
IIE Transactions (2004) 36, 401–415
Copyright C© “IIE”
ISSN: 0740-817X print / 1545-8830 online
DOI: 10.1080/07408170490426125

Statistical process control via context modeling of finite-state
processes: an application to production monitoring

IRAD BEN-GAL∗ and GONEN SINGER

Department of Industrial Engineering, Tel Aviv University, Ramat-Aviv, Tel Aviv 69978, Israel
E-mail: bengal@eng.tau.ac.il

Received April 2001 and accepted September 2003

Conventional Statistical Process Control (SPC) schemes fail to monitor nonlinear and finite-state processes that often result from
feedback-controlled processes. SPC methods that are designed to monitor autocorrelated processes usually assume a known model
(often an ARIMA) that might poorly describe the real process. In this paper, we present a novel SPC methodology based on context
modeling of finite-state processes. The method utilizes a series of context-tree models to estimate the conditional distribution of the
process output given the context of previous observations. The Kullback-Leibler divergence statistic is derived to indicate significant
changes in the trees along the process. The method is implemented in a simulated flexible manufacturing system in order to detect
significant changes in its production mix ratio output.

1. Introduction and literature review

In many industrial environments process outputs are often
adjusted by applying feedback mechanisms and policies.
As an example, the temperature in a chemical reactor is
controlled by a thermostat; another example is when the
allocation of parts to machines is based on machine queue
information gathered by sensors. These feedback mecha-
nisms, including closed-loop controllers, often create both
linear and nonlinear autocorrelations (hereafter, termed in-
terchangeably, as interdependence or dependencies) among
the observations of the controlled output and increase its
variation (Deming, 1986; Boardman and Boardman, 1990).
In extreme cases, the structure of these autocorrelations
may be established by the dynamics of the observed out-
put trajectories. However, such an identification is not a
simple task in noisy environments, or when the feedback
mechanism depends on many past observations.

The Statistical Process Control (SPC) methodology has
been developed independently of the Engineering Process
Control (EPC) approach, which relies heavily on feed-
back mechanisms. Although both strategies aim for qual-
ity improvement, SPC concepts are in sharp contrast with
EPC. Whereas EPC actively compensates for process dis-
turbances by performing adjustments constantly, in SPC,
a control action is taken only when there is statistical ev-
idence that the process is out of control. This evidence is
usually a point outside the limits on a control chart.

∗Corresponding author

Since traditional SPC methods assume an independent
process (whereas conventional SPC methods for autocor-
related process assume a known underlying model that is
often used to transform the data), a major concern when
integrating traditional SPC and EPC techniques is the de-
pendencies among observations that are created by the feed-
back mechanisms. This point was recently stated in English
et al. (2001): “when considering the integration of these two
approaches, the application of a control chart assumes in-
dependence of the observed process observations. The inde-
pendence assumption is dramatically violated in processes
subjected to process control. The chemical and petroleum
industries, for example, have traditionally employed clas-
sic proportional-integral-derivative (PID) control and have
extended this effort in the past decade or two to implement
optimal discrete time control systems. By the very nature
of PID control, the observations of the process output are
highly correlated.”

In this paper, we propose a novel approach, termed
Context-SPC (CSPC) to monitor a state-dependent process
of varying dependence order. Thus, not only that the mon-
itored process be interdependent (either linearly or non-
linearly), but also the nature and the order of this depen-
dence might change in time according to the process state.
The suggested method assumes a Markovian property of
the process output without requiring a prior knowledge of
its transition parameters. Moreover, the CSPC does not
assume a closed-form time-series model, which is often
required by conventional SPC approaches for dependent
processes. The main disadvantages of the CSPC are its lim-
itation to monitor processes with discrete measures over a

0740-817X C© 2004 “IIE”

402 Ben-Gal and Singer

finite alphabet and the relatively large amount of data that it
requires, restricting its on-line analysis capabilities. Albeit,
there are many areas to which these limitations do not ap-
ply. In particular, as the frequent automated monitoring of
processes becomes common, the amount of available ob-
servations increases, and at the same time, the interdepen-
dence of these observations cannot be ignored. Examples
for potential areas for the CSPC approach are described
in Ben-Gal, Morag and Shmilovici (2003) that focuses on
the statistical properties of the proposed method. This pa-
per, as opposed to Ben-Gal, Morag and Shmilovici (2003),
concentrates on the applicability of the CSPC to dependent
industrial processes that follow a simple feedback-loop pol-
icy. In particular, the applicability of the CSPC to a system
with a simple feedback routing policy is analyzed in Section
4. The applicability of the CSPC to more advanced EPC de-
vices, including industrial closed-loop controllers, such as
PID, is left for future research.

The employment of SPC methods to autocorrelated pro-
cesses has been extensively investigated in relation to EPC
applications. Box and Kramer (1992) and Box et al. (1997)
provided an excellent comparison between SPC (which
they refer to as statistical process monitoring) and EPC
(which they refer to as automatic process control). They
claimed that an effective strategy for on-line quality im-
provement is to use SPC along with feedback control to
monitor the controlled outputs. Montgomery et al. (1994)
and Montgomery (2000) suggested integrating EPC and
SPC to benefit from both approaches. In particular, they
suggested using control charts for statistical process moni-
toring when the control actions are based on feedback con-
trol policies. The charts should be applied to the controlled
output or to the difference between the controlled output
and the target. Such a paradigm simultaneously monitors
both the underlying process and the controller itself. Other
studies by Gultekin et al. (2002) and English et al. (2001)
suggest further investigation to support such integrations.

Conventional SPC approaches for dependent processes
often filter or transform the observations before analyz-
ing and charting their residuals. This requires, of course,
a complete knowledge of the controlled process as indi-
cated by Faltin et al. (1997) who proposed integrating
SPC and EPC particularly when an adequate stochastic
model of the process is known. Numerous publications
have followed the same principle. Carmen et al. (1999) pre-
sented a case study on integrating SPC and EPC in an
industrial polymerization process. Janakiram and Keats
(1998) presented a case study on combining SPC and
EPC in a hybrid industry. Vander Weil et al. (1992) intro-
duced an Algorithmic Statistical Process Control (ASPC)
that represents a proactive approach to quality improve-
ment in a polymerization process. Tsung et al. (1999) pro-
posed a strategy to jointly monitor the PID-controlled
output and the manipulated inputs using bivariate SPC.
Nembhard and Mastrangelo (1998) offered an effective
control scheme for a dynamic system in a transient phase.

In their study, they implemented a Proportional-Integral
(PI) controller as the EPC, and a Moving Center-line Ex-
ponentially Weighted Moving Average (MCEWMA) chart
as the SPC.

In all the above-mentioned papers, the controlled output
was assumed to behave according to a known model, often
a time-series model, representing a fixed-order linear de-
pendence among the observations. This is the reason why
conventional SPC methods, including those that were de-
signed to handle autocorrelated data, are not suitable, in
general, to monitor a varying-length state-dependent pro-
cess that might result from feedback-controlled processes.
In fact, state-dependent processes of varying dependence
order have not been previously considered for SPC. Recall-
ing the numerous modeling applications of fixed Markov
models, it is hard to ignore the potential applicability of
the more general varying-order Markov models that are
considered here. Buhlmann and Wyner (1999) further mo-
tivate the use of the varying-order models, by noting that the
achieved flexibility in parameter dimensionality (by obtain-
ing a continuous parameter dimensionality instead of the
‘jumps’ in the parameter dimensions of fixed-order models)
provides a better trade-off between model bias and model
variance.

The rest of the paper is organized as follows. A general
SPC scheme for both dependent and independent processes
is presented in Section 2. The context-tree model and its
construction algorithm, given a stream of observed data,
are introduced in Section 3. In Section 4, the suggested
method is applied to a simulated Flexible Manufacturing
System (FMS). The CSPC reveals the dynamics in the pro-
cess output and detects when the output is significantly
affected by different system characteristics. Section 5 con-
cludes the paper.

2. A general SPC scheme

Two main problems arise when applying SPC to a system
output manipulated by a feedback control device. The first
problem is how to identify that the process or the controllers
deviate from their “expected” behavior. In independent pro-
cesses, when the observed characteristic behaves according
to a known probability distribution, it is relatively easy to
identify a change in the process by applying SPC charts to
estimated statistics. However, when observations are depen-
dent and follow certain dynamics as a result of feedback
control effects, it is much harder to identify a deviation
in the process, since both probability type errors increase
(Deming, 1986; Boardman and Boardman, 1990; Thomas
and Lloyd, 1990). The second problem is how to model the
behavior of the stochastic output resulting from the con-
trol rules. Alternatively, how to model the relations between
time-sequenced observations and allow the order of depen-
dency between current and past observations, to change ac-
cording to the observed values. Naturally, simple statistical

Context modeling of finite-state processes 403

Fig. 1. The general SPC scheme.

measures such as the correlation coefficient are not help-
ful in understanding the process dynamics of a feedback-
controlled system, which are often nonlinear.

A general scheme for the SPC method is shown in Fig. 1.
In the first stage, data which may be either independent or
dependent, is collected from a general process. In the second
stage, statistics that are preferably independent and identi-
cally distributed (i.i.d.) having known distribution charac-
teristics are gathered by modeling or filtering operations.
In the third stage, these statistics are plotted in SPC con-
trol charts. For example, in the first stage of the traditional
Shewhart charts, the collected data is i.i.d. In the second
and third stages, the X̄ statistic, which is assumed to be
normally distributed according to the central limit theorem,
is estimated and plotted. Similarly, for time-series sources,
often an ARIMA model is used in the second stage to fil-
ter the data and generate a stream of residuals that are as-
sumed i.i.d. and approximately Gaussian random variables,
to which a SPC chart can be applied. For Page’s CUSUM
methods (Page, 1962) a known distribution is assumed to
generate the data and the likelihood ratio statistics are es-
timated and depicted on the SPC chart.

Following the general SPC scheme, we propose a model-
ing stage that converts a state-dependent data stream into
a statistic with known distribution that can be monitored
on the SPC charts. In particular, we apply the context-tree
model, which was originally proposed for data compression
purposes (Rissanen, 1983; Weinberger et al., 1995). The
context tree can represent both fixed-order and varying-
order Markov models. It has the same advantages as a
regular Markov model of order k, where context (that are
represented by branches in the tree) act as its states. When
representing a varying-order Markov model, the lengths
of various branches in the tree are not necessarily equal
and one does not need to fix k such that it accounts for the
maximum expected dependence in the data (Buhlmann and
Wyner, 1999).

Fig. 2. The context tree that fits the observed sequence [A, A, B, A, B, C, A, B, C, A, B, C] × 5.

Following the second stage in Fig. 1, the Kullback-
Leibler (KL) statistic is used in the CSPC to measure the
relative distance between monitored context trees that rep-
resent the dynamics in the system at different monitoring
periods, and the reference context tree that represents the
in-control behaviour of the system. In the next section it
is shown that the KL distance statistics are asymptotically
i.i.d. and chi-square distributed and hence can be moni-
tored by a SPC control chart.

3. The context tree and the KL measure

3.1. The context tree

The context-tree model is an irreducible collection of con-
ditional probabilities that fits an observed sequence of sym-
bols (Rissanen, 1983). We use the context tree to estimate
the conditional probability of a symbol in a sequence, given
the context of previously observed symbols. The tree is a
graph entity that consists of branches and nodes. Branch
links are labeled by the symbol types. A context, s, is rep-
resented by the path of branch links starting up at the tree
root down to some node. The context order is reversed with
respect to the order of observance, such that lower nodes
represent previously observed symbols. Figure 2 presents
the context tree that fits the observed sequence {A, A, B,
A, B, C, A, B, C, A, B, C} × 5, i.e., five repetitions of the
sequence which is read from left to right; meaning that A is
observed prior to A which is observed prior to B etc. Ac-
cordingly, the context of the last symbol C, is B, A, C, B, A,
C, B, A, B, A, A. However, modeling such a long context
is not necessary since the tree has only two levels, indicat-
ing that each symbol depends only on its preceding sym-
bol. The tree consists of three optimal contexts that are the
shortest significant contexts required by the representing
conditional probability of symbols (the exact mathemati-
cal condition is given in the next section by Equation (1)).

404 Ben-Gal and Singer

In this example, the optimal contests {A, B, C} are all the
branches from the root up to the leaves. However, in gen-
eral, the length (depth) of various contexts (branches) do
not have to be equal. Each node in the tree contains a vec-
tor of conditional frequencies of all symbol types given the
respective context. The root node contains the uncondi-
tional frequency vector of symbol types in the sequence,
thus, given an empty context. Nodes that follow an opti-
mal context contain another vector of the empirical condi-
tional probabilities of symbols given the context. The esti-
mated probabilities of the optimal contexts appear above
the nodes. For example, the conditional frequency of sym-
bol C, given the context B is 15, while the conditional fre-
quencies of symbols A and B given that context are five and
zero, respectively. Based on these frequencies, the estimated
probability to obtain symbols A, B and C given the optimal
context B are, P(A | B) = 5/20 = 0.25, P(B | B) = 0/20 = 0
and P(C | B) = 15/20 = 0.75. The estimated probability to
obtain the optimal context B is P(B) = 20/59 = 0.333 (it
is divided by 59 and not by 60 since the first symbol in the
string does not have any context).

Note that in general the context tree is not necessarily
balanced (i.e., not all the branches should have the same
length) nor complete (i.e., not all the nodes in the tree should
have all the d offsprings).

3.2. The tree construction algorithm

There exist several algorithms for the construction
of a context tree (Rissanen, 1983; Weinberger et al.,
1995; Buhlmann and Wyner, 1999; Ben-Gal, Morag and
Shmilovici, 2003). In the following, we briefly outline our
version of the construction algorithm. For further details
the reader is referred to the above literature.

Consider a sequence (string) of observations xN =
x1, . . . , xN , with elements xt t = 1, . . . , N defined over a
finite symbol set, X , of size d. The context tree at time
t is denoted by T(t) and based upon all the observa-
tions, x1, x2, . . . , xt . Algorithmically, T(t) is obtained it-
eratively by updating T(t − 1) following the last obser-
vation xt . Given an observation string, a context, s(xt),
of the next symbol in the string xt+1, is defined as a re-
versed string, s(xt) = xt , xt−1, . . . , xmax{0, t − k + 1} for
some k ≥ 0. The string is truncated since k will be cho-
sen such that the symbols observed prior to xt−k+1 do not
affect the conditional probability of xt+1. To obtain an op-
timal context one selects the smallest k for which the con-
ditional probability of a symbol given the context is prac-
tically equal to the conditional probability of that symbol
given the whole sequence, i.e., nearly satisfying:

P(xt+1 | xt) = P(xt+1 | s(xt)). (1)

All the optimal contexts belong to the set of optimal con-
texts, �, and defined as the states of the context-tree model.

There are two main stages in the tree construction: (I)
a tree growing stage; and (II) a tree pruning stage. These

stages can be performed either iteratively, following each
new observation, or sequentially, by first constructing the
tree and only then pruning it.

In the iterative approach a minimal tree is grown from
its root by splitting nodes following each single observa-
tion until some goodness-of-split criterion fails to be met.
This approach requires less memory space and potentially
has a smaller computational complexity, since insignificant
branches are never grown. A major problem with the itera-
tive approach is that potentially significant splitting might
exist on lower branch levels that are pruned at earlier stages.
The sequential approach, which we apply here, constructs a
context tree up to a predetermined maximal order (depth)
L from all the data string and only then prunes it, upwards,
by trimming leaves that are statistically similar to their par-
ent nodes. Although this approach requires more memory
space (the tree is represented by an L × d matrix), it keeps a
significant branch even if the significant splitting is located
towards the end of the branch. The complexity of this al-
gorithm is O(N log N) given an input string of length N
(Rissanen, 1999). In practical terms, the construction of a
tree from a string with 2000–5000 data points took less than
5–7 seconds on a Pentium 3 PC. Further discussion on var-
ious construction versions can be found in Buhlmann and
Wyner (1999) and Ben-Gal, Morag and Shmilovici (2003).

3.2.1. Stage 1: Tree growing and updating
1. Define the initial tree T(0)

Construct T(0), the initial context tree at time t = 0, as a
root node with all symbol counters equal to zero. The initial
symbol counters are denoted by n(x | s0) = 0 ∀x ∈ X , where
s0 denotes the initial empty context.
2. Constructing the tree T(t)

Recursively, having constructed the tree T(t − 1) from
xt−1, read the symbol xt . Climb the tree according
to the path defined by previously observed symbols
xt−1, xt−2, . . . , and increment the count of this symbol,
n(xt | xt−1, xt−2, . . .), by one for every node visited until the
deepest node is reached. If the last updated count is at least
one and its depth is less than L, a maximal predetermined
tree depth, create a new node, with all symbol counts equal
to zero, except for the count associated with xt which is set
to one.

Illustrative example: We demonstrate the construction of
a context tree for an example string, x4 = A, A, B, A which
represent the first four symbols of the observed sequence in
Section 3.1. The string is composed of a symbol set of d = 3,
and its length is N = 4. For the purpose of illustration, we
assume no limitation on the maximal tree depth, i.e., L ≥
4. Figure 3 presents the tree growing and counter update
process.

3.2.2. Stage 2: Tree pruning
Two pruning rules are applied during the tree construc-
tion. The first rule determines the maximal depth of the

Context modeling of finite-state processes 405

Fig. 3. Tree growing and counter updating stage in context algorithm for string x4 = A, A, B, A.

tree according to the amount of available data. The second
rule is based on a relative-entropy measure (Rissanen, 1983;
Weinberger et al., 1995) to prune insignificant nodes to ob-
tain the shortest contexts that satisfy Equation (1).
Pruning rule 1: When following the sequential approach,
as done here, this rule is applied at the beginning of stage
1 to determine the maximal depth of the tree, L. This rule
guarantees that if N available data points are divided evenly
among all dL leaves of a complete and balanced tree, then
each of the leaves would contain at least na data points, i.e.,
requiring that na × dL ≤ N. Selecting the minimal value
na = 1, we obtain L ≤ log(n)/ log(d). When following the
iterative approach, this rule is applied before a new node,
w, is added to the tree. It bounds the depth of that node,
denoted by |w|, by the logarithm (to the base d) of the
length of the observed string until that point, i.e., |w| ≤
log(t + 1)/ log(d).
Pruning rule 2: This rule uses the relative entropy to mea-
sure the distance between the symbols’ distributions at a
descendant node, sb ∀b ∈ X , and its parent node s. The

descendant node is pruned if this measure is larger than a
penalty cost for growing the tree (i.e., of adding a node).
The driving principle is to prune a descendant node having
a symbol distribution which is similar to that of its par-
ent node in terms of the KL divergence. In particular, we
calculate �N(sb), the (ideal) code length difference of the
descendant node sb, ∀b ∈ X :

�N(sb) =
∑
x∈X

n(x | sb) log
(

P̂(x | sb)

P̂(x | s)

)
, (2)

and require that �N(sb) > c(d + 1) log(t + 1), where loga-
rithms are taken to base 2, and c is the pruning constant
tuned to process requirements (with default c = 2 as sug-
gested in Weinberger et al. (1995)). This process is extended
to the root node with �N(x0) = ∞.

Illustrative example: Figure 4 presents the pruning stage
for the counter context tree, which is constructed in Fig. 3.

406 Ben-Gal and Singer

Fig. 4. Pruning stage in context algorithm for the string X4 = A, A, B, A.

3.2.3. Stage 3: Estimating the probabilities of optimal
contexts and symbols

Once the tree is pruned, estimate the probabilities of the op-
timal contexts, P̂(s), s ∈ � by their frequencies in the string:

p̂(s) =

0 if sb ∈ T(t) ∀b ∈ X ,

n(s)∑
s ′∈T(t) n(s ′)

=
∑

x∈X

(
n(x | s) − ∑

b∈X n(x | sb)
)

∑
s ′∈T(t)

∑
x∈X

(
n(x | s ′) − ∑

b∈X n(x | s ′b)
) else, for s ∈ T(t),

(3)

where n(x | s) is a symbol counter representing the condi-
tional frequency of the symbol x ∈ X following the context
s; n(s) is the sum of the counters of symbols that belong
to the context s but not to a longer context sb, b ∈ X and
{s ′ ∈ T(t)} is the set of all the contexts in the tree. Any inter-
nal node in the tree satisfying the first line in Equation (3)
represents a nonoptimal context, since it is a part of a longer
optimal context. All the contexts with nonzero probabilities
(second line in Equation (3)) belong to the set of optimal
contexts, �, that has a finite state space, |�| = S. The second
line in Equation (3) normalizes the probability estimates of
the optimal contexts, s′, to compensate for the fact that the
first symbols in the string do not have long enough contexts.
Therefore, the summation of counters in descendent nodes
is not necessarily equal to summation of counters in the
parent node (as exemplified at the end of Section 3.1). Fol-
lowing Equation (3), an optimal context can be either a path
to a leaf (a node with no descendants) or a partial leaf–a
node which is not a leaf; however, for certain symbol(s) (but
not for all the symbols) its path defines an optimal context
satisfying Equation (3) (Ben-Gal, Morag and Shmilovici,
2003). This important concept decreases the statistical er-
ror rates and extends the algorithm Context proposed by

Rissanen (1983) and Weinberger et al. (1995) that consid-
ered only the leaves in the tree as contexts.

Once � is determined, we estimate the conditional prob-
abilities of symbol types x ∈ X given an optimal context

s ∈ � by their respective frequencies:

P̂(x | s)

= n(x | s) − ∑
b∈X n(x | sb)∑

x∈X

(
n(x | s) − ∑

b∈X n(s | sb)
) , ∀x ∈ X, ∀s ∈ �.

(4)

A predictive version of Equation (4) is given in Weinberger
et al. (1995) and can be used for systems where there is a pos-
itive probability of obtaining any symbol given any context.
Finally, following Equations (3) and (4), the context tree can
be estimated as a collection of joint probability distributions
of contexts and symbols, P̂(x, s) = P̂(x | s) × P̂(s).

Illustrative example: Applying Equation (3) to the pruned
counter context tree presented in Fig. 2 results in the esti-
mated probabilities of three optimal contexts:

{P̂(A), P̂(B), P̂(C)} =
{

25
59

,
20
59

,
14
59

}
.

All the contexts, in this case, are leaves. Note that the
root node is not an optimal context since all its symbols are

Context modeling of finite-state processes 407

contained in its descendants nodes. The estimated condi-
tional probabilities of symbols given contexts are:

{P̂(A | A), P̂(B | A), P̂(C | A), P̂(A | B), P̂(B | B), P̂(C | B),

P̂(A | C), P̂(B | C), P̂(C | C)}
=

{
5
25

,
20
25

,
0

25
,

5
20

,
0

20
,

15
20

,
14
14

,
0

14
,

0
14

}
.

These estimates are found by applying Equation (4) to
the counter context tree presented in Fig. 2.

3.3. Applying the KL statistic to the context-tree model

Kullback (1959) proposed a measure for the “relative dis-
tance” or the discrimination between two probability mass
functions with the same range, later known as the Kullback
Leibler (KL) measure. The KL measure is applied at any
monitoring point to detect the relative distance between the
monitored distribution of symbols and contexts P̂i(x, s),
which is estimated from N observations, and the in-control
reference distribution P̂0(x, s). The reference distribution
is either driven analytically (as done in Ben-Gal, Morag
and Shmilovici, 2003) for the case of buffer monitoring in
a manufacturing line with known production probabilities)
or can be estimated by applying the context algorithm to
a sequence of size N0. It is then denoted by P̂0(x, s). The
sequence lengths in both stages, N and N0, have to adhere
to the chi-square sampling principle suggested by Cochran
(1952). This principle requires that at least 80% of the sam-
pling bins (corresponding in this case to the nonzero con-
ditional probabilities of symbols given optimal contexts)
contain at least four data points. Convergence conditions
and further analysis for the reference distribution are given
in Ben-Gal, Morag and Shmilovici (2003).

The KL measure between the two trees can be decou-
pled into two terms: one measuring the relative distance
between the distribution of optimal contexts, and the other
measuring the relative distance between the conditioned
distribution of symbols given an optimal context. More-
over, it has been shown (Ben-Gal, Morag and Shmilovici,
2003; Ben-Gal, Shmilovici and Morag, 2001) that if the two
trees are estimated from the same stationary process, their
KL statistic is asymptotically (in N which is the length of
the monitored string) chi-square distributed with 2(Sd − 1)
degrees of freedom. Thus, the KL measure depends on the
number of symbol types, d, and the number of optimal con-
texts, S:

K(P̂i(x, s), P̂0(x, s))

=
∑
s∈�

P̂i(s) log
P̂i(s)

P̂0(s)
+

∑
s∈�

P̂i(s)
∑
s∈X

P̂i(x|s) log
P̂i(x|s)

P̂0(x|s)
,

→ 1
2N

(
χ2

2(S−1) + χ2
2S(d−1)

) = 1
2N

χ2
2(Sd−1). (5)

A numerical analysis for the asymptotic convergence rate
of the KL measure as a function of N for a given value of α

was obtained in Ben-Gal, Morag and Shmilovici (2003) and
can be used to determine the minimal string length which
is required. In general, the minimal string length depends
on the number and lengths of the contexts in the tree; pro-
cesses that are less interdependent require a smaller string
length. Evidently, a high value of the required string length
undermines the effectiveness of the on-line monitoring.

Finally, for a predetermined type-I error probability, α,
the control limits of the KL statistic (multiplied by twice
the monitored string length) are:

0 ≤ 2N K(P̂i(x, s), P̂0(x, s)) ≤ χ2
2(Sd−1),1−α. (6)

Thus, the Upper Control Limit (UCL) is the 100(1 − α)
percentile of the chi-square distribution with 2(Sd − 1) de-
grees of freedom.

3.4. The CSPC monitoring procedure

Following the above results, a brief description of the CSPC
steps is provided. Note that the CSPC method follows the
general SPC scheme presented in Fig. 1.

Step 1. Obtain a reference tree, P0(x, s), either analyti-
cally or by estimating it from a long string of symbols.

Step 2. Collect a sequence of N observations from the
monitored source in any monitoring point of time and
construct a monitored tree P̂i(x, s). Each such sequence
is called a “run” and contributes one monitoring point to
the CSPC chart. Following the minimum discrimination
information (MDI) principle (Kullback, 1978; Alwan et al.
1998), use the monitored observations to update the val-
ues of the counters in the reference tree, and estimate the
probability measures of context and symbols in that tree.

Step 3. Compute the KL statistic measuring the rela-
tive distance between the monitored tree, P̂i(x, s), and the
reference tree, P0(x, s). The KL measures are i.i.d. and chi-
square distributed, if both trees are generated by the same
stationary process.

Step 4. Plot the KL measures on a simple control chart,
with respect to the UCL given in Equation (6). KL measures
large than the UCL trigger an out-of-control signal. Once
an out-of-control signal has been detected, the KL mea-
sures can be decomposed with respect to optimal contexts
(see Equation (5)) to locate those contexts that contribute
to the high value of the KL measure.

Step 5. For further monitoring, increment i = i + 1 and
return to Step 2, otherwise stop.

4. Monitoring of a simulated FMS

4.1. Purpose of the study

Traditional SPC methods are often applied to monitor
product characteristics and process attributes. These mea-
sures provide information on certain quality criteria but
overlook general output criteria such as throughput or the
Production Mix Ratio (PMR), which is the ratio among

408 Ben-Gal and Singer

produced quantities of different part types. A possible rea-
son why SPC for such a criterion is missing can be the com-
plex and nonlinear patterns of the PMR that often can-
not be described by a known stochastic process (e.g., an
ARIMA model). The PMR process cannot be controlled
even by conventional SPC methods for autocorrelated data,
as seen in Section 4.3. On the other hand, there are good rea-
sons to monitor such a criterion. The PMR is often a direct
measure for the suitability of the feedback-control policies
that are implemented in the production system. For exam-
ple, by monitoring the PMR, one can examine whether the
underlying routing policy of parts to various machines is
properly functioning. In real-life settings, many of the con-
trol rules are implemented (and are actually “hidden”) by
long codes of commercialized software packages that can-
not be monitored directly. This is true also in cases where
the software has been changed or misimplemented uninten-
tionally. Monitoring the PMR provides an unbiased way to
ensure that these rules are properly functioning, particularly
if the process changes frequently. Moreover, since various
machines and devices in the production line affect the PMR,
it can be used as a direct measure for the interactions among
them. These interactions are of particular importance in a
FMS, as considered here. Note that several state-dependent
processes might occur in systems where SPC is traditionally
applied.

The purpose of this simulation study is to demonstrate
the abilities of the CSPC (in comparison with conventional
SPC methods) in monitoring the PMR patterns and indicat-
ing whether a significant change has occurred. The section
is organized as follows. In Section 4.2 we describe the simu-
lated FMS and our underlying assumptions. In Section 4.3
we show that conventional SPC methods for autocorrelated
processes fail to monitor the PMR. In Section 4.4, we fol-
low the suggested CSPC approach. In particular, we exam-
ine the KL distance statistics between a series of monitored
context trees and a reference context tree. The trees are
constructed from data strings that indicate the type and the
order of the produced parts under various production con-
ditions. The KL values are plotted in control charts against
the UCL given in Equation (6). KL measures larger than the
UCL can trigger an out-of-control signal that enables the
inspector to search for the origin of the alteration.

4.2. Description of the FMS simulation model

The considered FMS cell is composed of three CNC ma-
chining centers, one universal loading station and one un-
loading station, all having an infinite capacity. Figure 5
shows the FMS layout.

Three part types are produced in the cell simultaneously.
The processing times are assumed to be known determin-
istically, since all the machining operations are computer-
numerically controlled. More than one machine is capable
of performing the same operations, therefore, each part type
has alternative routes. The alternative routes and process-

Fig. 5. Schematic illustration of the FMS.

ing times of operations of different part types are listed in
Table 1. For example, notice from Table 1 that part type
A has two alternative routes. In the first route, the part is
processed for 3 minutes in the loading station, 10 minutes
in MC1, 11 minutes in MC3 and finally 3 minutes in the
downloading station. In the second route, operations 1, 2
and 4 are performed in the same machining centers as be-
fore with the same processing times. The difference occurs
in the third operation, which is processed for 14 minutes in
MC2 instead of MC3.

Two different input probability ratios are considered and
presented in Table 2. An input probability ratio is the ra-
tio between the different part types that enter the system.
In practice, the input ratio can represent the ratios among
different raw materials or WIP, each of which is associated
with a specific part type. Alternatively, the input probabil-
ity ratio can represent the ratios of job orders that enter
the system. For example, the first input probability ratio in
Table 2 represents a stochastic process with a probability
of 0.3 to obtain a job order for part type A, a probabil-
ity of 0.2 to obtain a job order for part type B, a probability
of 0.3 to obtain a job order for type C and a probability of
0.2 to obtain a job order for part type D.

We implement a routing control policy with a feedback-
loop which is a simple version of the Dynamic Alterna-
tive Routings (DAR) proposed by Chan (1998). The imple-
mented routing policy delivers the processed part to the next
alternative machine with the lowest number of entities in its
queue. If several buffers have the same number of entities
in their queue (including empty buffers), the routing rule

Table 1. Alternative routes and processing times for different part
types (cell entries indicate the processing time in minutes)

Machine centers

Part type Route Load station MC1 MC2 MC3 Unload station

A 1 3 10 11 3
2 3 10 14 3

B 1 5 10 5
2 5 8 5

C 1 2 30 2
2 2 34 2

D 1 3 7 13 3
2 3 10 13 3

Context modeling of finite-state processes 409

Table 2. Input ratios for different part types

Part type

Input probability ratio A B C D Sum

1 0.3 0.2 0.3 0.2 1
2 0.4 0.1 0.3 0.2 1

delivers the part to the buffer of the machine on which the
lowest processing time is required with respect to the allo-
cated part type. Thus, the routing controller takes an action
only after observing the state of the system, which is defined
by the queue levels. This action, which is not expressed in
closed-form equations, is performed at each part delivery;
thus, it is driven by discrete events that are not necessarily
equi-spread along the time horizon. Although this feedback
loop is much simpler than most of the applied EPC meth-
ods (such as PID and model predictive control), it creates
an interdependent PMR process that cannot be monitored
by conventional SPC methods for autocorrelated processes,
and therefore serve us for illustration purposes. For other
details on the DAR characteristics in comparison to other
routing methods the reader is referred to Chan (1998).

4.2.1. Summary of assumptions and operational
control rules

The following list summarizes the assumptions imple-
mented in the simulation model:

1. The sequence of the operations for each part type is
known (see Table 1).

2. The processing times for each part type are known (see
Table 1).

3. The input ratio of different part types is stochastic (see
Table 2).

4. The modified DAR is implemented as the routing (feed-
back) policy.

5. All local buffers in the machine centers have the same
FIFO dispatching rule.

Table 3. Analysis of different ARIMA methods for the in-control stage

UCL Beyond
ARIMA model N MSE α = 5% UCL α̂ ˆARL Model parameters

ARIMA(1,0,0) 5 0.28 0.46 75 0.38 2.5 ẑt = 3.37 + 0.02zt−1

ARIMA(2,0,1) 5 0.28 0.46 82 0.41 2.09 ẑt = 2.67 + 0.02zt−1 − 0.12zt−2 + 0.01εt−1

ARIMA(2,0,2) 10 0.14 0.23 113 0.57 1.8 ẑt = 2.39 − 0.03zt−1 + 0.05zt−2 − 0.04εt−1 + 0.05εt−2

ARIMA(0,0,2) 10 0.14 0.23 114 0.57 1.76 ẑt = 2.41 − 0.07εt−1 + 0.1εt−2

ARIMA(1,0,2) 10 0.14 0.23 113 0.57 1.78 ẑt = 2.51 − 0.04zt−1 − 0.03εt−1 + 0.09εt−2

ARIMA(1,0,4) 10 0.14 0.23 112 0.56 1.76 ẑt = 2.53 − 0.05zt−1 − 0.02εt−1 + 0.11εt−2 − 0.01εt−3 − 0.02εt−4

ARIMA(1,2,1) 10 0.19 0.27 112 0.56 2.05 ẑt − 2zt−1 + zt−2 = zt−1 − 0.66εt−1

ARIMA(2,0,1) 20 0.07 0.12 134 0.67 1.44 ẑt = 2.67 + 0.01zt−1 − 0.12zt−2 + 0.05εt−1

ARIMA(1,0,0) 25 0.06 0.09 153 0.77 1.31 ẑt = 2.44 − 0.02zt−1

ARIMA(1,0,2) 25 0.06 0.09 153 0.77 1.31 ẑt = 2.42 − 0.01zt−1 − 0.01εt−1 − 0.004εt−2

ARIMA(1,0,4) 25 0.06 0.09 154 0.77 1.28 ẑt = 2.37 + 0.01zt−1 − 0.03εt−1 + 0.001εt−2 + 0.02εt−3 − 0.03εt−4

ARIMA(1,2,1) 25 0.08 0.11 139 0.7 1.56 ẑt − 2zt−1 + zt−2 = zt−1 − 0.51εt−1

6. The capacities of the universal loading station and the
local buffers are infinite.

7. The traveling times of raw materials between stations are
negligible.

8. A cycle is concluded when a total of N > 930 parts ar-
rives to the unloading station.

4.3. Implementation of conventional SPC methods

The ARIMA family of models is widely applied for the rep-
resentation and filtering of autocorrelated processes. If the
process is well described by an ARIMA model, then the
model filtering of a dependent process yields independent
and approximate Gaussian residuals, to which traditional
SPC can be applied. Moreover, it has been shown, for exam-
ple in Box and Jenkins (1976) and in Apley and Shi (1999),
that simple ARIMA models, such as AR(1) or IMA(1,1),
can effectively filter a wide range of autocorrelated pro-
cesses even if they do not fit the model exactly.

In this section it is shown that ARIMA models are gen-
erally inadequate for the monitoring of nonlinear state-
dependent processes with discrete measures, such as the
PMR process considered here, or the buffer levels that are
considered in Ben-Gal, Morag and Shmilovici (2003). In
particular, we checked the applicability of a wide range of
ARIMA models to the monitoring of the above FMS ex-
ample, by fitting models to the time series zt = 1 (part type
A observed), zt = 2 (part type B observed), . . . , zt = 4 (part
type D observed).

We started by simulating the in-control process, which
is based on the routings and processing times number 1
(Table 1), and input probability ratio number 1 (Table 2).
Table 3 presents the best found ARIMA models, in terms of
their type-I statistical errors and the Average Run Length
(ARL) as analyzed using the Statgraphics software pack-
age. The columns of the table are, respectively: (i) the
ARIMA model; (ii) the subgroup size N, (i.e., fitting
a model and then applying an X̄ chart to a subgroup
of N residuals); (iii) the Mean-Square Error (MSE); (iv)

410 Ben-Gal and Singer

Fig. 6. AR(1) chart analysis with subgroup 5 applied to 500 in-control data points and 500 out-of-control data points. The limits are
based on ±1.96 × √

MSE/5.

the UCL which is determined as Z0.975
√

MSE/N, where
Z0.975 denotes the 0.975 percentile of the standard normal
distribution and equals 1.96; (v) the actual number of runs
that fell beyond the UCL; (vi) the estimated type-I statisti-
cal error, calculated by dividing the number of runs that fell
beyond the UCL by 200 which is the number of analyzed
subgroups; (vii) the estimated ARL which was computed
directly from the control charts; and (viii) the estimated
model parameters. In general, in all the ARIMA charts, in-
cluding ones that are not presented here, we obtained high
values of type-I statistical errors and low ARL values. As
seen in the next section, the CSPC method resulted in a
much better statistical performance.

Figure 6 presents the control chart of the residual AR(1)
with N = 5; the best found model in terms of its ARL and
the type-I statistical error. The first 100 points in the chart
are generated by the in-control process, while the second
100 points are generated by the out-of-control process,
which is based on input probability number 2 in Table 2.
Note that more than 30% of the first 100 points are marked
erroneously (by the star signs) as out of control. Moreover,
it is impossible to distinguish between the two processes
and indicate a change point.

Since the suggested CSPC requires a large subgroup
size, a justified question is whether the performance of
the ARIMA models can be improved by increasing the
subgroup size. Note from Table 3 that regardless of the
model, an increase of the subgroup size resulted in a poorer
ARL. In general, it is evident that better estimation of the
model parameters, as a result of a larger sample size, does
not improve the performance of a wrong model. This can
be illustrated by examining the simple AR(1) model, which
is fitted for the in-control process as follows:

ẑt = µ(1 − θ1) + θ1zt−1 = 2.42(1 − 0.02) + 0.02zt−1

= 2.37 + 0.02zt−1, (7)

where µ = 2.42 is the mean of the process and θ1 = 0.02 is
its first-order autocorrelation. Evidently, since the process
is not linear, the autocorrelation parameter tends to zero
as N increases and the expected response depends only on
the process mean. The residuals of an AR(1) filtering fluc-
tuate around the mean value. As one increases the sample
size, the sample mean converges faster to the process mean.
However, the nonlinear dependencies in the process do not
play any role in the monitoring of such a filtered process and
accordingly the ARL decreases. In fact, any modification of
the in-control process that maintains the same mean value
cannot be identified by the AR(1) control chart, regardless
of the subgroup size. For the purpose of illustration, we gen-
erated a deterministic out-of-control process by replicat-
ing the string {2,1,4,1,4,1,4,1,4,1,4,2} over and over again.
Since the mean of the deterministic process (µ = 2.417) is
almost identical to the mean of the in-control process but
derived by a shorter string, a high type-II probability error
is obtained with a small sample size.

Figure 7 presents the average AR(1) estimation er-
ror, ε̄(N) = (ẑt − zt)/N, around the mean value for both
the in-control process (dotted line) and the determinis-
tic out-of-control process (bold line). As seen, the aver-
age estimation error for the out-of-control process con-
verges (in the sample size) to zero much faster than the
in-control process, leading to a high type-II probability
error. Note, for comparison, that the type-II probability
error for the deterministic out-of-control process is effec-
tively zero when applying the suggested CSPC; the obtained
KL statistic between the tree based on the deterministic
tree and the reference tree is equal to 4800, whereas the
UCL (α = 0.05) is equal to 62.82. A similar phenomenon
occurs when applying other ARIMA models to monitor
nonlinear state-dependent processes; the average error ac-
tually reflects the convergence rate of the model parame-
ters regardless of the data interdependencies and the model
correctness.

Context modeling of finite-state processes 411

Fig. 7. The average AR(1) estimation error (around the process
mean) as a function of the subgroup size for both the in-control
process (dotted line) and the deterministic out-of-control process
(bold line).

4.4. Implementation of the CSPC approach

The purpose of this section is to follow the suggested CSPC
and illustrate that it can efficiently identify changes in
a state-dependent stochastic environment. The simulated
study was performed in four steps. At each step we simu-
lated the FMS cell under different production conditions.
Each step consisted of 100 simulation runs generated from
different seeds under the same conditions. In the first step,

Fig. 8. The initial reference context tree P̂0(x, s) with four symbols and six optimal contexts.

the FMS model was based on the routings and process-
ing times number 1 (Table 1), and input probability ratio
number 1 (Table 2). In the second step, we maintained the
same routings and processing times but used input probabil-
ity ratio number 2 (Table 2). In the third step, we simulated
the same system as in the second step, however, we updated
the reference tree to illustrate that the proposed monitor-
ing method has a “learning” ability once a change has been
identified and a new reference tree represents the modified
process. In the fourth and last step, we changed the routings
of the part types by using routings number 2 (Table 1). The
simulated results are presented in what follows.

4.4.1. First step: Monitoring the reference in-control system

Figure 8 shows the initial reference context tree P̂0(x, s).
The tree is multileveled with d = 4 symbols, X = {A, B,

C, D}, each of which represents a different part type. It
was obtained by applying the context algorithm to an ini-
tial sequence with N0 = 931 observations of parts that were
produced by the simulated system. A string length of 931
observations adheres to the chi-square sampling princi-
ple suggested by Cochran (1952): note from Fig. 8 that
22 bins out of S × d = 6 × 4 = 24 bins (around 92% of
the bins) contain at least four data poins. When possible,
we suggest using a larger sample size than the one de-
fined by Cochran (1952) in order to better estimate the
reference distribution. Some numerical methods to deter-
mine N0 are suggested in Ben-Gal, Morag and Shmilovici

412 Ben-Gal and Singer

(2003). The structure of the tree in Fig. 8 represents the
varying length dependencies among the observations. As
seen, the empirical conditional distribution of symbols,
following the contexts A, AA and AAA are significantly
different from each other, whereas the empirical distribu-
tion of symbols following B or D are conditioned only on
that single symbol. The tree has S = 6 optimal contexts,
{s0, A, B, D, AA, AAA}, where s0 denotes the empty context
represented by the tree root. All the nodes in the tree rep-
resent optimal contexts and contain both the conditional
frequencies of symbols given optimal contexts and the em-
pirical conditional distribution of the symbols. For exam-
ple, the empirical conditional distribution of symbols given
the optimal context AA is, respectively, P0(A, B, C, D | s =
AA) = (0.29, 0.12, 0.42, 0.17). The root corresponds to the
empty context and presents the unconditional frequencies
of part types. The probabilities of the optimal contexts are
listed above the corresponding nodes.

At this stage, we checked whether the suggested CSPC
procedure would indicate that the system is stable, thus,
would result with a small type-I statistical error. We used
different seeds to generate 100 simulation runs, each of
which contain a sequence of 931 produced parts. The con-
text algorithm was then applied to each sequence to con-
struct a series of monitored trees, P̂i(x, s), i = 1, . . . , 100.

Following the MDI principle, these sequences updated the
counter values in the monitored trees to evaluate the prob-
ability estimates for symbols and contexts. Next, a se-
ries of KL statistics (multiplied by 2N, where N = 931
is the size of the sequence), measuring the distance be-
tween the monitored trees and the reference tree, were com-
puted and plotted against the UCL. The UCL was cali-
brated to a type-I error probability of α = 0.05, resulting
in χ2

2(Sd−1),1−α
= χ2

46,0.95 = 62.83.

Fig. 9. The CSPC control chart indicating a change in production ratio in Step 2 after 100 runs.

The first 100 KL values are plotted in the left-hand side
of Fig. 9 against the UCL to monitor the in-control system
prior to any change. As seen, all but one point lie below the
UCL with an estimated ARL close to 50.

4.4.2. Second step: Changing the input probability ratio
At this step, we used input probability ratio number 2
(Table 2), while keeping all the other system parameters
unchanged. The context algorithm was applied to the
next 100 runs to generate the monitored trees, P̂i(x, s), i =
101, . . . , 200, each of which are based on a sequence of
931 parts. The KL statistics (multiplied by 2N) were com-
puted and compared to the same UCL, as done in the pre-
vious step. The last 100 points in Fig. 9. represent the mon-
itoring of the out-of-control process that resulted from the
modification in the input probability ratio. As seen, all the
values lie above the UCL.

4.4.3. Third step: Modifying the reference tree
In this step we illustrated the learning ability of the proposed
CSPC after it has indicated that a significant change has
occurred in the system. This is achieved by updating the
reference tree following the indicated change in the input
probability ratio.

Figure 10 shows the updated reference tree, P̂∗
0(x, s),

which is based on input probability number 2. The tree
was obtained by applying the context algorithm to a se-
quence of 931 observations of the parts that were pro-
duced by the modified simulated system. Defining this
tree as the new in-control reference tree emphasized the
capability of the CSPC to capture the new dynamics
in the system following a change. One hundred simula-
tion runs that were based on different seeds generated
the monitored trees, P̂i(x, s), i = 201, . . . ,300. The CSPC

Context modeling of finite-state processes 413

Fig. 10. The updated reference tree P̂∗
0(x, s) with four symbols and six optimal contexts that resulted from the modified input probability

ratio.

procedure returned the KL statistics that are plotted in the
left-hand side of Fig. 11. As seen, all values are below the
UCL (with an ARL → ∞), confirming that the modified
tree has captured the dependencies in the modified system.

4.4.4. Fourth step: Changing the routings
of the different products

In this step we fixed the part routings, originally presented
in Table 1, by selecting route number 2 for all part types. All

Fig. 11. The CSPC control chart indicating a change in the parts’ routings in Step 4 after 100 runs.

the other parameters remained unchanged at their values
in the third step (i.e., using input probability number 2).
Once again, 100 simulation runs were generated based on
different seeds and the new routings. We applied the CSPC
procedure to construct 100 monitored trees, P̂i(x, s), i =
301, . . . , 400 and to obtain the KL measures that are plotted
in the right-hand side of Fig. 11. As seen, all the values
lie above the UCL. At this stage the simulation study was
terminated.

414 Ben-Gal and Singer

It is seen that the proposed CSPC framework performed
well throughout the whole simulation study with respect
to both statistical errors. 99.5% of the in-control points
fell below the upper control limit and 100% of the out-
of-control points were clearly identified as being generated
from a modified system.

5. Conclusions

Feedback control mechanisms often create autocorrela-
tions (which we also term here as dependencies) among
various system characteristics (Box and Luceno, 1997).
These dependencies might be state-dependent and nonlin-
ear, thus, unidentifiable by traditional monitoring meth-
ods. The CSPC, a new monitoring and statistical control
methodology, is proposed in this paper for the analysis of
finite-state processes. In particular, the data dependencies
are modeled by the context tree that was originally sug-
gested by Rissanen (1983). The KL measures are imple-
mented to calculate the distance between the monitored con-
text trees and the reference context tree, in order to indicate
significant changes in the stochastic process.

The proposed methodology can be applied to moni-
tor discrete processes generated by a finite-state machine
source. The varying context lengths in the context-tree
model result in fewer parameters that have to be estimated
with respect to a fixed-order Markov model and conse-
quently require less data to model the process. The pro-
posed CSPC has some additional appealing characteris-
tics. First, it is parameter-free and does not assume, in
contrast to conventional SPC methods for autocorrelated
processes, a particular time-series model. Second, the pro-
posed approach can “capture” both linear as well as nonlin-
ear trends in the data by using the same procedure. Third,
the context tree has a learning ability for the underlying
dynamics and distribution during the monitoring stage, as
seen in the numerical example presented in Section 4.4. Fi-
nally, the CSPC enables the use of a single control chart
that can be further decomposed, if necessary, for analysis
purposes (Ben-Gal, Morag and Shmilovici, 2003; Ben-Gal,
Shmilovici and Morag, 2001).

Despite the above-mentioned advantages of the SCPC,
if the true input-output relation can be reasonably approx-
imated by a continuous linear model, then conventional
SPC methods for autocorrelated processes should be used.
These methods are, in general, more efficient than the CSPC
in terms of parameter estimation, complexity of model con-
struction and the required sample sizes. The large sample
sizes required by the CSPC might limit its implementation
to off-line monitoring applications, or to high-frequency
automated monitors that collect large amounts of data,
which is often autocorrelated.

Further research in this area has to deal with the statisti-
cal properties of the proposed approach. The development

of a CSPC version that would require smaller sample sizes
could be essential for its utilization as an on-line monitor-
ing method. Another potential direction is the integration
between CSPC and different types of popular EPC con-
trollers, such as PID or model-predictive controllers. These
endeavors can lead to a better monitoring of production
systems and towards a real integration between statistical
control and engineering control approaches.

Acknowledgement

This research was partially supported by the MAGNET/
CONSIST Grant.

CSPC website: for available CSPC demo software see
http://www/eng.tau.ac.il/∼bengal/

References

Alwan, L.C., Ebrahimi, N. and Soofi, E.S. (1998) Theory and
methodology—information theoretic framework for process con-
trol. European Journal of Operational Research, 111, 526–542.

Apley, D.W. and Shi, J. (1999) The GRLT for statistical process control
of autocorrelated processes. IIE Transactions, 31, 1123–1134.

Ben-Gal, I., Morag, G. and Shmilovici, A. (2003) CSPC: a monitoring
procedure for state dependent processes. Technometrics, 45(4), 293–
311.

Ben-Gal, I., Shmilovici, A. and Morag, G. (2001) Design of control and
monitoring rules for state dependent processes. Journal of Manufac-
turing Science and Production, 3(2/4), 85–93.

Boardman, T.J. and Boardman, E.C. (1990) Don’t touch that funnel.
Quality Progress, 23, 65–69.

Box, G.E.P., Coleman, D.E. and Baxley, R.V. (1997) A comparison of
statistical process control and engineering process control. Journal
of Quality Technology, 29, 128–130.

Box, G.E.P. and Jenkins, G.M. (1976) Times Series Analysis, Forecasting
and Control, Holden Day, Oakland, CA.

Box, G.E.P. and Kramer, T. (1992) Statistical process monitoring and
feedback adjustment—a discussion. Technometrics, 34, 251–267.

Box, G.E.P. and Luceno, A. (1997) Statistical Control by Monitoring and
Feedback Adjustment, Wiley, New York, NY.

Buhlman, P. and Wyner, A.J. (1999) Variable length Markov chains. The
Annals of Statistics, 27(2), 480–513.

Carmen, C., Alberto, F. and Rafael, R. (1999) Integration of statisti-
cal and engineering process control in a continuous polymerization
process. Technometrics, 41, 14–28.

Chan, F.T.S. (1998) Evaluations of operational control rules in scheduling
a flexible manufacturing system. Robotics and Computer-Integrated
Manufacturing, 15, 121–132.

Cochran, W.G. (1952) The chi-square test of goodness of fit. The Annals
of Mathematical Statistics, 23, 315–345.

Deming, W.E. (1986) Out of the crisis. MIT Center for Advanced Engi-
neering Study, Cambridge, MA.

English, J.R., Martin, T., Yaz, E. and Elsayed, E. (2001) Change point
detection and control using statistical process control and automatic
process control. Present at the IIE Annual Conference, 2001, Dallas,
TX.

Faltin, F.W., Mastrangelo, C.M., Runger, G.C. and Ryan, T.P. (1997)
Considerations in the monitoring of autocorrelated and independent
data. Journal of Quality Technology, 29, 131–153.

Context modeling of finite-state processes 415

Gultekin, M., Elsayed, E.A., English, J.R. and Hauksdottir, A.S. (2002)
Monitoring automatically controlled processes using statistical con-
trol charts. International Journal of Production Research, 40, 2303–
2320.

Janakiram, M. and Keats, J.B. (1998) Combining SPC and EPC in a
hybrid industry. Journal of Quality Technology, 30, 189–200.

Kullback, S. (1959) Information Theory and Statistics, Wiley, New York,
NY.

Montgomery, D. (2000) Introduction to Statistical Quality Control, 4th
edn., Wiley, New York, NY.

Montgomery, D., Keats, J.B., Runger, G.C. and Messina, W.S. (1994) In-
tegrating statistical process control and engineering process control.
Journal of Quality Technology, 26, 79–87.

Nembhard, H.B. and Mastrangelo, C.M. (1998) Integrated process con-
trol for startup operations. Journal of Quality Technology, 30, 201–
210.

Page, E.S. (1962) Cumulative sum schemes using gauging. Technometrics,
4, 97–109.

Rissanen, J.J. (1983) A universal data compression system. IEEE Trans-
actions on Information Theory, 29, 656–664.

Rissanen, J. (1999) Fast universal coding with context models. IEEE
Transactions on Information Theory, 45, 1065–1071.

Thomas, W.N. and Lloyd, P.P. (1990) Understanding variation. Quality
Progress, 23, 70–78.

Tsung, F., Shi, J. and Wu, C.F.J. (1999) Joint monitoring of PID-controlled
processes. Journal of Quality Technology, 31, 275–285.

Vander Weil, S.A., Tucker, W.T., Faltin, F.W. and Doganaksoy, N. (1992)
Algorithmic statistical process control: concepts and an application.
Technometrics, 34, 286–297.

Weinberger, M., Rissanen, J.J. and Feder, M. (1995) A universal finite
memory source. IEEE Transactions on Information Theory, 41, 643–
652.

Biographies

Irad Ben-Gal is an Assistant Professor in the Department of Industrial
Engineering at Tel Aviv University. He holds a B.Sc. (1992) degree from
Tel Aviv University, M.Sc. (1996) and Ph.D. (1998) degrees from Boston
University. He is a member of the Institute for Operations Research and
Management Sciences (INFORMS) and the Institute of Industrial En-
gineers (IIE). He is the head of the Computer Integrated Manufacturing
(CIM) lab at Tel Aviv University. For several years he has worked for
various industrial organizations as a consultant and a project manager.
His research interests include quality control, design-of-experiments, test-
ing procedures, and application of information theory to industrial and
bioinformatics problems.

Gonen Singer is a Ph.D. student at the Department of Industrial Engi-
neering in Tel Aviv University. He holds B.Sc. (2001) and M.Sc. (2002)
degrees from Tel Aviv University. He teaches in the Open University at Tel
Aviv. His research interests include quality control, stochastic processes
and graphical user interfaces.

Contributed by the On-Line Quality Engineering Department.

