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Abstract—This paper considers the problem of transmitting
data packets from sensors recording health information in a
wireless body area network (WBAN). We model a resource-
constrained paradigm in which measuring the channel interfer-
ence incurs a non-trivial power cost. Each data packet has a
deadline before the health information it contains is no longer
relevant and the packet is dropped from the queue. In each
time time slot the sensor must arbitrate whether to measure
the channel interference and incur the associated cost, or rely
on a previous measurement that may be inaccurate. Once the
interference estimate is determined, the sensor may attempt to
transmit a health packet to the central controller. The trans-
mission power is chosen to minimize the costs associated with
the power consumption, the cost of packet delays in the backlog
buffer, and the cost of information loss from dropping packets.
We formulate the dual channel-measurement/transmission-power
control problem, and prove a performance bound on the overall
expected cost incurred from using aging channel measurements.

I. INTRODUCTION

In this paper, we consider a power control model for
streaming data packets from personal health sensors in a wire-
less body area network (WBAN), accounting for the cost to
measure the channel interference. Each sensor’s transmission
buffer begins with an initial backlog of B packets to be
transmitted sequentially. Each head-of-line (HOL) packet is
given a relevant lifespan D, before it violates the deadline
and is dropped. The cost of losing potentially vital health data
is dictated by the specific sensor type, frequency of operation,
information type, and redundancy with other sensors. Once the
HOL packet is either successfully transmitted or is dropped,
the subsequent packet is moved to the head-of-line and at-
tempts to transmit before its deadline is violated.

The transmitter must make two decisions to balance the
varying costs of the system, based on the time-sensitivity
and importance of its buffered data. First, the transmitter
controls each packet’s transmission power to regulate the
probability of a successful packet communication. Increasing
the transmission power improves the chances of the packet
being successfully received, but incurs a corresponding power
cost. This is also confounded by the channel interference,
which increasingly reduces the chance of a successful packet
reception. The effects of a known interference may be directly

counteracted by increasing transmission power. Many wireless
power control models assume that the channel interference
may be measured freely, and is a known quantity at any
given time. However, in general, determining this interference
requires the dedication of both hardware resources and com-
putation time, both of which are non-trivial in our resource-
constrained paradigm. We therefore consider a non-zero cost-
to-sense, and must decide whether it is advantageous to mea-
sure the current interference, or avoid this cost by recycling an
older measurement of decaying accuracy. The optimal control
scheme for this system balances the total power consumed
by packet transmission, the cost of dropping any expired
packets or delaying packets containing time-sensitive health
information, and the cost to measure channel interference.

Optimal control of WBANs is fundamentally a resource-
constrained problem, rising from the battery limitations in
very small, distributed sensor nodes [1], [2]. Frequent battery
charge requirements have been identified as an issue limiting
patient compliance [3], and strategies for maximizing battery
life in a WBAN have been well-examined [4]. This constraint
is shared by other well-studied applications like wireless
media streaming to mobile devices, and an extremely wide
variety of other applications [5]. One common goal is to
simply maximize the communication rate of the system [6].
Other approaches involve formulations to minimize power
consumption under a direct constraint to overcome interference
effects [7]. However, care must be taken to ensure that the
communication requirements of any centralized power control
algorithm do not exceed its benefits [8]. This issue motivates
the study of distributed control schema, where each node
determines its optimal control using local information.

Previous work has examined optimal power control for
wireless packet transmission in a distributed setting [9], [10],
[11]. An alternative hybrid approach is to consider a single
uniform global stress signal [12]. Prior papers examine the
optimal power control problem without channel interference,
and establish properties of monotonicity and approximate
control which may be extended to the fixed-rate interference-
sensing model in this paper [13]. Alternate approaches in-
volving the receiver’s control have also been examined, as
in adaptive media playback over a noisy channel unobserved



by the controller [14]. More general work has covered the
optimal sensing problem in a general noisy Markov-chain [15]
and partially-observable Markov decision process (POMDP)
frameworks [16]. Dynamic Programming is the dominant
method in solving such general problems when restrictive
assumptions of linearity or convexity are not required. As such,
these models are often limited by complexity, motivating the
study of near-optimal, and more practical “sufficient” methods
of approximate control or those based on heuristics rather
than explicitly optimal formulations [17], [18], [19], [20].
The advantages of and motivations for wireless sensors in
digital health monitoring have been well-established [21]. The
majority of work in the field focuses primarily on practical
implementation [22], [23].

The primary contribution of this paper is the combined
power and channel sensing control model. This allows for
simultaneous optimization between the potential health risks
resulting from undelivered health data from each individ-
ual sensor, and the power costs incurred by optimal packet
transmission in a dynamic channel shared by a distributed
network of similar health sensors. In this paper, we use the
wireless packet streaming model to build an optimal power
control scheme, with particular attention to the non-trivial
costs associated with measuring channel interference. We
prove that for an optimal control scheme which assumes the
channel interference is known, the performance of that control
scheme in a system with an aging interference measurement
is bounded by the volatility of the interference.

II. TRANSMISSION MODEL

We consider a WBAN with sensors in a distributed control
paradigm, such that each sensor must determine its optimal
transmission and interference sensing independently of the
others, with no central controller or global control signal.
The sensors transmit to a central coordinating device like a
smartphone, or directly to the internet. We assume that the
sensors’ performances are independent, conditioned on the
specific patient health state. Due to the self-contained control
paradigm, it is sufficient to derive the optimal control of a
single health sensor in an arbitrary environment.

Our model is constructed as a discrete-time, no-arrival
system in which the sensor’s buffer is initially pre-loaded with
a backlog of data packets b = 1, 2, ..., B. In each time step,
the transmitter experiences a channel interference i ∈ I, and
must choose a transmission power p ∈ P . When a packet is
transmitted with power p and subject to interference i, it is
successfully received by the central receiver with probability
s(p, i), which is increasing in p, and decreasing in i.

Each packet is assigned an initial deadline D̄ ≥ 1 before
the health information it contains expires. We define D(b, t)
as the deadline remaining when packet b reaches the HOL at
time t. In other words, D(·) is the number of transmission
attempts allowed before the packet violates the deadline. If
any packet deadline expires before it has been successfully
transferred, it is dropped from the queue. Otherwise, if the
deadline has not yet passed, the transmitter attempts to send

the packet. If the packet is not successfully received, the
receiver requests re-transmission via a low-cost backchannel
without interference, and the deadline is decremented. Upon
a successful transmission, the next-in-line packet is shifted to
the head and its remaining deadline is evaluated.

The optimality of the system is defined in terms of the costs
incurred in each time slot. Each packet transmission draws a
power cost of Cp(p), increasing in p. A non-empty buffer
draws a backlog cost of Cb(b), increasing in b > 0. Dropping
a data packet due to an exceeded deadline draws a fixed cost
of Cd per dropped packet. Finally, we consider an interference
measurement to draw a cost of Cm. This measurement cost
may be motivated directly by the required power and computa-
tion resources, or indirectly by any transmission delays forced
by prioritizing the measurement over packet transmission. The
exact form will depend on the physical implementation of a
sensor, for instance whether the radio multiplexes sensing and
transmission on a single antenna. An optimal power control
policy µp returns the transmission power p to be chosen in
any state in order to minimize the expected cumulative cost
which will be incurred going forward from the current state.

III. FIXED-SENSING OPTIMAL POWER CONTROL

We next consider the evolution of the system over discrete
time slots t. The state Xt is defined by the backlog bt, deadline
dt, and interference measurement ît. In each time slot, we
control the system by choosing the transmission power pt. A
decision to postpone packet transmission would be modeled as
pt = 0, rather than an independent decision. We first consider
the case where the interference level is measured in each time
slot, such that ît+1 = it ∀ t. Let St be a binary random variable
denoting a successful transmission. St is primarily affected
by the transmission power and the channel interference. We
accordingly define s(p, i) increasing in p and decreasing in i,
so that P{St = 1} = s(pt, ît), and P{St = 0} = 1− s(pt, ît).

The following state transitions define the system evolution:

1) bt = 0: For an empty buffer, we take no action and
incur no cost. For the no-arrival buffer drain model, this
denotes the terminal state. If we consider packet arrivals,
this state could allow interference measurement.

2) bt > 0, St = 1: If the HOL packet is successfully trans-
mitted, we shift the queue to the next packet and assign it
a new deadline. For any non-terminal state, we measure
the new interference level.

Xt+1 = (bt+1, dt+1, ît+1) = (bt − 1, D(bt − 1), it)

3) bt > 0, St = 0, dt > 1: If the HOL packet transmission
fails, but has not yet exceeded its deadline, then we retry
in the following time step with a decremented deadline.

Xt+1 = (bt+1, dt+1, ît+1) = (bt, dt − 1, it)

4) bt > 0, St = 0, dt = 1: Finally, if the HOL packet trans-
mission fails, and violates its deadline, then we drop the



packet and shift the queue to the next packet as in the
successful transmission case.

Xt+1 = (bt+1, dt+1, ît+1) = (bt − 1, D(bt − 1), it)

To solve for the optimal power control, we formulate our
problem as a Dynamic Program (DP). With the individual costs
as defined above, our total cost per time slot is given by

g(Xt) = g(bt, dt, it, pt) =

1{bt>0}
(
Cp(pt) + Cb(bt) + Cm + 1{St=0∧dt=1}Cd

) (1)

where 1 denotes the standard indicator function. Let J (X)
denote the optimal expected cost-to-go for state X = (b, d, i).
The recursive Bellman equation is given by

J (X) = min
p∈P

{
Cp(p) + Cb(b) + Cm

+ s(p, i)J (b− 1, D(b− 1), i)

+ (1− s(p, i))
[
1{d>1}J (b, d− 1, i)

+ 1{d=1}
(
Cd + J (b− 1, D(b− 1), i)

)]} (2)

for positive backlog b ≥ 1, and for terminal state
J (b = 0, d, i) = 0. Let µ∗(X) be the optimal power control
scheme that satisfies the Bellman equation.

IV. PROPERTIES OF THE OPTIMAL
FIXED-SENSING POWER CONTROL

If we restrict to no interference, i = 0, and let the interfer-
ence measurement cost Ci = 0, then our model reduces to the
more simple version discussed in detail in [13]. In this case, it
has been shown that the optimal control µ∗ is monotone in d,
and is the unique solution to the Bellman equation. This prop-
erty allows for the application of low-complexity approximate
power control methods which perform near-optimally. For the
fixed-sensing model, in which the interference is measured
every time step for a constant cost, it is trivial to extend the
proof in [13] to demonstrate a similar monotonicity. The only
distinction is that the approximate control methods must be
derived independently for each interference level.

We next provide a brief overview of the decision state space
with the following parameters:
• Initial buffer length: B = 25 packets,
• Minimum packet deadline: D(b, t) = 10,
• Power cost: Cp(p) = p,
• Backlog pressure cost: Cb(b) = b,
• Packet drop cost: Cd = 1,
• Successful transmission prob.: s(p, i) = (1− e−p)e−i

Figures 1 and 2 provide simple examples of the monotonic
structure of the decision curve for the optimal power control
µ. Figure 3 shows the full decision boundary surface across
interference levels for µ , where the optimal control in states
above the surface is to idle (µ∗(X) = p = 0), and for states
below the surface to transmit (µ∗(X) = p = 10).

One natural extension of this model would be to allow for
periodic interference measurement rather than every time step.
The caveat to this method is that when the true interference

Fig. 1: Binary power control decision curve for a fixed
interference level. The interference level is sensed in every
time step, and the optimal power control is derived subject to
the known interference.

Fig. 2: Ternary power control decision curves. Interference is
measured in every time step, and a wider range of allowable
transmission powers is considered.

drifts from an aging measurement, the probability of a suc-
cessful transmission is no longer known. This may be relaxed
by considering instead the conditional probability given the
measurement age, which depends on the channel dynamics.
This allows the measurement interval to become a control
parameter, and trades of the cost of frequent measurement
against the risk of making sub-optimal power decisions due to
inaccurate interference estimates. In Section V, we take this
idea one step further by allowing the health sensor to choose
whether to measure in each time step, rather than restricting
to a periodic measurement.

V. CONTROLLED INTERFERENCE SENSING

Let mt = 1{measure interference} denote the binary de-
cision whether to measure the interference and incur the



Fig. 3: Binary power control decision surface. States above
the control surface represent a low power or transmitter idle
decision, and states below represent a high power or active
transmission decision.

corresponding cost in the current time step t if mt = 1, or
to retain the previous measurement if mt = 0. We therefore
have the evolution:

î(t− 1) =

{
i(t) if mt = 1

î(t− 1) if mt = 0
(3)

Let τt be the number of time steps since the most recent
measurement, i.e. the age of the current interference estimate,
such that τt = 0 if mt = 1. As described above, we extend
our transmission probability function s to incorporate the age
of the measurement, so that

s(p, i, τ) = P{St = 1 | pt = p, it−τ = i} (4)

The extended system evolution is defined by the follow-
ing state transitions from Xt = (bt, dt, ît, τt) to Xt+1 =
(bt+1, dt+1, ît+1, τt+1):

1) bt = 0: As previously, for an empty buffer, we take no
action and incur no cost. This denotes the terminal state.

2) bt > 0, mt = 0, St = 1: In any case where we decide
not to measure the current interference, the previous
measurement is carried forward, and the measurement
age τ is incremented. As before, if the HOL packet is
successfully transmitted, we shift the queue to the next
packet and assign it a new deadline.

Xt+1 = (bt − 1, D(bt − 1), î(t), τt + 1)

3) bt > 0, mt = 0, St = 0, dt > 1: As before:

Xt+1 = (bt, dt − 1, î(t), τt + 1)

4) bt > 0, mt = 0, St = 0, dt = 1: As before:

Xt+1 = (bt − 1, D(bt − 1), î(t), τt + 1)

5) bt > 0, mt = 1, St = 1: In any case where we decide
to measure the current interference, we update the mea-
surement with the current true interference, and the age

of the measurement is reset to τt = 0, so that τt+1 = 1.
All other transitions are as before.

Xt+1 = (bt − 1, D(bt − 1), i(t), 1)

6) bt > 0, mt = 1, St = 0, dt > 1: As before:

Xt+1 = (bt, dt − 1, i(t), 1)

7) bt > 0, mt = 1, St = 0, dt = 1: As before:

Xt+1 = (bt − 1, D(bt − 1), i(t), 1)

For a known interference level, our previous cost-per-time-
slot may be simply extended with the decision of whether to
measure the interference in the given time slot.

g(bt, dt, it, τt, pt,mt) = 1{bt>0}
[

Cp(pt) + Cb(bt) + 1{mt=1}Cm + 1{St=0∧d=1}Cd
]
.

(5)

However, for a strictly positive measurement cost Cm > 0,
such a formulation will never actually choose to measure
the interference, and will instead continuously re-use the
estimate from the previous time slot. To address this issue,
we introduce an artificial measurement aging pressure Cτ (τ),
increasing in the age τ . This pressure is motivated by the
assumption that there exists an upper bound on the rate by
which the interference changes over time. In this way, a recent
interference estimate is more likely to be accurate than an older
estimate. The exact cost function should be determined by the
statistics of the channel interference. Measurements from a
volatile channel should age more quickly than those from one
which remains relatively stable.

This leads to the following cost-per-time-slot:

g(bt, dt, it, τt, pt,mt) = 1{bt>0}
[
Cp(pt) + Cb(bt)

+ 1{mt=1}Cm + 1{mt=0}Cτ (τ) + 1{St=0∧d=1}Cd
]
.

(6)

The optimal expected cost-to-go is given by the extended
Bellman equation 7. We next explore the state space for
the optimal combined power and measurement control, with
parameters common to both models chosen as in Section IV,
and new parameters Cτ (τ) = τ , and s(p, i, τ) = (1−e−p)e−i.
The solution to the Bellman equation is given by the optimal
power control shown in Figure 4, and the optimal channel
measurement shown in Figure 5.

Although any system implementing the optimal control
would not know the true interference except in time slots
where it takes measurements, we wish to know how the
performance varies when using old and potentially inaccurate
interference measurements. We therefore establish the error
metric ε̂ as the increase in the overall expected cost-to-go un-
der the optimal control when using the estimated interference.

ε̂ = |J (X0; î)− J (X0; i)| (8)

Theorem 1 (Bounding Theorem). Let h(τ) be a function
which is monotone increasing from h(0) = 0, and bounds
the error in channel interference by:∣∣P{it+1 = i | ît, τt} − P{it+1 = ît | ît, τt}

∣∣ ≤ h(τt) ∀ t (9)



J (b, d, î, τ) = min
p∈P

m∈{0,1}

{
Cp(p) + Cb(b) + 1{m=0}

[
Cτ (τ)+s(p, î, τ)J (b− 1, D(b− 1), î, τ + 1)

+(1−s(p, î, τ))
{
1{d>1}J (b, d− 1, î, τ + 1)

+ 1{d=1}
(
Cd + J (b− 1, D(b− 1), î, τ + 1)

}]
+1{m=1}

[
Cm+s(p, î, 1)J (b− 1, D(b− 1), î, 1)

+(1−s(p, î, 1))
{
1{d>1}J (b, d− 1, î, 1)

+ 1{d=1}
(
Cd + J (b− 1, D(b− 1), î, 1)

}]}
.

(7)

Then the overall error in expected cost-to-go under the optimal
control strategy ε∗ = |J (X0; i)− J (X0; î)| is bounded by

ε∗ ≤K · h(τ∗) (10)

for a constant K ∈ R which depends only on the control
policy, the initial state, and the cost function, and is indepen-
dent of the channel interference dynamics.

Proof. (refer to Appendix A)

More specifically, the bounding constant for our model
is given by K = ḡµ∗(I − Ãµ∗)−1e0, where Āµ∗ is the
controllable transition matrix as defined in Appendix A, e0
is unit vector of the initial state, ḡµ∗ is the cost vector
over each state subject to the optimal control strategy, and
τ∗ = maxt∈[0,T∗] τt is the maximum measurement age.

VI. EXTENSIONS AND FUTURE WORK

As with any model reliant on Dynamic Programming, the
derivation of the concurrent optimal power and measurement
control strategy may become intractable in large state spaces.
Prior work with related models has demonstrated the viability
of near-optimal approximate power control methods, which
may alleviate this issue. Similar methods could be applied to
the optimal channel measurement

Additionally, it may be useful to expand our initial explo-
ration of the channel interference time-dynamics, and more
directly examine its effect on the optimal control, as well as
the sensitivity due to channel drift from aged measurements.

Furthermore, in small-scale systems where the wireless
body sensor network is working on a very local scale, and
transmitting to a central device either on-patient or nearby, the
channel interference may be dominated by the other sensors
in the network. In this situation, it may be possible to either
control or predict the channel dynamics, and allow for more
optimal performance via device cooperation, or ensure robust
operation by examining competitive or adversarial situations.

VII. CONCLUSIONS

In conclusion, we have developed a theoretical framework
for optimal distributed control of channel measurement and
transmission power in a wireless body area network. This
framework takes into account the effects of channel inter-
ference on packet transmission, and the non-trivial costs
inherent in analyzing the channel. Extending prior study in
wireless communication allows us to take advantage of the

clinical potential of new technologies, while accounting for the
inherent energy limitations of small, distributed devices. One
future line of work would be considering more sophisticated
queueing dynamics for packet arrival and enforce Another
worthwhile line of pursuit would be to make minimal as-
sumptions about the channel model and to learn everything
only from demonstration data using an inverse reinforcement
learning approach [24]. This could make the power control
scheme model free.

APPENDIX A
ERROR BOUND FOR INTERFERENCE ESTIMATE

We have seen that using an aging interference estimate leads
to a control strategy distinct from one which assumes a known
interference. However, we can establish an upper bound on the
error incurred from the inaccuracy in this measurement.

We begin by defining JKµ (X0; θ) as the expected total cost
incurred through all time steps through K, as follows.

JKµ (X0; θ) = E

{
T∑
t=0

g(Xt; θ)

}
(11)

where Xt denotes the system state (b, d, i, τ) at time t,
and θ denotes the model parameters, e.g. the cost functions,
and the channel interference model. As before, g is the final
formulation cost-per-time-slot established in equation 6.

We next vectorize over the state space X = {xn}, and
define the following vectorized variables:

• πt: the state distribution at time t, where [πt]n = P{Xt =
xn}

• ḡµ: the cost of each state, where [ḡµ]n = g(Xn, µ(Xn))
• Tµ: the stochastic transition matrix of the Markov chain

resulting from applying control policy µ to the MDP
system, where [Tµ]m,n = P{Xt+1 = xm | Xt = xn},
as defined by the state transitions in Section V.

We next hold a fixed control policy µ, let θ′ denote a second,
distinct system model with associated transition matrix T ′µ, and
establish Proposition 1.

Proposition 1. At any time step K, the difference in cost
incurred by the distinct models θ and θ′ is bounded by:

|JKµ (X0; θ)−JKµ (X0; θ′)| ≤ ḡµ
K∑
t=0

∣∣∣(Tµ)K−(T ′µ)K
∣∣∣e0 (12)



Fig. 4: Optimal power control decision curves for aging in-
terference measurements. Given a fixed channel measurement
strategy, it can be shown that the optimal power control
remains monotone in d, as with the more simple models in
section III and [13]. Proof omitted here for space, but similar
to that of [13].

Proof. We first note that the expected cost for time slot t is
given by the inner product between the cost vector and state
distribution.

E{g(Xt, µ)} = ḡµ · πt (13)

Therefore, the expected cost can be rewritten as a vectorized
recursion, using the state evolution πt = Tµ·πt−1 = (Tµ)t·π0.

JKµ (X0; θ) =

K∑
t=0

ḡµ · πt = ḡµ ·
K∑
t=0

(Tµ)t · π0

= ḡµ(Tµ)K · π0 + JK−1µ (X0; θ)

(14)

For a fixed initial state e0 = π0, where [e0]n = 1{xn=X0},
this splits to JKµ (X0; θ) = ḡµ ·

(∑K
t=0(Tµ)t

)
· e0. We now

consider the difference between the cost of a fixed control
strategy applied to two separate models. Letting εKµ be the
accumulated error through time step K, and noting that ε0µ =
0, we have via the triangle inequality that

εKµ = |JKµ (X0; θ)− JKµ (X0; θ′)|

=
∣∣∣ḡµ ((Tµ)K − (T ′µ)K

)
e0

+ JK−1µ (X0; θ)− JK−1µ (X0; θ′)
∣∣∣

≤
∣∣∣ḡµ ((Tµ)K − (T ′µ)K

)
e0

∣∣∣
+
∣∣JK−1µ (X0; θ)− JK−1µ (X0; θ′)

∣∣∣
= ḡµ

∣∣∣(Tµ)K − (T ′µ)K
∣∣∣e0 + εK−1µ

(15)

Unravelling the recursion yields the following:

εKµ ≤
K∑
t=0

ḡµ

∣∣∣(Tµ)K − (T ′µ)K
∣∣∣e0

= ḡµ

(
K∑
t=0

∣∣∣(Tµ)K − (T ′µ)K
∣∣∣) e0

(16)

It is worth noting that the bound in equation 16 holds with
equality for the Markov chain resulting from applying a fixed
control policy µ to the system, but the given formulation may
be generalized to a broader setting. We now consider a useful
factorization of the transition matrix, as given in Proposition 2.

Proposition 2. Any transition matrix of our system, Tµ :
Xt−1 −→ Xt, may be factorized as follows

Tµ = Aµ ·B (17)

where Aµ depends only on the control policy, and is
independent of the current interference, and where B models
the interference dynamics.

Proof. First let N denote the size of the state space X =
{xn}Nn=1, and let L denote the size of the interference space
I = {il}Ll=1. Both N and L are assumed here to be finite
for simplicity, but this restriction is not necessary in general.



Fig. 5: Optimal measurement control decision curves for aging interference measurements. As expected, in the trivial case of
τ = 0, we already know the current channel interference and measurement is unnecessary. At the other extreme, once the
measurement has aged beyond a certain point, the optimal decision is to take a new measurement regardless of the buffer
backlog and remaining deadline for the HOL packet. In between these extremes, the decision surface takes a shape heavily
dependent on the exact choice of cost functions. Unlike the optimal power control, the optimal measurement control is not
monotonic with respect to d.

Then Tµ is an N ×N matrix, where the (m,n)’th element is
given by

[Tµ]m,n = P{Xt = xm | Xt−1 = xn} (18)

This transition may be factored by conditioning on the true
interference at time t and distributing over total probability.

[Tµ]m,n =

L∑
l=1

(
P{XT = xm | XT−1 = xn, it = il}

· P{it = il | XT−1 = xn}
) (19)

We now define Āµ as an N ×N × L matrix such that

[Āµ]m,n,l = P{Xt = xm | Xt−1 = xn, it = il} (20)

and perform a standard reshaping to an N × (NL) matrix,
which we denote by A. Similarly, we define B̄ as an L×N
matrix such that

[B̄]l,n = P{it = il | Xt−1 = xn} (21)

and tile B̄ vertically N times to B = [B̄; B̄; ...; B̄], so that B
is an (NL)×N matrix.

Now, we have by construction that Tµ = Aµ ·B.

Proof of Theorem 1. We now fix the control policy as the
optimal policy using the measured interference model, µ = µ̂∗.
This allows a substitution with the overall expected-cost-to-go
function J (X) as defined in equation 7.

We consider an alternate model θ̄ which is idential to our
original model θ, except where the new channel interference



ī = î. The transition matrices Tµ, T ′µ may now be similarly
factored. We define Aµ as the controllable transition matrix
defined in proposition 2, and similarly B as the portion of the
transition matrix corresponding to the random channel, such
that Tµ = Aµ · B. Therefore, we consider Aµ = A′µ, but
B 6= B′, so that Tµ − T ′µ = Aµ(B − B′). Since Aµ and B
are non-square, TKµ does not factor cleanly as in the single-
step case. We therefore define A[k]

µ and B[k] as the transition
matrices across k time-steps, so that[

Ā[k]
µ

]
m,n,l

= P{Xt = xm | Xt−k = xn, it = il}

[B̄[k]]l,n = P{it = il | Xt−k = xn}
(22)

Furthermore, we consider the bound on the change in
channel interference h(τ) as defined in the Theorem 1. If we
identify a maximum measurement age τ∗, either defined over
the state evolution from an initial state, or as a direct constraint
on the control policy, we may bound every state transition by
|B−B′|n,m ≤ h(τ∗). Furthermore, |B[k]−B′[k]|n,m ≤ h(τ∗).
Finally, we define Ã as the element-wise upper limit, Ã[k]

µ =

supi∈I A
[k]
µ ∈ R{N×N}. Extending Proposition 1 accordingly,

and applying the factorization from Proposition 2 yields

ε∗ = εK
∗

µ∗ = |JK
∗

µ∗ (X0; θ)− JK
∗

µ∗ (X0; θ′)|

≤ ḡµ∗

(
K∗∑
k=0

∣∣∣(Aµ∗ ·B)k − (Aµ∗ ·B′)k
∣∣∣) e0

≤ ḡµ∗

(
K∗∑
k=0

∣∣A[k]
µ∗

∣∣ · |B[k] −B′[k]|

)
e0

≤ ḡµ∗

(
K∗∑
k=0

Ã
[k]
µ∗ · h(τk)

)
e0

≤ ḡµ∗

( ∞∑
k=0

Ãkµ∗

)
e0 · h(τ∗)

= ḡµ∗(I − Ãµ∗)−1e0 · h(τ∗)

(23)

If we bound the series above by the infinite sum, the bound
holds for any time step K, and most notably for the final time
step K∗, where bK∗ = 0, proving Theorem 1 as follows.

ε∗ ≤ ḡµ∗(I −Aµ∗)−1e0 · h(τ∗) (24)
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