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Abstract

Existing viral-marketing network models commonly assume a preliminary
phase in which a marketer actively infects a subset of social network’s users,
represented by nodes, followed by a passive viral process, in which nodes
infect other nodes without external intervention. However, in real-world
commercial scenarios, substantial efforts are often invested by companies to
promote their products, suggesting that the adoption of products is rarely
the consequence of a viral spread alone.

Under this observation, this paper proposes a new diffusion model, named
Active Viral Marketing, which better fits real-world marketing scenarios,
where adoption of products relies on continuous active promotion efforts by
the marketer. In the proposed model, the success of a marketing attempt
to infect a potential customer (uninfected node), depends on the number of
adopting friends (infected neighbors) of this user, assuming a user is more
likely to adopt a product if more of his/her friends have already adopted it,
while taking into account that social influence diminishes over time due to a
memory-loss effect.

The paper further proposes a set of heuristics to schedule the marketing
attempts. The main idea behind these heuristics is to utilize the information
on the dynamic adoption-states of neighbor nodes, in addition to the static
social network topology, when choosing the next node to seed. An extensive
experimentation demonstrates how the proposed seeding heuristics improve
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the adoption rate of products by 30%-75% in comparison to existing state-
of-the-art methods that mainly rely on the network topology.

Keywords: Influence Maximization; Information Diffusion; Viral
Marketing; Scheduled Seeding

1. Introduction

Online social networks offer a powerful tool for information sharing with
friends, family and colleagues. In this aspect, they enable individuals to
spread their messages passively through a viral process that might resemble
the spread of a virus. Clearly, this property of online social networks also has
a financial implication, since it can be utilized by companies and individuals
that seek to advertise their products (we are using the terms products and
services, interchangeably) to reach a large number of potential customers.

The importance of social influence in information spread processes was
demonstrated in many studies (e.g., Asch (1951); Centola & Macy (2007)).
One of the traditional models for describing diffusion of information in net-
works is the Linear Threshold model (Granovetter, 1978). In this model, a
message spreads from one node to another if a fixed number of neighbors
of the latter have already adopted it. The spreader of the message, who is
interested to reach a large number of adopting nodes, has to wisely select a
subset of network nodes, and actively infect (seed) them. Then, the assump-
tion is that a passive viral process begins, in which nodes infect other nodes
without any external intervention. Such a passive viral process can happen
for example, if a Facebook user posts an exciting message or photo on his
wall, which is then repeatedly shared by other Facebook users.

As shown by both analytical and simulative studies (Barthélemy et al.,
2004; Khelil et al., 2002; Vespignani, 2012; Zhou et al., 2007), messages that
propagate according to models similar to the Linear Threshold model, are
expected to propagate into a substantial portion of the network. However,
in recent years, several works (e.g., Leskovec et al. (2009, 2007b); Leskovec
& Horvitz (2008); Goel et al. (2012)) have shown, based on real information
cascades datasets, that the frequency of large information cascades in net-
works, are significantly lower than what was previously believed. In fact, it
was shown that the vast majority of messages never spread beyond a few
nodes.
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Since large information cascades are rare in reality, it is unlikely that
a product or service will be spread only through a passive viral process.
Indeed, in most real-world marketing scenarios, substantial additional efforts
are invested in order to promote products. Companies cannot simply post
Facebook messages on their products and expect them to spread passively,
and therefore so many sales and marketing personnel are hired to actively
promote these commercial products and services.

In this work, we propose a new information diffusion model, named Active
Viral Marketing (AVM), which better reflects the need of commercial compa-
nies to invest continuous marketing efforts to promote their products. More
specifically, nodes in our model cannot get infected by themselves through a
passive viral process. Instead, they can get infected only through an active
seeding attempt made by the spreader. The importance of social influence
comes into play where the success of a seeding attempt depends both on the
number of infected neighbors the node has and on the time frame in which
they got infected.

As a motivating example, consider a tourism company that aims to pro-
mote a summer vacation through social networks advertising. The company
can pop-up the advertisement to several social network’s users that fit in
age and social class and are considered to be influential (commonly esti-
mated based on the network topology). These advertisements have a defined
cost, which is paid to the social network company (and sometimes to the
influencers as well). It is likely that a user that already clicked on the ad
(and potentially booked a vacation), will discuss it with his social network’s
friends. However, in most cases it is unlikely that following such a discussion,
these friends will initiate a call to the tourism company (as in the passive
viral spread) in order to book a vacation. Rather it is more likely that the
discussion with friends that already booked a vacation will have some posi-
tive impact on them. Now, consider a user that had several such discussions
with his friends. If the company chooses to pop-up an ad to this user now,
the likelihood of him clicking on the ad will be probably higher than in the
case without previous discussions. Moreover, if the ad is presented to the
user, long after the discussions with his friends, it is less likely that he will
click on the ad, since the impact of these interactions weakens over time (for
simplicity of exposition, we will term this phenomenon as “forgetting effect”
or as “memory loss”). Therefore, in order for the tourism company to effi-
ciently use its marketing budget (e.g., to maximize the click-through rate),
it needs to schedule its advertisements in a way that balances the number of
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accumulated friends’ clicks and memory loss (both grow over time and have
an inverse effect).

Following the suggested AVM model and the observation above, this work
develops a set of Scheduled Seeding Heuristics (SSH). The main idea behind
SSH is to utilize the information on the dynamic states of nodes, in addition
to the static network topology (that is commonly used by existing seeding
heuristics), when choosing the next node to seed. This added information al-
lows SSH to utilize better the social effect, by balancing between the number
of infected neighbors of a node and its memory loss.

In order to evaluate the SSH heuristics, we conducted an extensive set
of experiments, to compare them to other state-of-the-art seeding heuristics
that rely on selecting central nodes (based on the network topology) prior
to the seeding stage. The results of our experiments show that the SSH
heuristics obtain an average adoption rate which is 30%-75% higher than the
other benchmark heuristics, and that the superiority of SSH is consistent
over a wide range of parameters’ values selection.

The contribution of this work can be summarized along two axes:

• We propose a new diffusion model which, to our belief, better fits real-
world scenarios of products adoption, where the spread of products
relies on continuous active efforts of the sales or marketing departments.

• We demonstrate the importance and the high potential of a scheduled
seeding heuristic, for the spread of trendy products, under a wide range
of settings, and also point out the cases where such a heuristic is less
effective.

The rest of this paper is structured as follows. Section 2 reviews the existing
literature and provides the necessary background on information diffusion in
networks. Sections 3 and 4 describe the proposed Active Viral Marketing
model and Scheduled Seeding Heuristics, respectively. Section 5 details our
evaluation methodology and the obtained results. Section 6 summarizes the
paper, and presents directions for future research.

2. Background and Related Work

In this section, we provide the relevant background to the fields of conta-
gion models and viral marketing. We start by presenting the basic theoretical
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models of viral diseases, followed by two well-known models, which capture
the important aspects of viral marketing. These theoretical models are then
inspected through the lens of real-world data evidences.

2.1. Contagion Models

Mathematical contagion models of diseases were historically developed
by Epidemiology researchers as a tool to study the mechanisms by which
diseases spread, to predict the future course of an outbreak and to evaluate
strategies to control an epidemic (Anderson et al., 1992). Due to their success
in the field of disease modeling, such models implied their wide usage in other
fields as well, such as information diffusion and product adoption.

Existing contagion models can be broadly classified into two categories:
(1) compartmental models and (2) individual-based models.

Compartmental models assume a fully interconnected population, in which
the interactions and infections can occur between any pair of available indi-
viduals. This implies a homogeneous population in terms of their connec-
tivity and chances of interaction. These models allow to observe different
phenomena at the compartment level, such as the size of the compartment
and the infection pace at different time periods of the contagion process. One
of the most well-studied compartmental contagion models is the SIR model
(Anderson et al., 1992). This model splits the population individuals into
three compartments: S - susceptible, I - Infected and R - Recovered. The
transitions between the states in this model are trivial - susceptible individu-
als have a probability β to become infected as a result of an interaction with
infected individuals. Similarly, infected individuals recover (and therefore
reassigned into the recovered compartment) with a constant pace γ.

Individual-based models assume the existence of a network structure that
describe the potential interactions (network edges) between individuals (net-
work nodes). In contrast to compartmental models, individuals cannot be-
come infected from any member of the infected compartment, but only from
their network neighbors.

One of the fundamental individual-based models, commonly used to de-
scribe information diffusion in social networks is the Linear Threshold model
(Granovetter, 1978; Kempe et al., 2003). The model assumes that the behav-
ior of individuals greatly depends on the number of their network neighbors
that are already engaged in that behavior. More formally, we denote the
binary state of a node v (1 if active and 0 otherwise) at time t as Xv(t) and
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the set of neighbors of node v as N(v). A node v is influenced by each neigh-
bor w ∈ N(v) according to their edge weights bv,w which are set such that∑

w∈N(v) bv,w = 1. Each node v is assigned a threshold θv ∈ [0, 1], represent-
ing the fraction of v’s neighbors that are required to be active in order for
v to become active in the next time step. If the accumulated effect (sum of
weights of active neighbors) on time step t on v is at least θv, v will become
active at the next time step t + 1 and therefore will also begin to influence
its own neighbors.

Another well-studied individual-based information diffusion model is the
Independent Cascade model (Goldenberg et al., 2001a,b). In this model, a
node v that was activated at time step t has a single chance to activate each
of its currently inactive neighbors w ∈ N(v). At the next time step, t+ 1, v
will not have any further influence on its neighbors. Similarly, if w becomes
activated at time step t + 1, it will have one single chance to activate its
inactive neighbors in time step t+ 2.

A particularly interesting individual-based model, Bass-SIR, was recently
suggested by Fibich (2016). This model proposes a new contagion process
which combines properties of SIR and Bass (Mahajan et al., 1991) models,
and applies them at the micro-level by utilizing a network structure. More
specifically, as in the basic Bass model, if a node v did not adopt the product
by time step t, it has a positive probability to adopt the product in the
nearest future (t, t+ ∆t):

P (v adopts in (t, t+ ∆t)) = (p+ q
Iv(t)

kv
)∆t+ o(∆t)

Where p and q are bass coefficients of innovation and imitation accordingly,
Iv(t) is the number of infective neighbors of v at time step t, kv is a normaliza-
tion factor (usually kv = |N(v)|) and ∆t→ 0. Unlike the basic Bass model,
Bass-SIR does not assume that an infected node will stay infective forever,
and therefore the probability of an infective node to become recovered is:

P (v recovers in (t, t+ ∆t)) = r∆t+ o(∆t)

Where ∆t→ 0, and r is the recovery pace.
The Linear Threshold and Independent Cascade models served as a basic

setup to a wide range of works, and over the years many extensions were
suggested to fit these models to special cases. In their seminal work, Kempe
et al. (2003) proposed two models which aimed at generalizing many of the
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extensions into a unified framework. The introduction of these two general
models served several goals. First, they present a unified framework for any
arbitrary activation function that is consistent with the monotonicity condi-
tion. Second, they prove that these two models are equivalent, and provide
a method to covert between them. Third, when limiting the discussion to
sub-modular activation functions, Kempe et al. provide an approximation
to the Influence Maximization problem, covered later in section 2.2.

2.2. Influence Maximization

An important field in the study of information diffusion through social
networks is the identification of influential nodes with the goal of maximiz-
ing the adoption of products or ideas in the network. More formally, given
a model of information diffusion (e.g., Linear Threshold, Independent Cas-
cade, etc.) over a network G, the influence maximization problem deals with
selecting a subset of the network nodes, whose intentional activation (often
referred to as seeding) will ignite a viral contagion process that will impact
a significantly large set of nodes. Often these models aim at optimizing a
given target function related to the network adoption. The target function
can have several forms, such as maximizing the number of adopters in a cer-
tain time period or budget (number of seeding actions), or minimizing the
number of seeding actions required to reach a certain number of adopters.

For example, modern marketing efforts use social networks for market
analysis and for defining promotion strategies. Unlike classical mass-marketing
methods that address a wide market segment, social networks’ promotion is
often characterized by micro-segmentation, attempting to utilize detailed in-
formation about each of the involved individuals (Goldfarb & Tucker, 2011).
The main motivation behind such an approach, is that influencing the opinion
of only a few individuals may shape the opinion of the majority, by following
a viral contagion process (Katz & Lazarsfeld, 1955).

The task of identifying influential nodes is still widely investigated, but
the identification of influential nodes is not always easy. In many cases,
nodes are referred to as “influential” when past evidence show that their
involvement in the contagion process contributes significantly to the spread.
Nonetheless, such detailed information is often absent, and most of the data
available to the marketers is the topological structure of the social network
and past adoption history.

7



2.2.1. Initial Seeding Strategies for Influence Maximization

Identifying influential nodes, given only the network structure, can be
addressed via graph-based metrics, such as the centrality measures (Borgatti,
2005).

One way to measure a node’s centrality is by counting the number of
its connections (known as the node degree). While calculating the degree
of a node is a relatively trivial task, such an approach is limited since it
takes into account only the first-order effect, without considering higher-order
effects. Other frequently used centrality measures that take into account
high-order effects include the PageRank (Page et al., 1999), the Betweenness
centrality (Brandes, 2001) and the Eigenvector centrality (Bonacich, 2007).
Each of these measures has its own attributes and represents a different type
of importance that characterizes a node. For a good source on centrality
measures, the reader is referred to (Borgatti, 2005) and (Newman).

With respect to influence maximization, several works investigated the ef-
ficiency of seeding central nodes. The work by Hinz et al. (2011), for example,
investigated four seeding strategies: Hubs (Degree/EigenVector Centrality),
Bridges (Betweenness Centrality), Fringes (Edge Nodes) and Random. The
authors conducted three experimental studies of adoption using a small con-
trolled network; a real social network of selected students; and a large-scale
cellular network. The study found that targeting Hubs is the most effective
strategy in terms of influence maximization, with the Bridges strategy right
afterwards, both with a big gap above the Random strategy (150-200%) and
a huge gap above the Fringes strategy. Similar results were obtained by
Banerjee et al. (2013), where the authors investigated empirically the spread
of financial loan systems within a social network of Indian villagers. The
authors found that villagers with high Eigenvector centrality scores are more
likely to influence others in their surroundings, in comparison to the other
measures of centrality.

The performance of seeding strategies depends not only on the properties
of the network topology and its nodes, but also on the information diffusion
dynamics themselves. For example, Kempe et al. (2003) study the influence
maximization problem under the linear threshold and independent cascade
settings and their generalizations. The authors prove that finding the optimal
solution to the problem is NP-hard in both settings and present a greedy
algorithm which obtains a (1 − 1/e) approximation of the optimal solution.
While the greedy algorithm ensures a reasonably good result in terms of
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coverage, it is still very expensive in terms of runtime when executed on
large-scale datasets.

The complexity of the problem and the non-scalability of the greedy ap-
proximation algorithm opened the chase after high performing and scalable
seed selection heuristics. While many such heuristics were suggested in the
literature, we focus on two well-studied groups of such heuristics.

One notable group of such heuristics are the CELF (Leskovec et al.,
2007a) and CELF++ (Goyal et al., 2011) algorithms, which are based on
a ”lazy-forward” optimization scheme for selecting the seeds. Their under-
lying idea is based on bounding the marginal contribution of a node in a
future iteration, with its marginal contribution in a previous iteration due to
monotonicity and sub-modularity properties of the influence maximization
problem. These heuristics provide an efficient variation of the greedy approx-
imation algorithm by improving the order of evaluating nodes to be added
to the “seed set”. Empirical evaluation showed that the proposed heuris-
tics outperform (in terms of influence maximization) and run faster than the
greedy algorithm, while still guaranteeing a constant factor approximation
of the optimal solution.

Another notable group of heuristics was suggested by Chen at al. (Chen
et al., 2009, 2010a; Jung et al., 2012; Chen et al., 2010b). Chen et al. (2009)
presented an improved greedy algorithm for seeding outcome evaluation by
reducing the search space per each evaluation, and showed a 700-times faster
performance on the independent cascade model. Chen et al. (2010a) sug-
gested the Maximum Influence Path (PMIA) algorithm. Using this method
under the independent cascade model, the authors suggested to locate the
nodes whose seeding will result in a long chain of cascades with the high-
est probability. Jung et al. (2012) proposed the Influence Rank Influence
Estimation (IRIE) algorithm, which performs an estimation of the influence
function for any given seed set, using precomputed influence estimated val-
ues for iterative seed set ranking. Empirical simulations have shown that the
IRIE heuristic performance is similar to that of the Greedy, PMIA and Pager-
ank influence heuristics, while its memory consumption provides a significant
improvement over that of the other heuristics.

While a large number of works in this field focused on the problem of
maximizing influence with a given seeding budget, Long & Wong (2011)
investigated the problem of minimizing the number of seeding actions to
obtain a certain number of influenced nodes. The authors proved that the
problem is NP-hard, and developed a greedy heuristic that provides error
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guarantees. They also studied the “Full-Coverage” setting, where the goal
is to infect the entire network, and designed efficient algorithms for this
purpose.

With the same spirit, Goyal et al. (2013) identified three orthogonal di-
mensions in the influence maximization problem: (1) the number of seed
nodes activated at the beginning, (2) the expected number of activated nodes
at the end of the propagation, and (3) the time taken for the propagation,
claiming that it is possible to constrain either one or two of these dimen-
sions and try to optimize the third. The authors then studied two of these
variations and suggested approximated algorithms to solve them efficiently.

2.2.2. Adaptive Seeding Strategies for Influence Maximization

The majority of existing works that dealt with the influence maximiza-
tion problem, focused on selecting a subset of network nodes, that if seeded
simultaneously at the beginning of the process, would maximize the adoption
rate at the end of the process. Recently, numerous works presented a new
adaptive approach, which spreads the seeding actions over time, and there-
fore allows to reassess the contribution of the seeds’ selection in each time
step, in order to improve the overall adoption rate.

For example, Seeman & Singer (2013) present a two-stage framework for
influence maximization. The underlying assumption of this model is that
besides of the “non-active” (susceptible) and “active” (infective) states there
is an intermediate state referred to as “available”: a node v is considered
available for seeding only if one of its neighbors w ∈ N(v) is active. Given
an initial set of available nodes X ⊆ V , the goal of the first stage is to select
a seeding set S ⊆ X in order to extend the set of available nodes, so that
the seeding actions in the second stage will maximize the expected influence.
The idea behind it relies on the known fact that selecting a neighbor of a
random node v is likely to have a higher degree than v itself and thus one
would like to include those higher-degree nodes in the set of available nodes
for seeding.

In another study, Tong et al. (2017) suggest an adaptive seeding strategy
for a variant of the Independent Cascade model. In this variant, referred
to as “Dynamic Independent Cascade” model, the authors assume that the
activation of a node v by seeding occurs with a probability pv. Therefore,
in contrast to the models surveyed above, a seeding action may fail, keeping
the node in a non-active state. Under this setting, the authors suggest an
adaptive seeding approach, in which the selection of nodes to be seeded at
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each time step, is performed while taking into account the realization of the
previous seeding attempts.

Jankowski et al. (2017a,b) suggest an adaptive seeding approach to the
influence maximization problem under the Independent Cascade model. The
authors show that, regardless of the chosen strategy for selecting influential
nodes, spreading the seeding actions along different time-steps of the diffusion
process can improve the overall adoption rate. Moreover, they present an
inherent trade-off between the obtained adoption rate and the duration of
the diffusion process.

Chierichetti et al. (2014) introduce a different diffusion model in which
there are two competing ideas, each aiming at maximizing its spread over
a social network. More specifically, consider a marketer which addresses
each one of the individuals in the network sequentially (the marketer has the
ability to determine this sequence) and offers them a cause. The cause can
either be accepted (Y ) or denied (N) by each of the individuals, according to
the following rule: the individual v accepts the offer if |mY |− |mN | ≥ c, deny
it if |mN |−|mY | ≥ c and chooses randomly between Y and N otherwise. mY

and mN represent the size of the group of v’s neighbors who already decided
to accept or deny the cause (Y or N), and c is a positive integer that serves as
a decision threshold. The goal of the marketer in this setting is to determine
the best order to address the individuals in order to maximize the amount
of Y decisions. The authors also provide an efficient greedy algorithm that
ensures the best achievable solution to the problem.

Lin et al. (2014) suggest the “Push-Driven Cascade” model in which the
probability that a node will become active after a seeding action is determined
by the activation state of its neighbors. More specifically, the probability of
an individual v to become activated is:

pv(t) = dv +
∑

w∈N(v)

bv,w ∗Xw(t− 1)

Where Xw(t− 1) is the binary state of node w (1 if active and 0 otherwise)
at time t − 1, the node v is influenced by each active neighbor w ∈ N(v)
according to their edge weights bv,w and dv is v’s own bias towards adoption.
The role of the marketer in this setting is to choose a single node to seed at
each time step in order to maximize the overall adoption in the network.

It is important to emphasize that in the two latter models, each node has
an accumulated influence in favor of the product, but only the seeding act
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itself is considered to be the trigger for activation, where the viral spread
serves only as a positive effect on the activation probability. This is in con-
tradiction to classical diffusion models where nodes could become active as
a result of a viral infection without any external intervening operation.

2.3. Information Diffusion in Real World Settings

As seen in the previous section, the dynamics of information diffusion in
Social Networks were widely studied and many mathematical models which
aim at describing these dynamics were suggested. In recent years, due to
the increased availability of data, and the emergence of tools to store and
process data at large-scale, a growing body of works have started to analyze
the dynamics of information diffusion in real-world scenarios, and obtain
better understanding of where existing models succeed and fail in describing
these dynamics.

One of the principles behind many of these models is that of accumulated
social effect. Already in 1951, the social psychologist Asch presented an
experiment, in which he showed that the probability of a subject to change his
opinion is proportional to the number of peers who are convincing him to do
so (Asch, 1951). Granovetter (1978) in turn, presented a threshold behavior,
in which an accumulated social effect is turned into an activation by reaching
a personal threshold of the individual. Hence, since the threshold values are
distributed randomly, the probability of an activation is proportional to the
number of social influencers, similarly to Asch’s findings. Later on, Centola
& Macy (2007) had performed a large-scale empirical study of online social
networks. He found that in contradiction to “Simple Contagion” in which
a single interaction with an infected individual may lead to activation (e.g.,
like in the spread of infectious diseases), the activation of an individual often
requires reinforcement from multiple infected sources, a phenomenon named
by the author as “Complex Contagion”.

A recent work by Goyal et al. (2010) studied the time effect of propa-
gation of social influence in networks. Consequently, the authors suggested
an extension to the General Threshold model by adding a diminishing time-
dependency factor. More specifically, they considered three types of time-
dependent models which reflect a lower ability of a node to spread the adopted
idea as time passes: (1) A Static Model the influence of an infective node
does not diminish over time; (2) A Discrete Model each activated node has a
period of time in which it is infective. After that period, the node stops from
being infective; and (3) Continuous Model the influence of an infective node
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v on a neighbor node w diminishes over time with an exponential rate. The
authors found that the best fit to the data was obtained by the continuous
(exponential decay) model. One explanation that was given to this diminish-
ing influence effect in the scientific literature is the limited attention effect.
According to this effect, a person which is exposed to multiple ideas during a
single time period, is able to concentrate only on a few of them resulting in
a forgetting effect (Weng et al., 2012). These findings, strengthen the usage
of the recovery effect in several of the models mentioned above, such as SIR
and Independent Cascade.

In another paper by Leskovec et al. (2007b), the authors investigate the
cascading behavior of online information diffusion, by analyzing 45,000 blogs
and about 2.2 million blog posts. The authors identified several cascade
shapes that rule the majority of cascades, pointing out two specific shapes:
star-shaped, reflecting the spread of information in different directions, and
chain-shaped, presenting a chained sequence of information flow. Further in-
vestigating the degree-distribution of the cascades, they found that in-degree
and out-degree distribution of bag-of-cascades follow power-law exponents
of −2.2 and −1.92 respectively. Finally, by examining the distribution of
cascade sizes for each shape of cascade, they found that all cascades follow
a heavy-tailed distribution, and the probability of observing a cascade of n
nodes follows a Zipf distribution. These findings emphasize that in real-world
scenarios, highly viral information cascades rarely exist.

Another support for the above findings can be found in (Goel et al.,
2012), where the authors analyze information cascades in seven different
online domains. The authors observed that the vast majority of cascades are
small, and that they usually terminate within one circle of neighbors of the
initial adopting node.

3. The Proposed Active Viral Marketing Model

In this section, we propose a novel information diffusion model, named the
Active Viral Marketing model, which better reflects the need of commercial
companies to invest continuous marketing efforts to promote their products
or services. According to the proposed model, at any given time-step t, a
node v can only be at one of the following Xv(t) states:

• Xv(t) = 0 : Non-Infected

• Xv(t) = 1 : Infected and Infectious
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• Xv(t) = 2 : Infected but not Infectious

• Xv(t) = 3 : Seeding Failed

The possible transitions of a node v between these states are described in
Figure 1:

Non -
Infected 

Infected 
and 

Infectious 

Seeding 
Failed 

Infected 
But Not 

Infectious 

Influence 
Decay 

𝑿𝒗 𝒕 = 𝟑 

𝑿𝒗 𝒕 = 𝟏 

𝑿𝒗 𝒕 = 𝟎 

𝑿𝒗 𝒕 = 𝟐 

Figure 1: Infection states of nodes in the AVM model.

More specifically, if the spreader attempts to seed a non-infected node
v at time-step t, the attempt may succeed with a probability Pv(t). If the
seeding attempt succeeds, then the node’s state changes from Xv(t) = 0 to
Xv(t) = 1. The probability of a successful seeding attempt is affected by v’s
individual preferences and the activation rate of v’s neighbors (described in
more details below).

If the seeding attempt fails, subsequent attempts to seed v are not allowed
(since in a typical marketing scenario, subsequent seeding attempts may only
annoy the potential customer and may lead to a negative attitude towards
the spreader), and v is transitioned into a “Seeding Failed state (Xv(t) = 3).
On the other hand, if the seeding attempt succeeds, v is transitioned into
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a “Infected and Infectious” state, and will influence its neighbors only for
the next tinf periods. After tinf periods have ended, v’s state changes to
“Infected but not Infectious” (Xv(t) = 2).

The probability that an attempt to seed a node v at time-step t will
succeed is given in Eq. 1:

Pv(t) = P ind
v + P soc

v ·min(1,
|N1

v (t)|
θv

) (1)

This probability is composed of two factors: (1) the individual preferences of
v, denoted by P ind

v and (2) the social influence exerted on v by its infectious

neighbors at time-step t, denoted by P soc
v ·min(1, |N

1
v (t)|
θv

).

The social factor is calculated as the product of P soc
v and min(1, |N

1
v (t)|
θv

).
The maximal social effect that can be achieved is represented by P soc

v , (note

that P ind
v + P soc

v ≤ 1). min(1, |N
1
v (t)|
θv

) represents the relative social effect,

which increases proportionally with |N1
v (t)|, denoting the number of infec-

tious (state 1) neighbors of v, up to a certain level determined by the thresh-
old θv. The min function assures that even if the number of active neighbors
exceeds the threshold θv, the probability function would not exceed the value
of 1, and therefore, the total social effect would not exceed P soc

v .
The formulation of the social factor described above was inspired by the

empirical results of Asch’s conformity experiments (Asch, 1951). In his ex-
periments, Asch inspected how the size of a group influences the probability
of conforming to the opinion of the majority. He observed that as the size
of the group grows, the conforming probability grows almost linearly until
reaching a certain size, and after reaching that size, the probability doesn’t
grow further. We model these two properties by using the threshold θv and
the maximum probability P soc

v . A comparison of Asch’s original findings and
our simplified model (for the case of psocv = 0.6, pindv = 0.1 and θv = 4) are
depicted in Figure 2.
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Figure 2: Social effect in Asch’s conformity experiment (left) and its representation in the
AVM model (right).

Given the Active Viral Marketing diffusion model and a seeding budget
of size B, the goal is to find an ordered set of B nodes, denoted by S =
(v1, v2, .., vB), such that seeding the node v1 at time-step t = 1, the node v2
at time-step t = 2, ..., the node vB at time-step t = B, would maximize the
total number of successful seeding attempts.

4. The Scheduled Seeding Heuristics

The influence maximization problem that was defined above for the Ac-
tive Viral Marketing diffusion model is NP-hard and is not sub-modular
(see Appendix A). Accordingly, in this section, we propose a set of seed-
ing heuristics, named Scheduled Seeding Heuristics (SSH), that recommend
which node to seed at each time-step. Similar to existing seeding heuristics,
our heuristics utilize the static network topology when choosing the nodes
to be seeded. However, in contrast to existing heuristics, our heuristics also
take into account the information on the dynamic states of nodes at each
time-step.

More specifically, at each time-step, our heuristics assign a utility score
for each one of the non-infected (state 0) network nodes, with the idea that
seeding a node with a higher utility score is worthier. The utility score is
based on the expected value for each potentially seeded node, and is calcu-
lated as the probability of a successful seeding of the node itself, multiplied
by the value of such an event.
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Given the vector of states of all network nodes at time-step t, denoted by
~X(t), the probability of a successful seeding of v at time-step t is denoted as:

P ( ~Xv(t+ 1))

Where ~Xv(t+ 1) is identical to ~X(t) with the additional assumption that
node v changed its state to Xv(t) = 1 at time-step t+ 1.

The value of a successful seeding event of node v can be seen as the influ-
ence of v on future seeding attempts of its non-infected neighbors, formulated
as: ∑

w∈N0
v (t+1)

U(w, t+ 1, ~Xv(t+ 1))

Where w ∈ N0
v (t + 1) is a non-infected neighbor of node v at time-step

t + 1, and U(w, t + 1, ~Xv(t)) is the utility score of seeding w at time-step
t+ 1, given that v was already seeded successfully at time-step t.

Finally, the utility score of a node v is calculated as the probability of a
successful seeding of v, multiplied by the value of such an event:

U(v, t, ~X(t)) = P ( ~Xv(t+ 1)) · [1 +
∑

w∈N0
v (t+1)

U(w, t+ 1, ~Xv(t+ 1))]

Note that the formulation of U(v, t, ~X(t)) is recursive, and may involve
successive iterations to evaluate the value of future seeding events beyond
t+1. For practicality reasons, we limit the recursion to a depth of k ∈ {0, 1, 2}
iterations, as we found empirically that increasing the complexity of the
algorithm by using higher k values has a diminishing return effect. The
recursive computation of the score, for a depth of k iterations (k is provided
as an input parameter), is shown in detailed in Algorithm 1.
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Algorithm 1 The SSH Scoring Algorithm
Input:

t - time-step
~X(t) - states of nodes in time-step t
v - node
k - recursion depth

Output:
Score of v

1: Pv(t) ← P ind
v + P soc

v ·min(1, |N
1
v (t)|
θv

)
2: if k = 0 then
3: Score ← Pv(t)
4: else
5: Score ← 1
6: for u in N0

v (t) do

7: Score ← Score + SSH(t+ 1, ~Xv(t+ 1),u,k − 1)
8: end for
9: Score ← Pv(t) · Score

10: end if
11: return Score

To illustrate how Algorithm 1 works, consider the five-nodes network
depicted in Figure 3.
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Figure 3: An illustration of a network with five nodes.

Assume that node v1 was activated at the previous time-step (t− 1) and
the following parameters: P ind

v = 0, P soc
v = 1 and θv = 0, for all network

nodes.
For a recursion depth of k = 0, we get the following utility scores for

nodes v2, v3, v4 and v5 respectively:

SSH(t, ~X(t), v2, 0) = Pv2(t) = 0 + 1 · 1

2
= 0.5

SSH(t, ~X(t), v3, 0) = Pv3(t) = 0 + 1 · 1

2
= 0.5

SSH(t, ~X(t), v4, 0) = Pv4(t) = 0 + 1 · 0

2
= 0

SSH(t, ~X(t), v5, 0) = Pv5(t) = 0 + 1 · 0

2
= 0

Since both nodes v2 and v3 obtained the highest utility score, we will choose
to seed either one of them at time-step t.

Alternatively, for a recursion depth of k = 1 we get the following utility
scores for nodes v2, v3, v4 and v5 respectively:

SSH(t, ~X(t), v2, 1) = Pv2(t) · (1 + SSH(t+ 1, ~X(t), v3, 0)) = 0.5 · (1 + 1) = 1
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SSH(t, ~X(t), v3, 1) = Pv3(t)·(1+SSH(t+1, ~X(t), v2, 0)+SSH(t+1, ~X(t), v4, 0)+

+SSH(t+ 1, ~X(t), v5, 0)) = 0.5 · (1 + 1 + 0.5 + 0.5) = 1.5

SSH(t, ~X(t), v4, 1) = Pv4(t)·(1+SSH(t+1, ~X(t), v3, 0)+SSH(t+1, ~X(t), v5, 0)) = 0

SSH(t, ~X(t), v5, 1) = Pv4(t)·(1+SSH(t+1, ~X(t), v3, 0)+SSH(t+1, ~X(t), v4, 0)) = 0

Since node v3 obtained the highest utility score, we will choose to seed it at
time-step t.

Runtime Complexity Analysis: The higher time-consuming operations
of Algorithm 1 are performed in steps 1 and 6-8. In step 1, the algorithm
determines the number of infected neighbors of node v, and in steps 6-8,
the algorithm determines the utility score of each one of the non-infected
neighbors of node v, given that v was already seeded successfully. Line 7, in
particular, includes a recursive call which reduces the recursion depth (k) by
1. Therefore, if we denote the maximum degree of a node by d, the runtime
complexity of Algorithm 1 in the worst case is O(dk+1). It is important to
note that Algorithm 1 is executed for each one of the non-infected nodes
in the network, every time a seeding decision has to be made. Therefore,
denoting the number of nodes in the network as |V | and the seeding budget
as B, the total time spent on Algorithm 1 is O(|V | ·B · dk+1).

5. Evaluation

In this section, we present an extensive set of empirical experiments that
compare the performance of the proposed SSH approach (that is state-based)
with that of existing seeding heuristics that rely on the network topology
without taking into consideration the states of the nodes.

5.1. Experimental Setting

All the experiments were implemented in Python 2.7 and executed on a
Linux machine running Centos 7.1, with 128 GB of RAM and a single Intel
2.7 GHz CPU.

Each of the simulations was preceded with selecting a random set of
nodes, served as an initially infected population of size F . The infection time-
steps of the nodes in this initial population were drawn uniformly from the
interval [−tinf ,−1]. Then, at each time-step of the simulation, a single node
was seeded, where the selection of the seeded node was based on different
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heuristics (the set of examined seeding heuristics is described below). Each
seeding attempt either succeeded or failed in accordance with Eq. 1. The
transitions in states of nodes were re-calculated at each discrete time-step.

The simulation ended when the entire budget of seeding attempts, B, was
used. At this point, the final seeding success rate was calculated for each of
the heuristics.

5.1.1. Parameters’ Space

In the experiments, we examined a variety of values for the different
parameters. In each set of simulations that are reported below, all parameters
except one were set to their default value (fixed in most cases to the median
of their examined range of values), while a single remaining parameter was
examined over a varying range of values. The parameters’ space used in our
experiments is detailed in Table 1. Each combination of parameters values
was examined by executing 400 simulation runs, for each one of the compared
heuristics.

Table 1: Simulation Parameter Space

Parameter Values

Network Topology
(see Table 2)

Sampled Citation network,
Slashdot network,
Sampled EuEmail network,
WikiVote network,
Epinions network,
Enron network

Network size
(# of sampled nodes)

5000, 10000, 50000, 100000,
500000, 1000000

Initially infected
population size (F ) 50, 100, 200, 500, 1000
Budget (B) 50, 100, 200, 500, 1000
Threshold (θv) 3, 4, 5, 6, 7
Maximal Social Effect (P soc

v ) 0.1, 0.3, 0.5, 0.7, 0.9
Infection Time (tinf ) 10, 20, 50, 100, 200
Individual Effect (P ind

v ) 0, 0.1, 0.2, 0.3, 0.4, 0.5

* The default value of each parameter is marked in bold.
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In most of our experiments, we assumed that the values of the parameters
θv and P soc

v are known. In another dedicated experiment, we assumed that
the distributions of these parameters’ values are normal, and we only know
their mean and standard deviation. These means are denoted by µθ and
µPSoc , while the standard deviations are denoted by σθ and σPSoc

v
, respectively.

The actual values of these parameters for each node, were randomly generated
prior to each simulation run, and were not used in any way by the SSH
heuristics.

5.1.2. Network Topologies

The simulations were executed on different network topologies, as de-
tailed in Table 2. These topologies represent snapshots of real-world social
networks, with some adaptations to our experimental framework, such as
converting the networks to undirected, or sampling a subset of nodes. The
original social network datasets are publicly available at (Leskovec & Krevl,
2014)

Table 2: Networks Used in Simulation

Network
Number
of Nodes

Average
Degree

Average
Clustering

Sampled?

Citations 1000000 2.83 0.04 Yes
Citations 500000 4.06 0.06 Yes
Citations 100000 7.60 0.14 Yes
Citations 50000 8.20 0.16 Yes
Citations 10000 6.81 0.20 Yes
Enron 36692 10.02 0.50 No
WikiVote 7115 28.32 0.14 No
Slashdot 82168 14.18 0.06 No
EuEmail 100000 1.57 0.03 Yes
Epinions 75879 10.70 0.14 No

5.1.3. Seeding Heuristics

We compared three variations of the proposed SSH approach (SSH-0,
SSH-1 and SSH-2, where the levels of recursion were k = 0, k = 1 and k = 2
respectively) with four benchmark approaches as we proceed to describe.
These benchmark approaches included both a state-of-the-art network-centrality-
based approach (GEC), and a simple random selection of nodes (Random).
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Furthermore, for each of these two benchmark approaches we added a vari-
ation which considered as optional seeding candidates, only nodes that have
a non-zero probability to become infected (i.e., nodes that have at least one
infected neighbor). These additional variations were named Picky-GEC and
Picky-Random.

The seven heuristics mentioned above are described in further details
below:

Random Randomly seeds one uninfected node at each time-step.
GEC Chooses the uninfected node with the highest Eigenvector Cen-

trality measure at each time-step.
Picky-Random Randomly chooses an uninfected node from the nodes

that have a non-zero probability to become infected.
Picky-GEC Chooses the uninfected node with the highest Eigenvec-

tor Centrality from the nodes that have a non-zero probability to become
infected.

SSH-0 - Chooses the uninfected node with the highest value of Pv(t) at
each time-step (i.e., Algorithm 1 with k = 0).

SSH-1 - Chooses the uninfected node with the highest value of Pv(t) at
each time-step (i.e., Algorithm 1 with k = 1).

SSH-2 - Chooses the uninfected node with the highest value of Pv(t) at
each time-step (i.e., Algorithm 1 with k = 2).

5.2. Results

5.2.1. Overall Comparison of SSH with the other Benchmark Methods

Figure 4 presents an overall comparison of the SSH approach to the other
benchmark methods. Figure 4 (top) presents this comparison for different
network topologies whereas Figure 4 (bottom) focuses on different sample
sizes of the Citation network topology. In these experiment, all other param-
eters that are mentioned in Table 1 except for the network topology and size
were set to their default values.
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Figure 4: An overall comparison of SSH (the three blue bars) with the benchmark methods,
across different network topologies (top) and network sizes (bottom).

As can be seen in the figure, the three SSH heuristics (blue bars) signif-
icantly outperform the other benchmark methods. More specifically, com-
paring SSH-0 (the worst out of the three SSH heuristics) to Picky-GEC (the
best out of the other benchmark methods), the improvement ranges from
30% to 75%.

With regard to the different SSH heuristics, it seems that in most cases
SSH-2 achieves the best performance, followed by SSH-1 and then SSH-0.
This is in accordance with the amount of information that each of those
heuristics uses to evaluate the scores of potential nodes to seed. However, it
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is worth mentioning that the differences in performance between these three
heuristics are relatively low in comparison to the other benchmark methods.

As expected, the worst performing heuristic (by far) is the Random
heuristic, which does not utilize any information about the network topology
nor the states of the nodes. The GEC heuristic, performs slightly better than
Random heuristic, since it utilizes information about the network topology.

Two interesting heuristics are Picky-Random and Picky-GEC that utilize
partial information about the states of the nodes (i.e., which nodes have non-
zero probability to be seeded successfully). As can be seen in the figure, these
two heuristics perform better than the basic Random and GEC heuristics but
worse than the SSH heuristics. We can also see that Picky-GEC performs
slightly better than Picky-Random since it also utilizes information on the
network topology.

5.2.2. Centrality of Seeded Nodes

In the previous experiment, we saw that the SSH heuristics perform sig-
nificantly better than the GEC heuristic. In order to understand better why
this is the case, we compared the centrality of nodes that were chosen by
each of the two approaches. We were mainly interested to know if the SSH
heuristics select to seed central nodes, or if it chooses to seed less central
nodes. Note that in real-world marketing scenarios that involve seeding, not
all seeding actions have the same cost. In fact, highly central nodes in social
networks often represent celebrities, and the cost of seeding such celebrities
is likely to be higher than that of less known individuals. Figure 5 presents
the Eigenvector centrality of nodes that were chosen for seeding by the SSH-1
and GEC heuristics, along time.
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Figure 5: Eigenvector centrality of the nodes chosen for seeding along time.

The exterior figure presents the average Eigenvector centrality of nodes
over 400 executions, where all parameters from Table 1 were set to their
default values. As can be seen from the figure, both heuristics tend to start
with nodes that have a higher Eigenvector centrality score and continue with
nodes with lower and lower Eigenvector centrality scores. While this obser-
vation is expected for the GEC heuristic, it is less expected for the SSH-1
heuristic, since it does not make an explicit use of the network topology. It
can also be seen that the average centrality score of the nodes selected by
the SSH-1 heuristic is substantially lower than that of the GEC heuristic.

The interior figure presents a single execution, out of these 400 executions,
for each of the two heuristics. As expected, the GEC heuristic performs the
same in the single execution case and in the average case. However, with
regard to the SSH-1 heuristic, we notice that central nodes are chosen some-
where at the middle of the contagion process and not necessarily at the initial
stages. In other words, at any given time, the SSH-1 heuristic might pre-
fer to choose a non-central node over a central node as long as its expected
utility (its likelihood to be seeded successfully and its impact on its neigh-
bors) is considered higher. This observation, together with the superiority of
the SSH approach (as demonstrated in the previous experiment), emphasize
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the importance of utilizing the states of the nodes and not only the network
topology when assessing their ability to spread information. This is especially
interesting since, centrality measures of a node, such as Eigenvector central-
ity, which take into account the network topology only, are often considered
in the literature as a good proxy for the node’s ability to spread information.

5.2.3. Sensitivity Analysis of the Model’s Parameters

Figure 6 shows the total number of successful seeding attempts as a func-
tion of the seeding budget B. As expected, the number of successful seed-
ing attempts grows with the budget size for all heuristics, but this growth
presents a “diminishing return” effect. The figure also demonstrates the su-
periority of the SSH approach (blue plots), where its gap from the other
heuristics increases with the budget size.
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Figure 6: The number of successful seeding attempts as a function of the seeding budget
B.

As described in the previous section, we assume the existence of an ini-
tially infected population of size F , prior to the beginning of the seeding
attempts. Figure 7 reports the influence of F on the success rate of the dif-
ferent seeding heuristics. As expected, larger F values lead to higher success
rates for all of the heuristics. While this increase exists, but is barely notice-
able for the Random and Picky Random heuristics, it is clearly evident in
the case of the SSH heuristics. Here as well, the SSH heuristics outperform
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the other heuristics, even for small values of F , and the gap becomes larger
as F grows.
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Figure 7: The proportion of successful seeding attempts as a function of the initially
infected populations size F .

Figure 8 reports the influence of the infection time tinf on the success
rate of the different seeding heuristics. As can be seen in the figure, larger
tinf values lead to higher success rates for all of the heuristics. This is quite
expected since lower tinf values imply shorter infectious period of newly in-
fected nodes, leading to lower social influence in the network at any given
time. When the infection time is significantly short (around 5-10 time-steps),
all of the heuristics suffer from poor performance. However, infection times
of 50 time-steps and above result in high performance, where the improve-
ment in performance gradually decreases with higher values of tinf . Again,
we see that the SSH approach (blue plots) significantly outperforms the other
heuristics, for all of the examined values of tinf .

28



0 50 100 150 200
Infection time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

S
u
cc

e
ss

 R
a
ti

o

SSH-2
SSH-1
SSH-0
Picky GEC

Picky Random

GEC

Random

Figure 8: The proportion of successful seeding attempts as a function of the infection time
tinf .

The effect of the maximal social effect psocv and the social threshold θv on
the success rate of the different seeding heuristics is demonstrated in Figure
9. As can be seen in Figure 9 (top), higher values of psocv are associated with
higher success rates for all heuristics, as expected. Interestingly, the SSH
approach grow super-linearly with psocv , whereas all other heuristics grow
roughly linearly. This causes the gap between the SSH approach (blue plots)
and the other heuristics to become larger with higher values of psocv . Indeed,
when the social forces are stronger, the SSH approach, which better utilizes
the information about the social influence is expected to reach better results.
A similar (though inversed) trend of what was observed in Figure 9 (top) is
presented in Figure 9 (bottom). This inversed trend is quite expected due to
the P soc

v

θv
element in Eq. 1.
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Figure 9: The proportion of successful seeding attempts as a function of the maximal
social effect P soc

v (top) and the social threshold θv (bottom).

While all of the above analyses focused on the social effect, where we
set the individual effect to P ind

v = 0, we now turn to analyzing the effect
of the individual (non-social) effect on the success rate of the different seed-
ing heuristics (see Figure 10). First, we observe that the success rates of
all seeding heuristics increase with the individual effect P ind

v . We can also
see that the growth rate is similar in all heuristics, including the Random
heuristic. This observation makes sense, since large values of P ind

v , signif-
icantly reduce the importance of the social effect, and therefore make the
scheduled approach less necessary. Similarly, we also see that for larger val-
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ues of individual effect (i.e., P ind
v ≥ 0.05), the SSH-0 heuristic outperforms

the SSH-1 and SSH-2 heuristics.
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Figure 10: The number of successful seeding attempts as a function of the individual effect
P ind
v .

5.2.4. Introducing Uncertainty

The results described in the section above were obtained by assuming
that the values of P soc

v and θv are known. In most cases however, this is
not a realistic assumption. At best, the distribution of these parameters can
be estimated from previous marketing campaigns, but the specific parameter
value for each person is still considered unknown. Based on this understand-
ing, we conducted another experiment to inspect the performance of the
proposed SSH approach within a more realistic scenario, in which P soc

v and
θv are assumed to be normally distributed and their means and standard de-
viations are assumed to be known; however, the actual values for each node
are considered unknown.

Accordingly, in each set of executions, we first chose the mean and stan-
dard deviation. Then, we generated the “real” values for P soc

v and for θv for
each node based on the chosen distributions. Finally, we ran the different
seeding heuristics where the means of the distributions were given as inputs,
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instead of their actual values. Note that in these experiments, the real values
are only used in the simulative process, but is not used by the seeding node
selection process.

Figure 11 reports the success rate of the different heuristics as a function
of uncertainty (reflected by SD/mean).

The interior figure shows the success rate of Picky-Random as a function
of uncertainty. As can be seen from the figure, the success rate increases
moderately with uncertainty. The explanation for this is that high uncer-
tainty values lead to a larger number of nodes with high Pv values (due to
high P soc

v and low θv values).
The exterior figure reports the relative success rate of the different heuris-

tics, normalized with respect to Picky-Random, as a function of uncertainty.
As can be seen from the figure, while the GEC, Picky-GEC and Random
heuristics preserve the same relative success rate when uncertainty increases,
the success rate of the SSH approach decreases. This is quite expected, as
the SSH approach explicitly relies on the values of P soc

v and θv for calculating
the scores of nodes. Thus, an inaccurate estimation of these values due to a
large standard deviation, leads to poorer selection of nodes and to a reduced
performance. In contrast, all other heuristics which do not rely on the values
of P soc

v and θv, and therefore are not affected by inaccurate values of P soc
v

and θv. Nevertheless, even in relatively high uncertainty levels, the success
rate of the SSH approach is still significantly higher than that of the other
methods.
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Figure 11: The improvement rate as a function of the degree of uncertainty (measured as
the standard deviation of P soc

v and θv).

5.2.5. Runtime

The different SSH heuristics represent growing degrees of future planning
effort. While SSH-0 is fully greedy, in terms of planning only the current
step, SSH-1 tries to plan one step ahead, and SSH-2 method plans two steps
ahead. Although the SSH approach can be used with even higher number
of planning steps (i.e., higher than 2), we did not find such large number of
planning steps more effective. This observation is of high importance since
the computational cost of planning ahead significantly increases with the
network size, and due to the tremendous sizes of real-world social networks.

Figure 12 reports the runtime of the different heuristics as a function of
the network size (different sample sizes of the Citation network). The runtime
of SSH-0 and Picky-Random are roughly the same since they require to
perform O(1) operations for each one of the network nodes in each iteration.
The runtime of SSH-1 is slightly higher since it requires some calculations of
the first social circle of each network node in each iteration. The runtime of
SSH-2 is again significantly higher than the runtime of SSH-1, since it requires
some calculations on the first and second social circles of each network node
(which cover a large fraction of the entire network) in each iteration. The
runtime of GEC and Picky-GEC is also very high since it requires to calculate
the Eigenvector centrality score for each of the network nodes (this is done
once for each node, but the calculation is still expensive). Finally, we observe
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that starting from a certain network size ( 700,000), the runtime of GEC and
Picky-GEC becomes even higher than that of SSH-2. Since the run-times
of SSH-0 and SSH-1 seems to be reasonable, and since their success rate is
almost as good as that of SSH-2, we will probably prefer to use them in
future applications of real-world scenarios that involve large-scale networks.
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Figure 12: Runtime of the different heuristics as a function of the network size.

6. Summary and Future Work

Many works that study information diffusion in social networks consider a
phenomenon by which information spreads virally through the network. Yet,
unlike the spread of biological viruses that can be carried passively by agents
and infect a significant portion of the network, information cascades are
known to be shorter while long cascades are rather rare. These results do not
necessarily imply that social impacts lost their importance, but rather that
people spread information in a more selective way, which does not necessarily
fit the assumptions of traditional models of infectious diseases.

We propose a new information diffusion model, named Active Viral Mar-
keting (AVM), in which agents, e.g., sales representative of a company, com-
municate with network users, e.g., potential clients, and offer them a new
product or service. The probability that a user accepts such an offer is based
on the previous adoption rate of his/her friends, as well as his/her own ten-
dency toward the product.
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Since promotion actions often incur some financial cost (limiting the num-
ber of clients that can be approached), the company has to select which users
to approach and at what time, in order to increase the total adoption rate
in the network. The need for a correct timing of approaching a customer
is a direct result of memory retention loss, where new products quickly be-
come an old habit and therefore the likelihood of influencing a peer node to
purchase the new product quickly decays. The proposed Scheduled Seeding
Heuristics (SSH) for user selection, chooses nodes that are most likely to
accept an offer at any given time-step, and thus are more likely to influence
their own non-infected neighbors at the next time-step.

In a large set of simulations, we show that the proposed heuristics increase
the adoption rate in 30%-75% (depending on the initial conditions), over a
state-of-the-art method that seeds the nodes according to their Eigenvector
centrality score.

Having indicated that, it is important to note that the proposed method
is mainly applicable to products that have a viral characteristic. These are
products or services where a substantial part of the purchasing decision is
based on social influence. In products or services for which the social forces
are significantly less influential, it might be better to use the existing state-of-
the-art methods of selecting nodes based on the network’s topological prop-
erties.

Most diffusion models, including the proposed model, assume that all
seeding actions have the same cost. As mentioned in Section 5.2.2, highly
central nodes in social networks often represent celebrities or influencers, and
the cost of seeding such entities is likely to be higher than that of less known
individuals. Future studies should take into account different seeding costs
for different nodes, depending for example on the network topology.

An interesting future extension to this work would be to study diffusion
models that combine both the traditional passive infection together with the
proposed continuous active seeding. Such a combined model is expected to
be applicable for a wider range of real-world scenarios than each one of the
two isolated models. Furthermore, it would be interesting to extend the
proposed utility-based heuristics to support such a combined model.

The evaluation of this study is mainly based on simulations that utilize
real-world network topologies. In future works, it would be interesting to
enrich these simulations with additional real-world data such as purchasing
history of users. In addition, it would be insightful to conduct a live ex-
periment to compare the adoption rate obtained by the scheduled seeding

35



approach versus the non-scheduled seeding approach.
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Appendix A. Properties of the Influence Maximization Problem
under the Active Viral Marketing Diffusion model

Appendix A.1. NP-Hardness

Claim: The influence maximization problem is NP-hard for the Active Viral
Marketing diffusion model.

Proof: Consider an instance of the NP-hard Set Cover problem Garey &
Johnson (1979): Given a collection of subsets {S1, S2, ..., Sm} of a ground set
U = {u1, u2, ..., un}, we wish to know whether there exist k of the subsets
whose union is equal to U . We show that this can be viewed as a special
case of the influence maximization problem for the Active Viral Marketing
diffusion model. (We can assume that k < n < m.)

Given an arbitrary instance of the Set Cover problem, we define a corre-
sponding directed graph as follows. The graph contains 1 +m+ n nodes: a
single node A, a node vSi

for each subset Si, a node vuj for each element uj,
and m+

∑
Si
|Si| directed edges: a directed edge (A, vSi

) from A to each one
of the vSi

nodes and a directed edge (vSi
, vuj) whenever uj ∈ Si.

In addition, consider the following parameters: θ = 1, tinf = k, Pind = 1
and Psoc = 0 for node A, θ = 1, tinf = 1 + k + n, Pind = 0 and Psoc = 1 for
all other nodes, and a seeding budget of size B = 1 + k + n.

We note the following:

1. For the instance we have defined, activation is a deterministic process,
as all probabilities are either 0 or 1.

2. A solution to the influence maximization problem must choose to seed
node A at time-step t = 0 (seeding the node A at time-step t = 0 is
assured to succeed while trying to seed any other node is assured to
fail).

3. At least k out of the m nodes of type vSi
must be seeded (a direct result

of the seeding budget size).

4. Assuming that node A was seeded at time-step t = 0, seeding each one
of the vSi

nodes at time-steps 1 ≤ t ≤ k is assured to succeed (they only
need one infected neighbor for the seeding action to succeed). Similarly,
seeding each one of the vSi

nodes at time-steps t > k is assured to fail
(tinf = k for node A).
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5. Following the four bullet points above, it stems that a solution to the
influence maximization problem must choose to seed node A at time-
step t = 0, k out of the m nodes of type vSi

at time-steps 1 ≤ t ≤ k
and all of the n nodes of type vuj at time-steps k + 1 ≤ t ≤ k + n.

6. Assuming that node A was seeded at time-step t = 0 and k out of the
m nodes of type vSi

were seeded at time-steps 1 ≤ t ≤ k, seeding a
node vuj at time-steps k+1 ≤ t ≤ k+n will succeed only if there exists
a node vSi

for which uj ∈ Si and vSi
is one of the k chosen nodes at

time-steps 1 ≤ t ≤ k.
7. The maximum number of nodes that can be seeded successfully is 1 +
k + n (due to the budget size).

The answer to the Set Cover problem is True if and only if the solution
to the corresponding influence maximization problem led to the successful
seeding of exactly 1 + k + n nodes. (1 + k + n successful seedings mean that
we managed to seed successfully node A, k out of the m nodes of type vSi

and all n nodes of type uj, which further imply that there exists k subsets
that cover the entire set U).

Since the Set Cover problem is known to be NP-hard, then so is the influ-
ence maximization problem for the Active Viral Marketing diffusion model.

Appendix A.2. Sub-Modularity
Consider the Active Viral Marketing diffusion model defined above and

the function F , which receives an ordered subset of network nodes to be
seeded (at consecutive time-steps) as input, and returns the expected number
of successful seedings as output. By definition, F is not sub-modular, since
sub-modular functions receive a set rather than an ordered set as input.
Moreover, even if we extend the definition of sub-modular functions to the
case of ordered sets, F would still not satisfy the sub-modularity condition.
To illustrate why, consider a network composed of two nodes v1 and v2 and a
single edge between them, and the following parameters: P ind

v = 0.1, P soc
v =

0.9, θv = 1 and tinf = 2, for all network nodes. Now, consider the two ordered
sets X = () and Y = (v1). The sub-modularity condition requires (among the
rest) that adding v2 to Y will result in a lower gain in F than adding it to X
(since X ⊂ Y ). More specifically, it is required that F ((v1, v2))− F ((v1)) <
F ((v2)) − F (()) However, it is easy to see that F (()) = 0, F ((v1)) = 0.1,
F ((v2)) = 0.1, and F ((v1, v2)) = 0.1 + (0.1 · 1 + 0.9 · 0.1) = 0.29. Therefore,
F ((v1, v2))−F ((v1)) = 0.19 > F ((v2))−F (()) = 0.1 and the sub-modularity
condition is violated.
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