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This paper presents the performance of the Weight-Balanced Testing (WBT) algorithm with multiple testers. The WBT algorithm
aims to minimize the expected number of (round of) tests and has been proposed for coding, memory storage, search and testing
applications. It often provides reasonable results if used with a single tester. Yet, the performance of the WBT algorithm with multiple
testers and particularly its upper bound have not been previously analyzed, despite the large body of literature that exists on the WBT
algorithm, and the recent papers that suggest its use in various testing applications. Here we demonstrate that WBT algorithm with
multiple testers is far from being the optimal search procedure. The main result of this paper is the generalization of the upper bound
on the expected number of tests previously obtained for a single-tester WBT algorithm. For this purpose, we first draw an analogy
between the WBT algorithm and alphabetic codes; both being represented by the same Q-ary search tree. The upper bound is then
obtained on the expected path length of a Q-ary tree, which is constructed by the WBT algorithm. Applications to the field of testing
and some numerical examples are presented for illustrative purposes.

1. Introduction

In this paper we analyze the Weight-Balanced Testing
(WBT) algorithm with multiple testers. We start by ex-
emplifying the sequential search problem as presented in
Ahlswede and Wegner (1987) and Yeung (1991). Consider
a sequential input-output system (e.g., an electronic device)
where the components are connected serially, such that the
output of the ith component is the input for the (i + 1)th
component. Figure 1 presents such a system with n compo-
nents linked serially from left to right. The premise is that
the overall system output is being continuously monitored.
Thus, upon first detecting an erroneous system output, it
is reasonable to assume that there is exactly one compo-
nent which is malfunctioning (we then term this component
as MF). Each component has a certain (relative) reliabil-
ity which is expressed in terms of its probability to be the
MF. We denote this probability by Pi, i = 1, . . . , n. Since
the components are linked serially, a correct signal from
the output of a component indicates that the MF is to its
right, while an erroneous output indicates that the MF is
to its left (including the inspected component itself). The
problem is to find the MF as quickly as possible in order
to repair or replace it, or, equivalently, the problem is to
design a testing procedure that yields the lowest expected
number of tests to indicate the MF. The expected number of
tests is defined over the probabilities of the components to
be the MF. When considering multiple testers, one aims to

minimize the expected number of rounds of tests: a number
which is proportional to the expected search time. In this
paper, we use the term “number of tests” also for a multiple-
testers search, although we actually refer to the number of
rounds of tests. Note that such a search problem is applica-
ble to different areas. Lipman and Abrahams (1995) con-
sidered a search for a defective segment in a pipeline with a
finite number of segments linked together. The pipeline can
be tested for defects only at a link. A test of a link estab-
lishes whether the defect is on the left or on the right of that
link. He et al. (1996) and Herer and Raz (2000) considered
a similar search problem of a defective product in a lot pro-
duced by a process with a constant failure rate. We consider
the same problem in the numerical example in Section 5.

Considering the above search problem, we investigate the
performance of the WBT algorithm with multiple testers.
The WBT algorithm has been extensively proposed in the
past for coding, memory storage, search and testing applica-
tions. The WBT algorithm is based on the simple principle
of successive partitions of the search set into equiprobable
subsets, i.e., subsets having an equal probability to con-
tain the searched item. At each step of the algorithm, the
subset which contains the searched item is partitioned in
to equiprobable sub-subsets and the process repeats itself
until the searched item is found. Intuitively, such a greedy
principle seems appealing since it is simple to apply, pro-
vides an efficient search at each step individually and under
certain conditions, attains the entropy lower bound on the
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Fig. 1. A serial input-output system with n components.

expected number of tests. However, as shown here, the WBT
algorithm with multiple testers is far from being optimal.
This phenomenon is sometimes overlooked, mainly when
the WBT algorithm is applied to areas which are not related
to coding. In fact, the performance of the WBT algorithm
with multiple testers and particularly the upper bound on
the expected number of tests have not been analyzed, de-
spite the extensive literature that exists on the single-tester
WBT algorithm. In this paper, we use the equivalence be-
tween testing procedure and prefix-free codes to derive an
upper bound on the expected search length of the WBT
algorithm with multiple testers. The search length of the
WBT algorithm is equivalent to the expected code length
represented by the different paths of a WBT search tree. We
then compare our results to optimal testing procedures that
are known from coding theory.

The rest of the paper is organized as follows. Section 2
provides a literature review. As seen, most of the mentioned
papers are related to a single-tester WBT algorithm. Sec-
tion 3 describes the WBT algorithm testing procedure. It
addresses the analogy between the WBT algorithm and
prefix-free codes, both represented by a WBT tree, and
provides some known coding results. Section 4 obtains the
upper-bound on the expected number of tests of the WBT
algorithm with multiple testers. Section 5 presents analytic
and numeric examples related to an industrial testing ap-
plication. Section 6 concludes the paper.

2. Literature review

The considered testing problem has various forms de-
pending on its area of application. The use of weight-
balanced trees for searching applications related to com-
puter and communication networks is very popular (Blum
and Mehlhorn, 1980; Vitter, 1999; Lai and Wood, 1993;
Andersson, 1999) due to its simple construction principles,
particularly when a uniform distribution is assumed over all
items. Thus, implying that the search set is partitioned to
subsets with an equal number of items. For example, Vitter
(1999) discussed the use of weight-balanced trees in relation
to a variety of on-line data structures for external storage
devices in computer applications. Lai and Wood (1993) pro-
posed a top-down restructuring pass to rebalance the tree.
Andersson (1999) showed that in order to achieve efficient
maintenance of a balanced binary search tree, no shape re-
striction other than a logarithmic height is required. The
obtained class of trees may be maintained at a logarithmic

amortized cost with no balance information stored in the
nodes.

A large body of literature addresses the problem of opti-
mal testing procedures. The majority of these papers con-
sider binary tests (i.e., implying that a single tester is avail-
able at any time point) and focus on modifications and
extensions to the Huffman (1952) and the Hu and Tucker
(1971) search algorithms. Abrahams (1994) analyzed the
performance of a binary Huffman and the Hu-Tucker
search algorithms for a simultaneous parallel search. She
showed how to set the number of parallel searches to guar-
antee expected search lengths shorter than some desired
constant. Abrahams (1994) also proposed the examination
of other aspects of tree search problems, as presented in this
paper. Yeung (1991) considered binary-test problems for an
ordered set, where ordering is with respect to the probabil-
ity distribution of components to be the MF. He has shown
that if the ordered distributions are ascending or descend-
ing, the expected length of an optimal alphabetic code is
the same as that of the Huffman code for the unordered
distribution. We use this phenomenon when comparing the
upper bound for the WBT algorithm with the optimal Hu-
Tucker algorithm. Lipman and Abrahams (1995) extended
the problem of designing a sequence of optimal binary tests
(for identification of a single faulty component) to account
for partially ordered components. They solved the problem
by reducing it to a series of alphabetic (linearly constrained)
minimization problems. Varshney et al. (1982) considered a
similar problem within the framework of fault diagnosis of
electronic systems. In particular, they addressed the prob-
lem of the construction of efficient sequential fault-location
experiments, and proposed a near-optimum sequential pro-
cedure which is computationally tractable and based on in-
formation theory principles. Other sources for WBT search
problems, are Ahlswede and Wegner (1987) and Du and
Hwang (1993).

In an early paper, Horibe (1977) analyzed the expected
number of tests of the binary weight-balanced tree. He pro-
vided an upper bound on the expected path length of an
alphabetical binary tree, which is constructed by the weight
balancing algorithm. This paper generalizes some of his
ideas to obtain an upper bound on the expected number of
tests for a Q-ary balanced tree, which represents a multiple
testers procedure.

The use of the Q-ary balanced tree for searching a
damaged product in a manufacturing batch has been re-
cently proposed in Herer and Raz (2000) in relation to Raz
(1991). The authors investigated a production system with
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Fig. 2. A binary WBT tree for n = 6 components.

a constant failure rate. They assumed that after a process
failure the remaining units that are produced are noncon-
forming. Their objective was to find the first nonconforming
unit with a minimal expected number of tests. In particular,
the authors suggested a parallel inspection procedure with
multiple testers that is based on the Q-ary WBT, i.e., at any
stage divide the search set into Q equiprobable subsets. The
authors mentioned the entropy as the ultimate lower bound
on the expected number of tests; a fact which is evidently
true regardless of the applied testing algorithm. However,
they did not provide an upper bound to their suggested
method; an upper bound such as the one which is obtained
in this paper.

3. The Q-ary weight-balanced tree and alphabetic codes

A Q-ary testing procedure is performed by m testers si-
multaneously, partitioning the search set into (Q = m + 1)
subsets. Each of the testers is allocated to an item (we use
the terms item, component and unit interchangeably) in
the set and according to the results the next Q-ary testing
procedure is specified, that is, the next m items to be in-
spected are selected. The weight-balanced approach seeks
to locate the m testers such that they partition the set to
(m + 1) equiprobable subsets with respect to the probabil-
ity of finding the MF unit in that subset. Since the theo-
retical unit numbers to be inspected are most likely not in-
tegers, some simple rounding or ceiling procedure is often
applied.

The above testing procedure can be described by a Q-
ary search tree, where Q = m + 1 (Horibe, 1977; Herer and
Raz, 2000). The Q-ary search tree is a graphic represen-

tation of successive division of a set {1, . . . , n} into Q sub-
sets, each resulting subset consisting of consecutive integers.
Figure 2 presents, for example, a binary WBT search tree
for a single tester (m = 1) and six components (n = 6). The
six terminal nodes (leaves) are labeled by the component
numbers. The probabilities of the components to be the
MF, Pi, i = 1, . . . . , 6, are known in advance and shown at
the bottom of the terminal nodes. Each internal node rep-
resents a subsystem and is labeled by its associated com-
ponents. The probability that a subsystem includes the MF
component is equal to the sum of probabilities of its com-
ponents that are labeled in the node. The tested compo-
nent which divides the subsystem in each stage is shown
between each pair of arcs (with a question mark). The arcs
are labeled by the test outcome, where a one denotes a cor-
rect signal and a zero denotes a faulty signal. Based on
the tests outcome, the relevant subsystem (including the
whole system in the first step) is partitioned in the next
step into two sub-subsystems by the following procedure:
components are grouped into the first sub-subsystem un-
til its accumulated probability is equal to or larger than
half of the probability which is associated with the original
undivided subsystem. The resulting subsystems of com-
ponents at each tree level are labeled by the descendant
nodes. The first test is performed on the output of com-
ponent 2, since the subsystem containing components 1
and 2 is the smallest one with an accumulated probabil-
ity larger than 0.5. Then, for example, if the result is a
one, a second test is performed on the output of com-
ponent 4, since the subsystem containing components 3
and 4 has an accumulated probability of 0.25. If the re-
sult of the second test is a zero, a third test is performed
on the output of component 3. If the result of the third
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test is a zero, the faulty component is component 3. If
the result of the third test is a one, the faulty component
is component 4. The expected number of tests in this ex-
ample is, thus, L = 2 (P1 + P2) + 3 (P3 + P4 + P5 + P6) =
2 × 0.55 + 3 × 0.45 = 2.45.

The relation between the design of a testing procedure
and the design of prefix-free codes has long been established
(see, for example, Horibe (1977) and for recent publications
see, Ben-Gal and Levitin (2001) and also Ben-Gal et al.
(2002)).

A code for a random variable (random source) X is a
mapping from the range of X to a set of finite length strings
of symbols from a Q-ary alphabet. A prefix-free code C is
a code such that no codeword w1 ∈ C is a prefix of an-
other codeword w2 ∈ C. For example, for a 3-ary alphabet,
C1 = {02, 01, 102, 101, 1101} is a prefix-free code, whereas
C2 = {02, 01, 100, 121, 1002} is not a prefix-free code, since
the third codeword is a prefix of the fifth codeword. Ac-
cordingly, a sequence of prefix-free codewords can be
decoded instantaneously without reference to future code-
words, since the end of a codeword is immediately recog-
nizable. This is the reason why these codes are sometimes
also called instantaneous codes or self-punctuating codes.

Table 1 presents the equivalent prefix-free code to the
testing example given in Fig. 2. A codeword, which is rep-
resented by a path from the root to a leaf, is associated
with the test outcomes related to each component. Thus,
an analogy can be established between codewords and test-
ing vectors of components, where elements of the testing
vector indicate the series of subsets that should be tested
until the component is identified as MF. Accordingly, the
expected number of tests is identical to the expected code
length and is equal in this case to 2.45.

Shannon (1948) has shown that the entropy function pro-
vides the (ultimate) theoretical lower bound on the expected
code length and, thus, a lower bound on the expected num-
ber of tests. The entropy lower bound is obtainable if and
only if the division of the search set to equiprobable sub-
sets is perfect; such a condition is guaranteed for continu-
ous search spaces or for special discrete search sets. If this
condition does not hold (such as in the example presented
above, where the search space is a general set of discrete
components) the Huffman (1952) coding provides the op-
timal procedure, which is constructible and known to be

Table 1. The equivalent prefix-free code

Unit Pi Codeword Length

1 0.40 00 2
2 0.15 01 2
3 0.15 100 3
4 0.10 101 3
5 0.10 110 3
6 0.10 111 3

less than or equal to the entropy plus one test. However,
the Huffman coding procedure assumes that the search
set is unordered, thus, at any stage, any partition to sub-
sets of components can be tested. When this assumption
does not hold, and particularly, when a linear-order con-
straint is assumed on the set of components, the Hu and
Tucker (1971) algorithm provides the optimal procedure,
which is approximately the entropy lower bound plus two
tests (a refined result can be found in Ahlswede and Wegner
(1987) and Abrahams (1994)). In this paper we compare
our results to the above optimal testing procedures, the
Huffman and the Hu-Tucker algorithms, however, we do
not describe them, since they are well addressed in the
literature.

The fact that the relatively good performance of the
weight-balanced algorithm in certain binary codes (known
also as Fano coding) does not guarantee good performance
for Q-ary searches is known in coding related literature, but
sometimes overlooked in testing related papers. Evidently,
the WBT greedy algorithm is far less efficient than the opti-
mal Huffman and the Hu-Tucker procedures, since, at any
stage, the WBT divides the search set without considering
the next divisions of the resulting subsets. Moreover, in the
Q-ary WBT algorithm the resulting subsets at each stage
might contain less components than testers, thus, “con-
tributing” to the inefficiency of the algorithm. In Section 5,
we analyze the WBT algorithm with multiple testers nu-
merically and compare it to the above optimal procedures
and their upper bounds. As expected, in most cases the
WBT algorithm is less efficient than those procedures. It
achieves the Huffman coding’s performance if and only if
the partition of the search set at any stage will maintain
the equiprobability of the resulting subsets until the last
stage.

In the following we derive an upper bound for the WBT
algorithm with multiple testers for any given distribution
for components failure.

4. An upper bound on the WBT algorithm
with multiple testers

4.1. Notation and definitions

The search procedure is modeled by constructing an al-
phabetical Q-ary search tree. In the Q-ary tree there are n
terminal nodes (leaves) and S internal nodes. A terminal
node in the tree is a node of degree 1 having no descendent
nodes, only a parent node. An internal node has a degree
2 < d ≤ Q + 1, thus, having a parent node and up to Q
descendent nodes. The following notation is used:

m = The number of testers available to be func-
tioned simultaneously, partitioning the set
{i, . . . , j} to (m + 1) search sets, unless j − i +
1 < m + 1.
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Q = The alphabet size of the search tree. Corre-
spondingly, Q = m + 1.

T(Q, n) = A Q-ary WBT tree with n leaves. The search
tree represents the testing procedure of n
components or equivalently a Q-ary alphabetic
code containing n codewords.

(i, j) = An internal node in the tree, 1 ≤ i ≤ j ≤ n cor-
responding to the subsequence {i, i + 1, . . . , j}.
The subtree whose root is this internal node has
terminal nodes i, i + 1, . . . , j.

(i, i) = An terminal node (a leaf ) in the tree, (i, i) �= i.
Each terminal node represents a component
that can be identified by a Q-ary codeword rep-
resenting the outcomes of the tests.

I = The set of all internal nodes, (i, j) ∈ I, i �= j.
S is the cardinality of I , i.e., |I | = S, where
S ≤ Smax, the maximum (theoretical) number
of nodes in the WBT tree.

Pi = The probability associated with a terminal
node, or equivalently, the probability of the
corresponding ith component to be the MF,
i = 1, . . . , n,

∑n
i=1 Pi = 1, where P0

�= 0. For
some of the following observations, we will as-
sume that the probability mass function (pmf)
Pi is monotonically decreasing in i, i.e., Pi ≥ Pj
for all i < j. However, in general, this condition
is not assumed.

P(i, j) = Sum of probability terms associated with an
internal node, P(i, j) = Pi + Pi+1 + · · · + Pj.

li = The depth (level) of node i, defined as the num-
ber of nodes from node i (including) to the tree
root (not including). The depth of the node cor-
responds to the number of tests required by the
search tree to identify the ith unit, if it is the
MF.

k∗
ij(r ) = The theoretical unit number to be in-

spected by the r th tester, r = 1, . . . , m,

i ≤ k∗
ij(r ) < j, where the m testers parti-

tion the set {i, i + 1, . . . , j} according to the
weight-balanced algorithm. Thus, P(i, k∗

ij(r ))/
P(i, j) = r

(m+1) and P(k∗
ij(r ) + 1, j)/P(i, j) =

(m − r + 1)/(m + 1). In general, k∗
ij(r ) is not an

integer and a ceiling procedure is performed to
obtain an integer value. The following obser-
vations can be easily modified to account for a
floor procedure instead of the ceiling. We define
k∗

ij(0) �= i − 1, k∗
ij(m + 1) �= j.

k̂ij(r ) = The actual unit number (an integer) being in-
spected by the r th tester, where k̂ij(r ) ∈ {i, i +
1 . . . , j}. In the case where the number of units
in the subset is less than or equal to the num-
ber of testers, i.e., j − i + 1 ≤ m, each unit is
inspected by a tester. We omit the subscripts
when discussing the entire set, i.e., k̂ij(r ) = k̂(r ),
if i = 1, j = n.

4.2. Observations

The expected number of tests to identify the MF in the
set by a given Q-ary search tree with n leaves, T(Q, n),
is:

L(T(Q, n)) =
n∑

i=1

Pili =
∑

(i,j)∈I

P(i, j).

The equality results from the associative property of the
summation of probability terms.

The Q-ary entropy of a set of discrete probabilities, which
is denoted by {Pi} = P1, P2, . . . , Pn n ≥ 2, is defined as:

HQ({Pi}) = −
n∑

i=1

Pi logQ Pi,

where the log is taken to the base Q. We omit the subscript
when discussing general properties of entropy. Lemma 1
follows directly from the chain rule of entropy (see, for ex-
ample, Horibe (1977)).

Lemma 1.

H({Pi})
= H(P(1, k̂(1)), P(k̂(1) + 1, k̂(2)), . . . , P(k̂(m) + 1, n))

+ P(1, k̂(1))H
(

1
P(1, k(1))

, . . . ,
Pk̂(1)

P(1, k̂(1))

)
+ P(k̂(1)

+ 1, k̂(2))H
( Pk̂(1)+1

P(k̂(1) + 1, k̂(2))
, . . . ,

Pk̂(2)

P(k̂(1) + 1, k̂(2))

)
· · ·

+ P(k̂(m) + 1, n)H
( Pk̂(m)+1

P(k̂(m) + 1, n)
, . . . ,

Pn

P(k̂(m) + 1, n)

)
,

and in general,

H({Pi}) =
∑

(i,j)∈I

P(i, j) × H

(
P(i, k̂ij(1))

P(i, j)
,

P(k̂ij(1) + 1, k̂ij(2))
P(i, j)

, . . . ,
P(k̂ij(m) + 1, j)

P(i, j)

)
.

Notice that in Fig. 2, for example, H({Pi}) = 2.346. Lemma
2 follows from Lemma 1 and the definition of L(T(Q, n)).

Lemma 2.

L(T(Q, n)) − HQ({Pi}) =
∑

(i,j)∈I

P(i, j)
{

1 − HQ

(
P(i, k̂ij(1))

P(i, j)
,

P(k̂ij(1) + 1, k̂ij(2))
P(i, j)

, . . . ,
P(k̂ij(m) + 1, j)

P(i, j)

)}
.

Lemma 3. For any set of discrete probabilities {Pi}:
HQ({Pi}) ≥ (1 − Pmax) logQ 4,

where Pmax
�= maxi{Pi}.
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Proof. The proof makes use of the binary entropy function,
H2(x) �= −x log2 x − (1 − x) log2(1 − x), which is convex in
0 ≤ x ≤ 1. Note that for x ≥ 0.5, H2(x) ≥ 2 (1 − x) , where
equality is achieved at x = 0.5 and at x = 1. Then, re-
call that HQ({Pi}) ≥ HQ(Pmax, 1 − Pmax). Thus, H2({Pi}) ≥
2 (1 − Pmax) for Pmax ≥ 0.5.

Now, note that for x ≤ 0.5, − log2 x ≥ 2 (1 − x) ,

where equality is achieved at x = 0.5. Then, recall that
HQ({Pi}) = − ∑n

i=1 Pi logQ Pi ≥ − ∑n
i=1 Pi logQ Pmax = −

logQ Pmax. Thus, H2({Pi}) ≥ 2 (1 − Pmax) not only for
Pmax ≥ 0.5 but also for Pmax ≤ 0.5. Finally, multiply both
sides of the equation by logQ 2 to obtain the lemma. �

Lemma 4 follows from Lemmas 2 and 3.

Lemma 4.

L(T(Q, n)) − HQ({Pi}) ≤
∑
(i,j)εI

P(i, j)�ij,

where

�ij

= 1 −
(

1 − max
{

P(i, k̂ij(1))
P(i, j)

, . . . ,
P(k̂ij(m) + 1, j)

P(i, j)

})
logQ 4.

The value of �ij depends on the weight-balanced algo-
rithm, the search probabilities and on the ceiling procedure
which is applied to obtain k̂ij(r ), r = 1, . . . , m and consid-
ered next.

∑
(i,j)εI

P(i, j)�ij =
∑
(i,j)εI

P(i, j)
[

1 −
(

1 − max
{

P(i, k̂ij(1))
P(i, j)

, . . . ,
P(k̂ij(m) + 1, j)

P(i, j)

})
logQ 4

]
,

≤
∑
(i,j)εI

P(i, j) − logQ 4
∑
(i,j)εI

P(i, j)
(

1 − 1
P(i, j)

(
P(i, j)
m + 1

+ Pmax

))
,

=
∑
(ij)εI

P(i, j)
(

1 −
(

m
m + 1

)
logQ 4

)
+ logQ 4

∑
(ij)εI

Pmax,

Lemma 5. Let the actual inspected units to be obtained
by a ceiling procedure, thus, k̂ij(r ) = ⌈

k∗
ij(r )

⌉
, r = 1, . . . , m.

Then:

P(k̂ij(r − 1) + 1, k̂ij(r )) ≤ P(i, j)
m + 1

+ Pk̂ij(r ) ≤ P(i, j)
m + 1

+ Pmax.

Proof. Note that:

r
m + 1

≤ P(i, k̂ij(r ))
P(i, j)

≤ r
m + 1

+ Pk̂ij(r )

/
P(i, j),

since, by definition, P(i, k̂ij(r ))/P(i, j) ≥ r/(m + 1) and
P(i, k̂ij(r ) − 1)/P(i, j) = P(i, k̂ij(r ))/P(i, j) −Pk̂ij(r )/P(i, j) ≤
r/(m + 1). It thus follows that:

P(k̂ij(r − 1) + 1, k̂ij(r ))/P(i, j)

= P(i, k̂ij(r ))/P(i, j) − P(i, k̂ij(r − 1))/P(i, j)

≤
(

r
m + 1

+ Pk̂ij(r )

/
P(i, j)

)
−

(
r − 1
m + 1

)

= 1
m + 1

+ Pk̂ij(r )

/
P (i, j) ,

where the first equality follows from the definition of
k̂ij(r ) and the inequality is obtained by replacing the first
probability sum by its maximum value and the second
probability sum by its minimum value. The second in-
equality in Lemma 5 follows from the definition of Pmax,

which is equal to P1 if the probability is monotonically
non-increasing. �

Observation 1 follows from Lemmas 4 and 5.

Observation 1. An upper bound on the expected number of
tests for a given WBT tree with respect to the entropy is given
by:

L(T(Q, n)) − HQ({Pi}) ≤
∑
(ij)εI

P(i, j)�ij ≤
∑
(ij)εI

P(i, j)

×
(

1 −
(

m
m + 1

)
logQ 4

)
+ logQ 4

∑
(ij)εI

Pmax.

Proof. Let us apply Lemma 5 to Lemma 4:

where the inequality follows from Lemma 5. �
Although the construction of the WBT tree is compo-

sitionally tractable (of the order O(n2), e.g., see Ahlswede
and Wegner (1987)) the above upper bound is not a practical
one since it depends explicitly on the tree structure. Thus,
it requires one to construct the WBT tree, obtain the set
of internal nodes P(i, j), (i, j) ∈ I and compute the expected
number of tests for any possible vector of probability terms
{Pi}. It is therefore of interest to obtain an upper bound
that does not require such construction explicitly.

In order to obtain a closed-form upper bound on the ex-
pected number of tests of the WBT algorithm regardless
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of the structure of the tree, one needs to derive bounds for
both the number of nodes in the tree,

∑
1(i,j)εI = |I | = S,

and their respective sum of probabilities P(i, j). Note, how-
ever, that in general as the number of nodes in the tree
increases the respective sum of probabilities decreases and
vice versa. Next, we obtain such a closed-form upper bound
by considering the maximum number of nodes that are the-
oretically feasible for a weight-balanced tree, while associ-
ating each level in the tree with the highest theoretic sum of
probabilities.

Lemma 6. The maximum number of internal nodes in a (m +
1)-ary weight-balanced tree with n terminal nodes (leaves) is:

Smax
�= max

all (m+1)-ary trees with n leaves
S ≤

⌈
n(m + 1)

2m
− 1

⌉
.

Proof. In order to maximize the number of nodes in a Q-ary
tree with n leaves, T (Q, n), one needs to maximize the num-
ber of internal nodes in the tree since the number of termi-
nal nodes is fixed to n. The minimum number of descendent
leaves in an internal node is two (a node with one descen-
dant leaf is superfluous). Accordingly, one can construct
a tree with maximum internal nodes by ensuring that at
each level of the tree there will be exactly (Q − 1) internal
nodes with two descendent leaves and a Qth node, which
is associated with all the remaining leaves (the last node in
each level if the probability is monotonically decreasing),
as exemplified in Fig. 3.

The number of levels, or alternatively, the maximum
depth of such tree is:

⌊
n

2 (Q − 1)

⌋
,

Fig. 3. A Q-ary tree with a maximum number of internal nodes.

where at each level there are Q internal nodes. Thus, the
number of internal nodes cannot exceed:⌈

nQ
2(Q − 1)

− 1
⌉
.

Recalling that Q = m + 1, the lemma follows. In fact:

⌊
n

2m

⌋
(m + 1) − 1 ≤ Smax ≤

⌊
n

2m

⌋
(m + 1)

+ Nmod(2m) − m,

as seen in the Appendix. �
Lemma 7. A maximum value for the sum of probability terms
of the internal nodes in the tree,

∑
(ij)εI P(i, j), is given by:

∑
(ij)εI

P(i, j) < logm+1(1 + mSmax)

= logm+1

(
1 + m

⌈
n(m + 1)

2m
− 1

⌉)
.

Proof. We consider a weight balanced tree, T(Q, n), which
is entirely complete and balanced, thus, in each level (depth)
l = 1, 2, . . . in the tree there are Ql nodes, each of which has
a probability of Q−l, as exemplified in Fig. 4. In such a tree,
each level contributes one, which is the maximal value, to
the sum of probability terms that equals l̂, where l̂ is the
maximal depth in the tree. If the number of internal nodes
in the tree is S, then:

S = 1 + Q + Q2 + · · · + Ql̂−1 = 1 − Ql̂

1 − Q
.

For Q = m + 1, it follows that l̂ = logm+1(1 + mS). The
lemma is obtained by substituting S, the actual number
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Fig. 4. A complete and balanced tree with m = 2, n = 9, l̂ =
2, S = 4, Smax = 6.

of internal nodes in such a tree, with the maximum number
of nodes Smax, where Smax ≥ S. Recall that Smax is obtained
for the non-complete tree in Lemma 6, which contains the
maximum number of internal nodes. �

Observation 2. A closed-form upper bound on the expected
number of tests for a given WBT, T(Q,n), is given by:

L(T(Q, n)) − HQ({Pi}) ≤
∑
(i,j)εI

P(i, j)�ij

< logm+1

(
1 + m

⌈
n(m + 1)

2m
− 1

⌉)(
1 −

(
m

m + 1

)
logQ 4

)

+ logQ 4
⌈

n(m + 1)
2m

− 1
⌉

Pmax.

Proof. The inequalities follow directly from Observation 1
and Lemmas 6 and 7. �

Observation 3. Note that for large n and m values, the fol-
lowing (simplified) version of the above upper bound might
be tighter:

L(T(Q, n)) − HQ({Pi}) ≤ logm+1

(
1 + m

⌈
n(m + 1)

2m
− 1

⌉)

− (1 − Pmax) logQ 4.

Proof.

L(T(Q, n)) =
∑
(i,j)εI

P(i, j) ≤ logm+1

(
1 + m

⌈
n(m + 1)

2m
− 1

⌉)
,

as indicated in Lemma 7 and HQ({Pi}) ≥ (1 − Pmax) logQ 4,
as indicated in Lemma 3.

�

5. Example: The geometric distribution

Let us now consider the case where the probability of a unit
to be the MF follows the geometric distribution. However,

note that all the search procedures (and their bounds) that
we analyze in this example are constructed for a general
(discrete) probability distribution and make no particular
use of the geometric distribution assumptions. Presumably,
some of these procedures could be refined and improved, if
limited to the geometric distribution case. For example, the
best search solution for a single-tester search in the geomet-
ric distribution case can be found in Gallager and Voorhis
(1975). At the end of this section we also analyze some cases
that are not based on the geometric distribution.

Following He et al. (1996) and Herer and Raz (2000),
we consider a production process with a constant failure
rate, where the probability that the ith unit, i = 1, . . . , n, is
malfunctioning is given by geometric distribution, i.e.:

Pi = (1 − q)qi−1

1 − qn
,

where q is the probability parameter of the geometric dis-
tribution and (1 − q) is the failure rate.

Applying the above observations regarding the Q-ary
WBT algorithm with a ceiling procedure yields the follow-
ing results.

First, recall that in a search set with n components, the ge-
ometric accumulated distribution of the first j components
is

∑j
i=1 Pi = P(1, j) = (1 − qj)/(1 − qn). According to the

definition of k∗
ij(r ) we require that:

1 − qk∗
ij(r )−i+1

1 − qj−i+1
= r

m + 1
,

and solve it for k∗
ij(r ) to obtain:

k∗
ij(r ) = (i − 1) + logq

(m + 1) + r (qj−i+1 − 1)
(m + 1)

.

Then, following Observation 1, and recalling that the geo-
metric distribution is monotonically decreasing in the unit
index, where Pmax = P1, we obtain the upper bound:

L(T(Q, n)) − HQ({Pi}) ≤
∑
(ij)εI

P(i, j)
(

1 −
(

m
m + 1

)
logQ 4

)

+ logQ 4
∑
(ij)εI

1 − q
1 − qn

.

Observation 4. A closed-form upper bound for the Q-ary
WBT algorithm with a ceiling procedure, where components
failure follow a geometric distribution with parameter q, is:

L(T(Q, n)) − HQ({Pi}) < logm+1

(
1 + m

⌈
n(m + 1)

2m
− 1

⌉)

×
(

1 −
(

m
m + 1

)
logQ 4

)
+ logQ 4

⌈
n(m + 1)

2m
− 1

⌉
1 − q
1 − qn

.

Proof. Substitute Pmax with P1 = (1 − q)/(1 − qn) in Ob-
servation 2. �
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Fig. 5. A WBT tree for the geometric distribution m = 3, n = 30, q = 0.999.

Figure 5 presents an example for an WBT tree with m = 3
testers and n = 30 components, where the probability of a
component to be MF follows a geometric distribution with
parameter q = 0.999, resulting from a constant failure rate
of 0.001. The geometric distribution is monotonically de-
creasing in the component index, thus, component number
1 has the highest probability of being the MF, P1 = 0.0338,

and component number 30 has the lowest probability of
being the MF, P30 = 0.0328. Note that the tree represents
a testing strategy which is far from being optimal; the
equiprobable division at the first two levels results with two-
leaves branches in the last level, instead of four leaves. It is
evident that an efficient testing policy should assign shorter
testing branches to less reliable components and vice versa,
since this will result in a lower expected number of tests.
However, in this example it is seen that the WBT fails to do
so since the greedy partition of the search set in the upper
levels creates non-optimal situations in the lower levels. In
fact, component number 30, which has the lowest probabil-
ity of being the MF, requires two tests, whereas component
number 1, which has the highest probability of being the
MF, requires three tests. The entropy that represents the
ultimate lower bound on the expected number of tests (a
bound which is unattainable in this case) is equal to 2.45
tests. The Huffman code length that represents the lower up-
per bound for the discrete search space that can be achieved
for such distribution is 2.63 tests. The actual WBT expected
number of tests is 2.93 tests. The WBT upper bound that
follows from Observation 4 is equal to 3.82 tests, thus, 1.37
tests above the entropy. The rough Hu-Tucker upper bound
is, thus, higher in this case than the WBT upper bound and
equals 4.45 tests; two tests above the entropy.

Table 2 follows a similar numerical analysis as above.
It presents a comparative study of the expected number
of tests and its various bounds for the following functions
and procedures: (i) the entropy function; (ii) the Huffman
coding; (iii) the Hu-Tucker coding (denoted by H-T); (iv)
the WBT expected number of tests; (v) the Hu-Tucker up-

per bound (denoted by H-T UB); and (vi) the WBT upper
bound (denoted by WBT UB).

The expected number of tests of the above procedures
depends on the combination of three input parameters: (i)
the number of components, denoted by n; (ii) the number
of testers, denoted by m; and (iii) the probability parameter
of the geometric distribution, denoted by q.

The table is partitioned into two parts. Rows 1–28 present
various geometric distribution cases, where the Hu-Tucker
procedure achieves the performance of the Huffman pro-
cedure. Rows 29–42 present some non-geometric distribu-
tions, where the Hu-Tucker and the Huffman procedures
can result in a different expected number of tests. In all
but three cases (rows 34, 37 and 40), the expected number
of tests by the WBT algorithm is larger than the expected
number of tests by the Hu-Tucker procedure, although in
some cases they are close. We now describe some of the
main results in the table.

As can be seen by the first five rows (1–5), the expected
number of tests increases with n: the number of components.
Note that for all cases the WBT upper bound is below the
rough Hu-Tucker upper bound, which is equal to the en-
tropy + 2. In fact, this is true as long as n is smaller than
445 (for q = 0.999 and m = 5), as shown in Fig. 6. In these
rows, the WBT expected number of tests is 104–113% of the
Hu-Tucker expected number of tests.

Rows 6–10 present the effect of the number of testers,
m, on the expected number of tests for fixed n = 3000 and
q = 0.999. Note that the WBT expected number of tests de-
creases in the number of testers. The WBT expected number
of tests is 106–114% of the Hu-Tucker expected number of
tests. The WBT upper bound for such a large n value, is
above the Hu-Tucker upper bound.

Rows 11–15 repeat the same study on the effects of m for a
smaller search set, where n = 120. In these cases, the WBT
expected number of tests is 100–112% of the Hu-Tucker
expected number of tests. Note, however, that the WBT
upper bound, for m ≥ 2 is less than the Hu-Tucker upper
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Table 2. A comparative study of the expected number of tests

Number M N q Entropy Huffman H-T WBT H-T UB WBT UB

Geometric distribution cases
1 5 60 0.999 2.285 2.476 2.476 2.800 4.285 3.775
2 5 80 0.999 2.446 2.654 2.654 3.000 4.446 4.002
3 5 100 0.999 2.570 2.761 2.761 3.000 4.570 4.178
4 5 120 0.999 2.672 2.834 2.834 3.000 4.672 4.322
5 5 140 0.999 2.758 2.886 2.886 3.000 4.758 4.445
6 30 3000 0.999 2.242 2.378 2.378 2.729 4.242 4.807
7 40 3000 0.999 2.073 2.150 2.150 2.393 4.073 4.565
8 50 3000 0.999 1.958 2.026 2.026 2.236 3.958 4.397
9 60 3000 0.999 1.873 1.987 1.987 2.149 3.873 4.271

10 70 3000 0.999 1.806 1.970 1.970 2.096 3.806 4.172
11 1 120 0.999 6.906 6.930 6.930 6.934 8.906 9.010
12 2 120 0.999 4.357 4.477 4.477 4.650 6.357 6.100
13 4 120 0.999 2.974 2.991 2.991 3.000 4.974 4.638
14 6 120 0.999 2.460 2.679 2.679 3.000 4.460 4.101
15 8 120 0.999 2.179 2.353 2.353 2.650 4.179 3.809
16 5 140 0.950 2.212 2.268 2.268 2.487 4.212 6.621
17 5 140 0.965 2.396 2.453 2.453 2.653 4.396 5.855
18 5 140 0.980 2.603 2.697 2.697 3.023 4.603 5.163
19 5 140 0.995 2.747 2.856 2.856 3.000 4.747 4.579
20 5 140 0.999 2.758 2.886 2.886 3.000 4.758 4.445
21 1 50 0.999 5.644 5.715 5.715 5.721 7.644 7.652
22 1 50 0.99 5.629 5.668 5.668 5.707 7.629 8.110
23 2 100 0.999 4.191 4.280 4.280 4.380 6.191 5.895
24 2 100 0.99 4.154 4.195 4.195 4.347 6.154 6.350
25 3 150 0.999 3.614 3.753 3.753 4.000 5.614 5.352
26 3 150 0.99 3.550 3.619 3.619 3.871 5.550 5.849
27 4 200 0.999 3.291 3.445 3.445 3.747 5.291 5.079
28 4 200 0.99 3.197 3.243 3.243 3.439 5.197 5.630

Non-geometric distribution cases
29 5 60 0.999 2.285 2.476 2.483 2.800 4.285 3.775
30 5 80 0.999 2.446 2.654 2.662 3.000 4.446 4.002
31 5 100 0.999 2.570 2.761 2.769 3.000 4.570 4.178
32 5 120 0.999 2.672 2.834 2.841 3.000 4.672 4.322
33 5 140 0.999 2.758 2.886 2.892 3.000 4.758 4.445
34 1 100 N/A 6.644 6.720 6.720 6.720 8.644 8.624
35 2 100 N/A 4.192 4.290 4.290 4.440 6.192 5.849
36 5 100 N/A 2.570 2.770 2.770 2.990 4.570 4.155
37 1 100 N/A 6.562 6.627 6.627 6.627 8.562 9.196
38 2 100 N/A 4.140 4.193 4.193 4.280 6.140 6.105
39 5 100 N/A 2.539 2.693 2.693 2.893 4.539 4.274
40 1 100 N/A 6.562 6.627 6.720 6.720 8.562 9.196
41 2 100 N/A 4.140 4.193 4.260 4.440 6.140 6.105
42 5 100 N/A 2.539 2.693 2.767 2.887 4.539 4.072

bound. Figure 7 compares the above testing procedures and
their bounds for m = 3, . . . , 10, n = 140 and q = 0.999.

Rows 16–20 show the effect of the probability parame-
ter, q, on the expected number of tests. Note that although
the WBT upper bound decreases in q, the WBT expected
number of tests is non-monotonic in q. The reason for this
is that the WBT expected number of tests is affected by the
probability of a component to be a MF, Pi, which is itself
non-monotonic in q. However, the WBT upper bound is af-
fected only by Pmax = P1, which decreases monotonically

in q. Moreover, note that as q → 1, two conflicting effects
come into play. On the one hand, Pi decreases; facilitating
the WBT algorithm to refine the subsets’ sum of probabil-
ities. Whereas, on the other hand, the cardinalities of these
subsets differ more and are, thus, less effective for subdivi-
sions in lower tree levels. In these rows, the WBT expected
number of tests is 104–109% of the Hu-Tucker expected
number of tests. It is not surprising that at some point the
WBT upper bound lies below the Hu-Tucker upper bound,
since the former decreases in q while the latter increases in q.
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Fig. 6. The WBT upper bound as a function of the Hu-Tucker and Huffman upper bounds (m = 5, q = 0.999).

Fig. 7. A comparative study on the expected number of tests (n = 140, q = 0.999).
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Rows 21–28 present the combined effects of the various
input parameters on the expected number of tests. In par-
ticular, the ratio n/m is kept fixed for four different values
of n, m and for two values of q. Comparing rows 21, 23, 25
and 27 (or rows 22, 24, 26 and 28) one can see that both
the expected number of tests and the upper bounds for all
the search procedures decrease in m although n is increased
proportionally. In these rows, the WBT expected number
of tests is 101–109% of the Hu-Tucker expected number of
tests. The WBT upper bound is less than the Hu-Tucker
upper bound for almost all rows where q = 0.999, while
getting very close to it in the remaining rows.

The second part of Table 2 includes some cases where
the probabilities of units to be the MF are not geometri-
cally distributed. In rows 29–33, the probability values that
are generated by the geometric distribution are reordered
to produce a highly non-monotonic probability vector. In
particular, the new vector has the smallest probability value
as its first term, then the largest probability value as its sec-
ond term, then the second-to-the-smallest value in the third
place, then the second-to-the-largest value in the fourth
place and so on. As seen, in this case, the Huffman and the
Hu-Tucker procedures result in a different expected number
of tests.The WBT expected number of tests is 104–113% of
the Hu-Tucker expected number of tests. The WBT upper
bound is less than the Hu-Tucker upper bound for all cases.

Rows 34–36 are based on a uniform distribution with a
fixed Pi = 0.01. Rows 37–39 are based on a probability vec-
tor where Pi = 1/150 for i = 1, . . . , 50 and Pi = 2/150 for
i = 51, . . . , 100. Note that in all these cases the WBT ex-
pected number of tests is very close to the expected number
of tests for the Huffman\Hu-Tucker procedures.

Finally, rows 40–42 are based on the same probability
vectors of rows 37–39 that are now reordered, such that
Pi = 1/150 for i = 1, 3, 5, . . . , 99 and Pi = 2/150 for i =
2, 4, 6, . . . , 100. Such a reordering imposes a constraint on
the Hu-Tucker algorithm, which results in a higher expected
number of tests with respect to the Huffman procedure. In
these rows, the WBT expected number of tests is within
104% of the Hu-Tucker expected number of tests.

6. Summary

This paper studies the performance of the WBT algorithm
with multiple testers, and in particular, derives an upper
bound on the expected number of tests. The obtained upper
bound is applicable for any finite search set with a known
probability distribution. It does not require the explicit con-
struction of the testing procedure, but rather the number of
testers, the number of units in the set and the relative relia-
bility of the less reliable unit in the set.

This paper also shows the analogy between prefix-free
codes and testing procedures, both being represented by a
search tree. Such an analogy is particularly important for

practitioners and researchers in the areas of quality control
and reliability, since it enables them to apply known results
from coding theory to these areas (Ben-Gal and Levitin,
2001; Ben-Gal et al., 2002). For example, the use of the Hu-
Tucker and the Huffman testing procedures that are known
to be optimal for the considered problems. Further research
in this area can be performed to refine the bounds of the
WBT and other applied testing procedures.
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Appendix

The maximum number of internal nodes in a (m + 1)-ary
weight-balanced tree with n terminal nodes (leaves) is de-
noted by Smax and is equal to:

Smax =
⌊

n
2m

⌋
(m + 1) + δ,

where δ

=




−1 if n mod(2m) = 0,

0 if n mod(2m) = 1,

1 if 1 < n mod(2m) ≤ m + 1,

n mod(2m) − m if m + 1 < n mod(2m) ≤ 2m − 1.
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