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 Abstract – We consider the use of a wireless body area 
network (WBAN) for remote health monitoring applications. A 
partially observable Markov decision process is used to describe 
the information flow and behavior of the WBAN. We then 
discuss a sensor activation policy, used for optimizing the trade-
off between power consumption and probability of patient 
health state misclassification. In order to determine the 
underlying health state transition probabilities, by which a 
patient’s health state evolves, we develop a learning algorithm 
which uses the data collected from a group of patients, each 
being monitored by a WBAN. Finally, a numerical examination 
demonstrates the applicability of such a system, which applies 
the learning process and sensor activation policy 
simultaneously. 

Keywords — Wireless body area networks, controlled sensing, 
partially observable Markov decision processes (POMDP), 
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I. INTRODUCTION 

In this paper, we explore the implementation of learning 
techniques in wireless body area networks (WBAN). 
WBANs usually consist of an array of sensors which may be 
placed on or near an individual, to continuously measure 
different physiological parameters. In addition, WBANs 
include a controlling unit, or a controller, which is 
responsible for managing the sensors, along with analyzing 
the data or transferring the data to an additional computing 
unit. One of the main applications of these systems is to 
estimate the physical and health condition of an individual 
[1], [2], [6]. 

Due to recent advances in sensor and wireless 
communications technologies, the use of WBANs has been 
on the rise [2], [6]. Extensive research has been conducted in 
order to define the characteristics needed for successful 
implementation of WBANs in modern real-world 
applications [3], [6]. Specifically, the inherent trade-off 
between energy consumption and accuracy encapsulates a 
number of design and implementation decisions which 
should be taken into account when developing WBAN 
systems [1]. Along with other limitations, energy 
consumption is still one of the main factors that hinder the 
advancement of these systems. Most research done in the 
field concerns optimizing hardware and communication 
components, such as the sensors and the wireless 
communication protocols between the sensors and the 
controlling unit, in order to reduce energy consumption [7], 
[8]. Some research aimed to increase energy efficiency by 

optimizing the controlling algorithms, which usually concern 
sensor selection given the information gained throughout the 
system’s activity [2], [9].  

In order to develop the controlling policies, partially 
observable Markov decision processes (POMDP) have been 
used to model the behavior and transition of information in 
WBANs [4], [6], [10]. A POMDP is defined by a set of states, 
actions, conditional transitions between the states, a cost 
function and a set of observations [5]. In most studies, the 
POMDP parameters are assumed to be known or somehow 
approximated, such as the transition probabilities between the 
states, or the states themselves [6]. In real world applications, 
the POMDP parameters are rarely known. Thus, setting 
assumptions concerning the POMDP parameters is needed in 
order to solve the POMDP model. Such assumptions may 
lead to noisy estimations and increased uncertainty in the 
system. Therefore, learning techniques may be applied in 
order to collect information concerning these parameters, 
thus unveiling the underlying information of the POMDP. In 
this paper, we develop a learning algorithm, which 
approximates the underlying transition probability matrix of 
a POMDP, using data collected from a group of patients, 
which share similar transition probabilities. The described 
algorithm serves as a "heuristic caricature" of the problem. 
We present an empirical verification of the ideas on an 
interesting exemplary scenario, with the goal of introducing 
the problem and spotlighting its design elements and 
application potential.  

II. PREVIOUS WORK 

The learning model developed in this paper is an 
extension to a simpler WBAN model which assumes full 
knowledge of all POMDP parameters [1]. The central 
contribution of this paper concerns applying learning 
techniques to estimate the transition matrix, which is 
unknown to the controller.  

III. HEALTH SENSING MODEL 

A. Patient Health States 

We first discuss the health state transitions and 
information flow in the WBAN system. We assume a finite 
set of health states a patient can occupy, denoted by ℋ =
{ℎ�, ℎ�, … , ℎ�}, such that ℎ� is considered the healthiest state, 

and ℎ�  the least healthy state. Contrary to [1], we don’t 
require the existence of a finite health state where the sensing 



is no longer relevant. This allows continuous learning based 
on the feedback from the sensors.  

The transition probability between any two states during 
two consecutive epochs ℎ�, ℎ��� ∈ ℋ is given by a transition 
matrix �: 
 � = ��� = ��(ℎ��� = ℎ�|ℎ� = ℎ�) (1) 

The most significant alteration to the model described in 
[1] is that the transition probabilities between the health states 
are unknown to the controller. An additional extension is that 
transitions are possible between all pairs of the health states.  

B. Sensors 

Since the current actual health state of the patient is 
unknown to the controller, we use the information collected 
by a network of �  sensors to produce a probability 
distribution over the health states. This distribution is defined 
as a belief state. At each decision epoch �, the controller may 
activate any subset of the sensors. The activated sensors at 
epoch �  are denoted by �� = (��

�, ��
�, … ��

� ) , where ��
� = 1 

refers to an activated sensor, and ��
� = 0  refers to a 

deactivated sensor, where � = 1, … , �. Note that for ease of 
notation, the time index may be omitted when discussing 
general time-independent properties. 

We define �� as the output vector of all sensors at epoch 
� and �(�) as the set of all possible output vectors for a sensor 
activation vector �. We assume that given a patient’s health 
state, the probability for a certain sensor output is known. For 
example, given a diabetic patient’s health state, the 
probability that a blood sugar level sensor will return a certain 
value may be obtained from a known distribution. For 
simplicity, in this paper we assume the sensors provide binary 
output of either “1” or “0”, i.e. ��

� ∈ {0,1, ∅}, where ∅ denotes 
a deactivated sensor. The probability to receive an output of 
“1” from sensor � given that the individual is currently in 
health state � is denoted by ���: 

 
��� = Pr��� = 1�ℎ��      

∀� = 1, … , � ; ∀� = 1, … , � 
(2) 

Accordingly, the complementary probability to receive a 
signal “0” is 1 − ��� . This definition may be interpreted as 

the sensors’ accuracies. 

C. Belief States 

The controller estimates an individual’s health state 
using a belief distribution over the health states, denoted 

by � = ���, ��, … , ���. During the sensing period, the belief 

states evolve given the information collected by the activated 
sensors ��, the sensors’ outcomes ��. Generally, the transition 
matrix � may also be taken into account while calculating the 
belief states. However, since the controller in this use case 
has no knowledge of the actual belief states, he must use an 
estimation of �. We denote the transition matrix estimated by 
the controller at epoch � by ���. In section V, we discuss the 
estimation process of the transition matrix. Given an 
estimated transition matrix, the transition function between 
belief states is denoted as follows: 

���� = �(��, ��, ��, ���) (3) 

where each component ��
���  represents the conditional 

probability that the patient is in health state ℎ� , i.e. ��
��� =

Pr(ℎ��� = ℎ�|��, ��, ��, ���). Since the controller has no prior 

knowledge concerning the initial health state or the 
corresponding sensor outputs, the initial belief state �� is 
randomized.  

In order to determine a patient’s belief state at epoch �, 
where � > 0, we first calculate the probability to receive a 
positive output signal from sensor � , given the previous 
belief state, namely: 

 Pr(�� = 1|�) = � �����      ∀� = 1, … , �

�

���

 (4) 

We then apply Bayes’ theorem to calculate the belief that the 
patient is in health state ℎ� based on the output of sensor n:  

 Pr�ℎ���� = 1, �� =
�����

Pr(�� = 1|�)
     

∀� = 1, … , � ;   ∀� = 1, … , � 

(5) 

By calculating the above probability for each of the sensors’ 
outputs ��, where � = 1, … , � and combining the outcomes, 
we obtain an expression for the controller’s belief that a 
patient is in health state ℎ�: 

 
Pr�ℎ���, �� =

Pr���ℎ�� ∙ ��

Pr(�|�)
     ∀� = 1, … , � 

(6) 

where Pr���ℎ��  represents the probability of receiving a 

certain output vector �, given a set of activated sensors �  
(� ∈ �(�)) and given the patient is in health state ℎ�. 

Finally, the new belief state ����(��, ��) is calculated by 
accounting for the estimated transition probabilities of the 
patient’s health state within the epoch, i.e., 

 

��
���(��, ��) = [�(��, ��, ��)]�

= � Pr�ℎ�����, ��� ∙
�

����
�����

=
1

Pr(��|��)
� ���

� ∙ Pr����ℎ��� ∙
�

����
�����  

(7) 

In general, given any belief state � , the probability of 
obtaining a specific outcome � ∈ �(�) is: 

 
Pr(�|�) = � �� ∙ Pr���ℎ��

�

���
 (8) 

D. Power and Misclassification Costs 

We define two types of cost components. The first type 
accounts for the energy consumed by activating the sensors. 
The cost of activating an array of sensors � is denoted by 
�(�). The second type is the misclassification costs, which 
accounts for the probability of error in the classification of a 
patient’s true health state. This cost is separated into two 
different types of misclassifications: false positive and false 
negative.  

The false positive error refers to the case where a 
patient’s true health state is healthier than estimated by the 
controller. Correspondingly, the false negative error refers to 
the case where the patient’s health state is less healthy than 
estimated by the controller. The definitions of the false 
positive and false negative errors correspond to the purpose 
of a health monitoring system, where we would like to alert 
the patient, or medical staff, of a patient’s deteriorating health 
state. We define two constant cost parameters: i) ���, the cost 



of a false positive error, and ii) ��� , the cost of a false 
negative error.  

We note that additional methods for defining the cost 
structure may be incorporated into this model, such as 
dynamic costs over time or different costs per health state. 
More sophisticated cost methods may allow more flexible 
behavior of the controller according to the system states. 

E. Risk / misclassification factor 

Due to the importance of accuracy in health monitoring 
systems, minimizing the misclassification factor is a major 
consideration when defining the sensor activation policy.  

In order to express the misclassification factor, we define 
the misclassification cost per health state ℎ� , denoted by 

��(��, ��), as follows: 

 
��(��, ��)  = ��� � ���

���(��, ��)
���

����

+ ��� � ���
���(��, ��)

�

������
 

(9) 

thus taking into account both the false positive and false 
negative errors, described in the previous section. For a 
certain health state ℎ�, we multiply the false positive cost ��� 

by the sum of belief probabilities that the patient is in a worse 
state than ℎ�. Similarly, we multiple the false negative cost 

��� by the sum of belief probabilities that the patient is in a 
better state than ℎ� . At each decision epoch, the controller 

calculates the total estimated misclassification cost, over the 
entire belief state, as follows: 

 
�(��, ��) = � ��

���(��, ��)
�

���
∙ ��(��, ��) (10) 

We note that since the belief state  �  is a probability 
distribution, the system may incur both false positive and 
false negative costs at the same time.   

IV. SENSOR ACTIVATION CONTROL 

In order to balance the energy consumption and possible 
health state misclassification in the system, the controller 
must use a sensor activation policy which considers both 
factors and dictates which sensors are activated at each 
epoch. In this paper, we assume a greedy policy, which 
applies a simple one-step look ahead approach. At each 
epoch, the controller tries to minimize the immediate cost 
incurred by activating a certain subset of sensors. The 
function used to minimize these costs is given by: 

 �(��) = min
��∈�

��(��) + � ��(��|��)
�∈�(��)

∙ �(��, ��) � (11) 

We note that additional sensor activation policies may be 
used, such as a greedy k-step look-ahead, or policies based on 
dynamic programming methods (which may provide an 
optimal solution) [1]. 

V. TRANSITION MATRIX LEARNING 

A. Learning Process 

In this section, we describe the process of estimating the 
transition matrix �, which is assumed to be shared by a group 
of individuals, denoted by �, with similar physical and health 

condition properties, such as age, sex, overall health, etc. This 
could be used in order to characterize the advancement of a 
disease within a certain population. An example for a relevant 
use case would be identifying and characterizing the different 
stages and the transition probabilities between the stages in 
Alzheimer’s disease in men aged 50 or higher [11].  

One of the main benefits of collecting sensor information 
from a group of individuals is that we may commence the 
learning process once the sensing period begins, as opposed 
to performing off-line learning for collecting data. This is due 
to the fact that we can collect a substantial amount of data 
used as input for the learning process, during the sensing 
period. In addition, this allows us to apply the sensor 
activation policy once the sensing begins, thus potentially 
optimizing the performance of each individuals WBAN 
system (and saving energy costs). 

In order to identify a generalized transition matrix for the 
patients in � , we use the information collected from the 
sensors, which perform sensing for all the individuals in the 
group separately. Matrix � is the real transition matrix by 
which the patients’ true health states evolve. It is important 
to note that although � is shared by all patients in �, each 
patient’s health trajectory is independent from other patients 
and therefore may evolve differently. Since � is unknown to 
the controller, the controller must learn and continuously 
estimate the transition matrix. The estimated transition matrix 
is used to calculate the patients’ belief states and derive a 
sensor activation policy. 

At each epoch �, the controller produces a belief state for 
each patient � ∈ � given the information collected from the 
patient’s sensors, the patient’s previous belief state and the 
most recently estimated transition matrix �� ���. We denote 
the belief state produced by the controller for patient � at 

epoch �, as ��
� . The controller then updates �����, as will be 

explained in the next section. This process is repeated 
throughout the sensing period. At the beginning of the 
sensing period, the transition matrix used by the 
controller,  ��� , may be guessed according to previous 
knowledge, domain expertise or initialized randomly.  

Generally, the learning process described above may 
continue indefinitely. In some cases, the process of learning 
the transition matrix may become irrelevant, or impossible, 
after a long period. One example for such a case would be the 
existence of a terminal health state – a state which when 
arrived to, no further transition to other states occur 
throughout the sensing period. Practically, this state could 
represent a situation where urgent medical attention is 
required. Given a terminal state exists, it can be assumed that 
all patients will eventually arrive to the terminal health state. 
When this happens, learning the transition matrix would no 
longer be relevant. Furthermore, the controller would 
probably deactivate all sensors for all patients, thus making 
the learning process obsolete, since no additional data is 
received from the sensors. In order to identify cases where 
the learning may become obsolete, we define stopping 
criteria, as shown in the following section. 



B. Updating the transition matrix 

At each epoch �, the controller first updates the patients’ 
belief states. Then, it updates the estimated transition matrix, 
considering the evolution of the patients’ belief states during 
the latest epoch. In order to do so, we rely on the premise that 
the belief states fairly estimate the patients’ true health states. 
This allows us to assume that the transitions between the 
belief states may be used to estimate the transition 
probabilities between the real health states.  

The transition probabilities between the belief states, 
denoted �∗, is calculated by minimizing the total differences 
between the belief states produced at epoch �, ��

� , and the 
expected belief states given the transition probabilities 

 �� ��� and belief states at epoch � − 1, ��
���. At each epoch, 

we define two matrices: � and �. Each matrix contains the 
belief states for all patients at epochs  � − 1  and � 
accordingly. The matrices have dimensions � × �, such that 
each row contains the belief state vector for a single patient, 
i.e.: 

� =

⎣
⎢
⎢
⎡
��

���

��
���

⋮
��

���⎦
⎥
⎥
⎤

, � =

⎣
⎢
⎢
⎡
��

�

��
�

⋮
��

� ⎦
⎥
⎥
⎤

 

We define a distance function for minimizing the 
discrepancies between the belief states �, and the expected 
belief states, in matrix form:  

� = ����(� ∙ �∗, �) (12) 
There are numerous distance definitions which can be 

used to calculate (12). In this paper, we examine a form 
similar to the Euclidean distance, as follows:  

� = ‖� − � ∙ �∗‖�
� (13) 

We later use �∗  to update the transition matrix estimation 
used by the controller. ‖�‖� signifies the Frobenius norm of 
matrix � . By differentiating �  w.r.t  �∗ , we receive the 
following expression: 

��

��∗
= −���� + �����∗ (14) 

By equating the derivative to zero, we receive an expression 
for �∗: 

�∗ = (���)�����  (15) 
We now update the estimated transition matrix using 
exponential smoothing with parameter � ∈ [0,1], which acts 
as a learning rate parameter: 

 �� � = � ∙ �∗ + (1 − �) ∙  �� ��� (16) 
We note that exponential smoothing allows control over the 
learning rate, compared to other averaging methods, thus 
allowing better process stability. We analyze the effect of α 
in the numerical examination provided in section VI. 

We note that the rows of �∗ are all summed up to 1, but 
it is possible for �∗ to contain negative values. If, as a result,  
 �� � contains a negative value, the corresponding row must be 
normalized. The most straightforward method for 
normalization consists of equating the negative values in  �� � 
to zero, and dividing each value in the row by the sum of 
values in the row. This ensures that each row of  �� � contains 
only non-negative values and the sum of each row is 1. Thus, 
 �� � remains a valid transition matrix.  

As discussed in the previous section, we now define a 
stop criterion. At every epoch, we calculate the determinant 
of ���. In case there are multiple identical rows in � (e.g. 
many patients have arrived to the terminal state, in which case 
their belief states are similar), the determinant will be close 
to zero. The determinant value decreases as the number of 
identical rows in � increases. Once the determinant value 
decreases beyond a certain threshold, the learning process 
stops. The last transition matrix learned by the controller is 
used for continuous health monitoring for patients where the 
monitoring is still relevant. 

To summarize, the algorithm below implements the 
proposed learning process at �: 
1. Set matrix �  using all patients’ belief states during 

previous epoch � − 1 
2. Set matrix � using belief states at current epoch � 

3. Calculate matrix �∗ according to (15) 
4. Update the latest estimated transition matrix used by the 

controller,  �� � = � ∙ �∗ + (� − �) ∙  �� ��� 

5. Normalize  �� � if needed: 
5.1. Replace negative values with 0 
5.2. Divide all values by sum of row 

6. Continue while stop criterion isn’t met 

VI. NUMERICAL EXAMINATION 

A. Simulation Parameters 

In this section, we provide a numerical example to 
demonstrate the dynamics of the WBAN behaviour and the 
transition matrix learning process. We simulate the health 
trajectories of a group of individuals. In addition, we apply 
the sensor activation policy, by which the controller estimates 
the individuals’ belief states. In this example, we assume the 
probability of a patient staying in his current health state is 
generally higher than the probability to transit to a different 
health state. In addition, we define a terminal health state, 
thus encapsulating a real world assumption. We define the 
model parameters as follows: � = 100  (the number of 
patients), � = 4  (the number of health states), � = 3  (the 
number of sensors). Additional parameters: 

 � = �

1 0 0 0
. 08 . 9 . 02 0

0 . 08 . 9 . 02
0 0 . 05 . 95

� denotes the real transition 

matrix of the true patient health state, 

 � = �
. 99 . 02 . 5 . 55
. 6 . 9 . 05 . 5
. 5 . 45 . 95 . 01

�   denotes the sensor 

accuracy matrix, 
 �� = [10 20 15]  denotes the sensors’ activation 

costs, 
 �� = [750 3750] denotes the misclassification costs 

(��, ��), 

  �� � = �

. 5 . 3 . 1 . 1

. 2 . 5 . 2 . 1

. 1 . 2 . 5 . 2

. 1 . 1 . 3 . 5

� denotes the initial transition 

matrix used by the controller.  



We note that the algorithm is robust with respect to the initial 
transition matrix, which has little impact on the learning 
process. In addition, the cost parameters were selected in 
order to reflect a clear trade-off between the misclassification 
costs and the sensors’ activation cost. This allows simpler 
analysis and insights concerning the model. In practice, these 
values can be estimated based on real use-cases or domain 
knowledge. For example, the sensor activation costs can be 
based on the cost of recharging the sensors and the 
misclassification costs can be estimated based on the cost of 
medical care needed due to health state misclassification. 

For simplicity of the numerical examination, we assume 
conditional independence between the sensors’ outputs given 
the true health state, i.e. 

Pr��� = 1, ��� = 1�ℎ�� = ��� ∙ ���� (17) 

Thus, the probability of receiving a certain combination of 
sensor outputs � ∈ �(�) can be calculated by multiplying the 
probabilities of receiving each of the sensors outputs given 
the true health state, i.e.: 

 
Pr���ℎ�� = � ���

�|����
∙ � (1 − ���)

�|����
 

(18) 

Now, one can calculate the health state distribution shown in 
(7) and (8) as follows: 

 

Pr�ℎ���, �� =
Pr���ℎ�� ∙ ��

Pr(�|�)

=
�� ∙ ∏ ����|���� ∙ ∏ (1 − ���)�|����

�∏ ∑ �������|���� � ∙ �∏ ∑ �1 − ��������|���� �
  

∀� = 1, … , � 

(19) 

thus allowing closed-form calculations for the outcome 
probabilities. In future research, we plan to relax this 
assumption and consider possible dependencies among the 
sensors’ outputs. 

B. Results 

 
Fig. 1: Jensen-Shannon divergence between the real transition � and the 

transition matrix estimated by the controller ��
�, for different learning rates 

The distance between one matrix to another at each 
epoch � , as seen in the graph above, is calculated by the 
Jensen-Shannon divergence between each pair of rows in 
both matrices, and summing up the obtained distances. The 
Jensen-Shannon divergence is an information based measure, 
typically used for measuring distances between distributions.  
Therefore, this measure effectively represents the distances 
between each pair of rows in the transition matrices. We note 
that even though the distance � is Euclidean based and the 
distance shown in the graph is information based, the 

algorithm has reached convergence. One can observe that the 
transition matrix is estimated rather successfully, as the latest 
estimated transition matrix learned by the controller, using 
� = 0.05, is: 

 �� ����� = �

. 995 0 . 004 . 001

. 075 . 912 . 013 0

. 035 . 12 . 834 . 011

. 016 . 008 . 037 . 939

� 

We note that the controller manages to decrease the number 
of activated sensors throughout the sensing period by 
activating the greedy policy, parallel to the learning process. 

We now further demonstrate the effect of the learning 
parameter � on the convergence of the estimated transition 
matrix. 

 
Fig. 2: Sum of Jensen-Shannon divergence throughout the simulations 

between the real transition matrix and the estimated transition matrix per � 

As can be seen, for high enough values of � , the 
algorithm is unsuccessful at learning the transition matrix. 
This is due to the substantial changes in the estimated 
transition matrix at each epoch, which cause the controller to 
inaccurately estimate the patients’ belief states. For lower 
values of � , the learning process is done rather slowly, 
causing higher distances.  

An important issue when determining the simulation 
parameters is the number of patients that participate. 
Generally, the larger the amount of data collected, the more 
accurate the results. From this perspective, a large number of 
patients are desired. On the other hand, a large number of 
patients may be harder to manage, require extensive data 
storage, cause higher problem complexity, incur higher 
overhead costs, etc. Therefore, we would like to minimize the 
number of patients, while selecting enough patients to satisfy 
the required accuracy. 

 
Fig. 3: Sum of Jensen-Shannon divergence throughout the sensing period 
between the real transition matrix and the estimated transition matrix w.r.t 

the number of participating patients 



 One can see that a lower number of patients results in 
larger distances throughout the learning process, meaning 
monitoring accuracy is lower. On the other hand, a high 
number of patients generally provides better accuracy. 
Interestingly, it seems a number of patients of between 100 
and 200 patients, provides similar accuracy to of 300 patients 
or more. Of course, the optimal number of patients is 
influenced by the number of sensors, health states, possible 
sensor outputs and additional parameters which determine 
the complexity of the problem.  

VII. CONCLUSIONS AND FUTURE WORK 

 In this paper, we have addressed the health sensing 
problem by using a POMDP model of a WBAN health 
monitoring system. The paper focuses on designing and 
implementing a learning algorithm, which can identify the 
underlying transition matrix of the POMDP, which is 
unknown to the controller. In parallel to the learning process, 
the controller activates a greedy sensor activation policy to 
optimize the trade-off between the two different types of 
costs: i) power cost, which accounts for the energy consumed 
by activating the sensors, ii) misclassification costs, which 
accounts for the probability of error when classifying a 
patient’s true health state.  
 The algorithm relies on sensor data collected from a 
group of individuals, which share the unknown transition 
matrix. Each patient undergoes a health state trajectory, 
which is independent from other patients. The real health 
state trajectories evolve according to the unknown transition 
matrix, while the belief states evolve according to the 
transition matrix estimated by the controller. The main 
benefit for using a group of individuals is that it allows us to 
learn the transition matrix, without performing a preliminary 
off-line learning process. In addition, the sensor activation 
policy may be activated from the beginning of the sensing 
period, given enough data is collected continuously from the 
group of patients. 
 We have presented a basic numerical examination where 
the controller activated the greedy sensor activation policy in 
parallel to the transition matrix learning process. The results 
show that the controller successfully estimates the transition 
matrix, while activating the sensor activation policy, thus 
decreasing the power consumed by the sensors. An analysis 
of the learning rate parameter has shown that low values of � 
and high values of � limit the controllers ability to estimate 
the transition matrix. In addition, we have demonstrated how 
the number of patients may affect the accuracy of the 
transition matrix estimation. While a large number of patients 
is needed in order to successfully estimate the transition 
matrix, it is possible to decrease the number of patients, 
without necessarily reducing the learning capabilities, 
compared to higher values. 
 The model described in this paper serves as a simple 
proof of concept. Future work must include additional 
analysis to prove generalizability and robustness of the 
algorithm. This includes applying the algorithm to more 
complex problem instances, along with further analysis of the 
effect of the problem parameters, such as the sensor 
accuracies.  

 In addition, a number of extensions may be considered 
in order to improve the learning capability and real world 
applicability of the system. For example, applying more 
sophisticated sensor activation policies may improve the 
controller’s ability to estimate the patients’ belief states, 
without increasing the power consumption. This may 
improve the controller’s ability to learn the transition matrix. 
In addition, using different distance functions for calculating 
the cost function  � , may improve the estimation of the 
distance between the estimated transition matrix and the real 
transition matrix, thus improving the learning accuracy. An 
additional method to improve the learning capability is to use 
patient clustering, based on the patients’ belief states 
evolution, in order to determine sub groups within the patient 
population, which may have differences in their transition 
matrices. One additional application that we plan to examine 
is applying the learning process for a single patient. This may 
be used to customize the monitoring process per patient, thus 
improving monitoring accuracy and power efficiency.  
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