making methods [22]. Fi-
nally, note that the entropy values & bound of the naturalized
systems reflect the new spread of factorial effects on the re-
sponse variability, once the most influential factor has been nat-
uralized. Thus, these H values are not necessarily lower than the
H values of the nonnaturalized systems.

Let us now proceed to a short discussion on the potential use
of the Huffman coding measure.

III. HUFFMAN CODING: NATURALIZING

A SUBSET OF NOISE FACTORS

Once we adopt a “probabilistic approach” for the contribu-
tion of various noise factors to the variability in the system re-
sponse, a series of probabilistic algorithms can be implemented
into the robust design framework. In this section, we consider
the Huffman coding algorithm for a specific related problem
which is presented next.

Suppose that at some moment a severe disturbance in the
system response occurs due to one of the noise factors that are
represented in the outer array. The designer aims to discover,
with as few experiments as possible, the disturbing noise factor
in order to naturalize it. With no initial information, he follows
the probabilistic approach suggested above, and considers the
percent contribution of each noise factor as an estimate for the
probability of that factor being the disturbing one. This is a rea-
sonable assumption if no side information is available because
the probability is spread among the noise factors proportionally
to their affects on the response. The remaining question is how
to organize the experiments to quickly reveal which factor is

Fig. 1. A binary test tree with six noise factors, and an average number of
L = 2:75 tests.

the disturbing one. If only a single factor can be naturalized in
each experiment, a reasonable order of the experiments would
be to start with the most probable factor, and proceed to less
probable ones, as long as the disturbing factor is not found.
For example, consider a case with six noise factors ordered ac-
cording to their respective probabilities, as indicated by their

values: 0.3, 0.2, 0.2, 0.2, 0.05, and 0.05. Then, the expected
number of experiments under such ordering of the experiments
would be ex-
periments. That is, having a probability of 0.3 to discover that
the disturbing factor is factor no. 1 in the first experiment; a
probability of 0.2 to discover that the disturbing factor is factor
no. 2 in the second experiment, etc., up to a probability of 0.1
to discover in the fifth experiment which of the factors, 5 or 6,
is the disturbing factor (the sixth experiment is superfluous due
to elimination). Consider now a realistic situation where several
noise factors can be jointly naturalized during the experiments.
The question remains, namely, how to organize those “group
tests”, as they are called in the literature [23]–[25], in order to
minimize the expected number of test rounds. One can, for ex-
ample, specify a testing procedure where approximately half of
the factors are naturalized in each experiment (rounding up the
number of the first subset, if it is odd). Such a procedure can be
well described by a binary search tree [23]–[25]. The tree is a
graphic representation of successive divisions of a set of items
(noise factors in this case) into two subsets after each test/ex-
periment. Fig. 1 presents, for example, a binary search tree with
the above-considered six noise factors, labeled at the terminal
nodes (leaves) by their numbers. The probability of noise fac-
tors to be the disturbing factor is estimated by their values
(using (4)), given at the bottom of the leaves within parentheses.
In each test, a subset of noise factors are naturalized; then if the
disturbance in the response disappears, it is known that the dis-
turbing factor belongs to this subset. If the disturbance does not
disappear, it is known (by elimination) that the disturbing noise
factor belongs to the other (nonnaturalized) subset. The arcs in
the tree represent the possible sequences of tests to identify the
disturbing factor. Based on the outcome of the tests, the rele-
vant subset of noise factors (that contains the disturbing factor)
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Fig. 2. The optimal binary test tree as obtained from the Huffman algorithm
with an average number of L = 2:4 tests.

is further partitioned in the next experiment into two new sub-
sets, such that the first subset includes half of the factors (again,
rounded up). As seen from Fig. 1, in the first experiment, the
designer naturalizes either the subset of noise factors {1, 2, 3},
or the subset of noise factors {4, 5, 6}. Then, for example, if
the disturbed response belongs to the left subset, a second test
is performed by naturalizing either noise factors {1, 2}, or noise
factor {3}. If the result of the second test indicates that the dis-
turbed response is noise factor {3}, an event with probability
0.2, then the disturbing factor was found after two rounds of
tests. However, if the result of the second test indicates that the
disturbed factor belongs to the subset {1, 2}, a third test has to
be performed to indicate which of them is the noisy factor. The
expected number of rounds of tests, L, is equal in this example
to

tests.
Note that the tree represents a testing strategy which is far

from being optimal; it even obtains a worse result than the
“single factor at a time” considered above. It is evident that an
efficient testing policy should assign shorter testing branches to
less reliable factors, and vice versa because this will result in
a lower expected number of tests. However, in this example, it
is seen that the suggested strategy fails to do so. For example,
if factor no. 1, with the highest probability (0.3) of being
the disturbing factor, is indeed the one, it will be discovered
after three tests; whereas if factor number 6, with the lowest
probability (0.05) of being the disturbing factor, is the one, it
will be discovered after two tests.

The entropy measure of the values represents the lower
bound on the expected number of tests [20], [21], and equals
in this case to 2.35 tests. However, the entropy lower bound is
unattainable in this case, and the optimal testing procedure is
given by the well known Huffman coding algorithm [26]. The
constructible Huffman algorithm is presented in Appendix II for
purpose of self containment. In this example, it obtains an ex-

pected number of
tests, as shown in Fig. 2. The

example given in Table I is too small for our pedagogical pur-
pose. Yet, for example, the use of the Huffman algorithm on the

values of system (neglecting the error term) implies
that Factor B should be investigated in the first experiment. If
factor 3 is not the disturbing factor, then the second experiment
should be focused on factor A or C. Such procedure results in

tests.
In summary, it is seen that in a framework of probabilistic

sequential experiments, one potential direction is to apply the
Huffman coding to the measures in order to determine
which of the noise factors should be naturalized. The Huffman
algorithm which assigns long codes to less probable symbols,
can be applied in the context of robust design to assign short
testing sequences to noisier factors. Further details & ideas re-
garding the analogy between experiment procedures & coding
methods can be found in [25], [27].

APPENDIX I

Let us assume that the number of noise factors can be par-
titioned into two disjoint subsets containing exactly , and

factors. Then, according to the Pareto principle, good can-
didates for the tolerance design stage are those systems where
20% of the noise factors contribute 80% of the variability. As-
suming that within each subset the factors’ effects are identical,
we can compute their respective percentage from the entropy
upper-bound given in (6)

(9)

where is the binary entropy to the base
. Given the number of factors ,

the designer can look for any system with an entropy percentage
given by (6), which is less than or equal to .

With regard to the example in Table I, note that the entropy
bound for systems with 4 noise sources (3 noise factors & an
error term) is 40%.

APPENDIX II

An optimal code, defined by shortest expected length, for
a given discrete distribution of items can be constructed by a
simple algorithm discovered by Huffman [26]. The code can
be directly mapped to a test tree, and thus, the algorithm is op-
timal for the considered search problem [21], [24]. The rationale
of the algorithm is to assign long codes (test branches in the
test tree) to less probable items (the noise factors in our case),
and vice versa. The goal is to minimize the expected code (test)
length, , where is the length of the branch to
the ith leaf that represents the th item, and is the probability
of this item to be the searched item. The proof of optimality can
be found in [26] or [21], and is omitted here.

The Huffman algorithm for optimal codes is presented next.
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TABLE V
THE HUFFMAN CODING ALGORITHM

The Huffman Coding Procedure

For a given set of items (noise factors in our case)
where , with a known distribution , and a
binary coding alphabet {0,1}, the coding algorithm is the fol-
lowing one:

1. Arrange all source symbols in decreasing order of prob-
abilities: .

2. Assign “0” to the last digit of the last code-word, denoted
as , and “1” to the last digit of the previous code-word

.
3. Add to to obtain a new set of probabilities

.
4. Repeat all the steps for this new set of probabilities.

Example: Table V illustrates the Huffman algorithm for bi-
nary coding. The algorithm steps are given in columns 2–6, and
their respective codes are given in columns 7–11. The final code
in column 11 can be directly mapped to a binary test tree. The
code is read from left to right. In each test stage, the set of
items is partitioned into two subsets in correspondence to the
“1” & “0” symbols in the code. In this example, the first test
should partition the whole set of items (factors in our case) into
two subsets: having “1” in the most left digit
of their codes, and having “0” in the most left digit
of their codes. If the searched item (disturbing factor) belongs
to the first subset, the next test divides this subset to two new
subsets according to the second digit in their codes, thus into

& . The resulting binary test tree is presented
in Fig. 2, and obtains an expected number of

tests.
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