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______________________________________________________________________ 

Abstract: The construction of  efficient decision and classification trees is a fundamental task in Big Data 

analytics which is known to be NP-hard. Accordingly, many greedy heuristics were suggested for the 

construction of  decision-trees, but were found to result in local-optimum solutions. In this work we 

present the dual information distance (DID) method for efficient construction of  decision trees that is 

computationally attractive, yet relatively robust to noise. The DID heuristic selects features by considering 

both their immediate contribution to the classification, as well as their future potential effects. It 

represents the construction of  classification trees by finding the shortest paths over a graph of  partitions 

that are defined by the selected features. The DID method takes into account both the orthogonality 

between the selected partitions, as well as the reduction of  uncertainty on the class partition given the selected 

attributes. We show that the DID method often outperforms popular classifiers, in terms of  average depth 

and classification accuracy. 
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______________________________________________________________________ 

1. Introduction 

he construction of  efficient decision trees is one of  the fundamental problems in data 

mining [5]. Decision trees or classification trees (we use the two terms interchangeably) 

represent a simple and comprehensible way to describe a decision making process that 

relies on past knowledge. Although decision trees are not necessarily the most accurate 
classifiers, they provide a way for an “online” classification that is important when only 
part of  the features are used to classify new instances. The construction of  decision trees 

often uses similarity-based metrics in order to classify newly introduced instances to one 

out of  the predefined classes. However, construction of  the optimal decision tree is known 

to be an NP-hard task [7]. To deal with this constraint, many heuristics have been suggested, 

which generally are greedy by nature, to build classification-tree models in a linear or close 

to linear time complexity. 

Most of  these methods are recursive and use a top-down approach: at each stage of  the 

tree construction they often choose the best attribute with respect to some predefined 

optimality criterion, which evaluates the attribute’s “potential contribution” for a successful 

classification. Some of  these popular greedy algorithms (e.g., ID3 and C4.5) have been 

shown to perform quite well in practical problems [13], yet they do suffer from the usual 

flaws of  greedy approaches, such as convergence to local optima. In order to reduce the 

"greediness effects", other heuristics suggest implementing a look-ahead approach by 
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considering more than a single attribute at some of  the construction stages. The obtained 

trees are called k-steps look-ahead trees when considering the best among all possible 

combinations of  k attributes. However, the look-ahead approach is computationally time 

consuming for large   k values. For example, even for the popular 2-steps look-ahead tree, 

the number of  computations required to select the best split is 3( )O mn , where n  denotes 

the number of  attributes and m  denotes the number of  available instances. Other 

classification problems can be solved only with deeper look-ahead procedures, such as the 

3-steps look-ahead trees, where the number of  computations needed to select the best split 

increases to 7( )O mn  [14]. Moreover, in a counter-intuitive manner, it was suggested [6], 

[13] that in some cases the look-ahead trees often have less appealing convergence 

properties than the simplest greedy trees. Thus, in many cases, the k-steps look-ahead 

procedures do not outperform decision trees that are associated with more greedy 

approaches.  

In this work we suggest a method for improving the greedy construction of  decision 

trees, while taking advantage of  their simplicity, tractability and their low time construction 

complexity. The suggested method obtains a low complexity, since it is based on a one-step 

look-ahead approach. Furthermore, it selects features (attributes) based on a distance 

criterion that takes into consideration not only the immediate contribution of  potential 

attribute in the current step, but also its potential contribution to obtain an efficient 

classification tree in future steps. This dual-measure criterion relies on information 

theoretic metrics of  the tree construction problem, and hence is called the dual information 

distance (DID) method. We show that a good balance between these two distance 

components leads to a tractable, yet a “less greedy” construction approach. Such a feature 

is potentially appealing when the selected features are subject to noise and distortion, as 

often happens in real-life cases. 

 The framework of  the suggested method uses a graph model and represents the 

construction of  classification trees by finding the shortest paths over a graph of  attribute’s 
partitions. Nodes in the graph represent the possible partitions of  the dataset by the selected 
attributes, while the edges are labeled by different selected attributes and their values. 
Selecting a path of  edges leading to a specific node is equivalent in the proposed 
representation to a selection of  attribute values that lead to a certain partition of  the dataset. 
The partitions in the graph are defined as the states of  the classification process. In each 
construction stage of  the tree, the selected attribute values define the current partition of  
the dataset. Then, in the next stage, a selection of  a new attribute values in a deeper tree 
level usually refines the current partition and so forth. This process of  consecutive 
refinements ends when a proper stopping condition is satisfied. For example, when the 
obtained partition is at least as refined as the class partition, i.e. all instances of  each of  the 
obtained partition belong to a single class, or when no attributes are left for further selection. 
We show that the proposed modeling approach can represent known classification 
algorithms, such as ID3 and C4.5, as well as the proposed DID method, thus providing a 
good framework for comparisons. 

We formulate the tree construction problem using concepts of  information theory.  
Namely, at different construction stages we seek those attributes that maximize the mutual 
information about the classification variable. Motivated by the search for short paths over 
the graph of  partitions, and inspired by the chain rule of  mutual information, we introduce 
the DID method. Similarly to other popular construction algorithms, the proposed DID 
method constructs the classification tree in a recursive top-down manner. Yet, unlike these 
algorithms, the DID method takes into account two distance terms for attributes selection, 
as indicated above. The first term measures the orthogonality between the current partition 
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(current state of  the classification process) and the potential partitions that can be potentially 
selected in the next steps of  the algorithm. The second distance term refers to the reduction 

of  the conditional entropy (measuring the uncertainty) about the class partition given the 
partition that is being selected. This is an equivalent criterion to the one used by the ID3 / 
C4.5 algorithm. As noted above, the first term is used to reduce the “greediness effects” of  
the proposed method. By weighting these two terms in a single objective function, the 
classification problem is modeled as a search for short paths over the partitions graph. In 
particular, the Rokhlin information metric [16] was found to be very effective in 
representing both the conditional entropy and the orthogonality measures. Based on 
publically available databases, we show that the DID method often outperforms the ID3 
and the C4.5 popular classifiers, mainly in terms of  robustness to features removal. This is an 
appealing characteristic of  the proposed approach in cases where not all the features are 
available or known during the construction of  the tree. 

 The rest of  the paper is organized as follows. Section 2 presents the information 

theoretic analysis of  the tree construction problem that motivates the characteristics of  the 

DID method. Section 3 outlines the proposed DID method. Section 4 describes the 

experiments that were conducted by implementing the DID approach to known datasets 

and comparing the results to those obtained by known algorithms. Section 5 summarizes 

the work and proposes future research directions. 

2. Information Measures of Attribute Partitions  

Shannon [17] introduced the chain rule of  the mutual information that reflects the 

conditional information, which is obtained from a series of  random variables about a target 

random variable (Cover and Thomas [2]). When applying this rule to measure the mutual 

information between a list of  attributes 1 ,, , nA A that are selected sequentially, and a class 

target Y, the chain rule expression can be divided into two summation terms of  conditional 

entropies  
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The first term represents the orthogonality among the attributes independently on Y, 

while the second term represents the uncertainty in each attribute about the class target, 

given the attributes that were previously selected. Since entropies are non-negative 

quantities, in order to maximize the mutual information between this list of  attributes 

 1,iA A  and the class attribute Y , one needs to maximize the first summation term and 

minimize the second summation term. The proposed DID approach, which is introduced 

in the next chapter, analogously aims to follow this direction. 

This process of  sequential selection of  attributes during the construction of  a decision 

tree can be described in terms of  data partitions. In particular, each selection of  an attribute 

partitions the dataset of  instances according to the values of  the selected attributes [4]. 

Accordingly, let us consider the information metrics of  the partitions in the following 

manner: 

Let X  be a sample set of  instances (examples)  1 2{ , , , }nX x x x , which are 

classified (tagged) by the target attribute Y  with probabilities  
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and let partition αi  denote a partition resulting from the selection of  attribute i  and let 

 j
i  denote a subset of  such partition satisfying the condition that the value of  attribute iA  

is equal to j , such that 
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Then let the multiplication between two partitions be defined as follows: 

 | 1,2, , , 1,2, ,l k
i j i j i jl k           .     (3) 

The process of  sequential partitioning can be performed recursively. To understand 

how this process is reflected on the partitions space, let us consider the principle of  

restrictions: 

Let     1 2{ , , , }m  be an attribute partition (we omit the sub-index without loss 

of  generality). Let us denote by |  a restriction of  the attribute partition   by a 

partition    X  and define it as follows: 

 1 2| , , , m
         .      (4) 

Therefore  
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2.1 Entropy Between Partitions 

Recall that  1 2{ , , , }nX x x x  is the sample space and let : [0,1]p X ,  1 1n
i ip x   

be a probability mass function defined over X. Let   be a partition of  X, and let     
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Then, the entropy (to the base 2) of  the partition   is computed as follows: 
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Let   be another partition of  X. The Conditional entropy of  partition   given 

partition   is defined as follows: 
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For more information about the properties of  the entropy of  partitions see [18]. 

2.2 The Rokhlin Metric 

Let   be the set of  all possible partitions of  X , and let   ,  be two partitions 

defined over X . The Rokhlin distance between partitions   and   or the Rokhlin metric 

on  , which was first introduced by [16], is defined as follows [11], [16], [18]: 

         , | ( | )Rokd H H .      (9) 
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It is important to note that the Rokhlin distance follows the required mathematical 

properties of  a metric [18], namely:  

  ( , ) 0d ,    , 0d , 

and 

                 , , , ,    , ,d d d . 

Let us clarify the relation between the Rokhlin metric  ( , )d  and the mutual 

information  ( , )I : 

Let  1 2{ , , , }nX x x x  and  1 2{ , , , }mY y y y  be two finite sets and :p X Y  

[0,1]  be a joint probability mass function defined over these sets. The mutual information 

in X about Y is defined as follows [17]: 
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Let   ,  be two partitions of  X. The mutual information in   about   is given 

by the following expression: 
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Therefore, the relation between the mutual information   ;I  and the Rokhlin 

metric  ( , )d  is the following [9]: 

           , , ,d H I .                     (12) 

Thus, minimization of  the Rokhlin distance is equivalent to simultaneously 

maximizing the mutual information and minimizing the joint entropy. 

Other useful properties of  the entropy of  partition are the following. Let   , . If  

  is a refinement of   ,   , then        | ( )H H H . Backwards, if  

       | ( )H H H , then   . Thus,    | 0H  if  and only if    . If  the 

Rokhlin metric    , 0d , then    (for details see [9], [18]). 

Popular classification algorithms, such as the ID3 and the C4.5, take into account the 

uncertainty in the class attribute Y  following the selection of  some attribute iA , and 

measure it by the conditional entropy,  H | iY A , i.e. they look for an attribute iA  that 

minimizes the conditional entropy measure. Note from Equation (9) that when using the 

Rokhlin distance measure, we take into account not only  | iH Y A  but also  |iH A Y . A 

relevant question is whether the second term of  conditional entropy contributes to the 

proper selection of  iA . The logic behind the second conditional entropy term is less 

explicit but can be well understood by using a small illustrative example in Figure 1. Let us 

consider the following six-instances dataset that consists of  a class attribute Y  and two 

input attributes, 1A  and 2A . As clearly seen, each of  the attributes 1A  or 2A  alone 

classify the class attribute Y , i.e.,   1| 0H Y A  and   2| 0H Y A . However, 1A  

partitions the dataset to six subsets,   1 2 6
1 1 1{ , , , },  while 2A  partitions the dataset to 

two subsets only  1 2
2 2{ , } . This fact is well reflected in the second conditional entropy 

term of  the attributes given Y , i.e.,   1| 1.58H A Y  and   2| 0H A Y . By aiming to 

minimize the Rokhlin distance, which also considers the second conditional entropy term, 
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one will prefer the attribute 2A  over 1A , thus choosing an attribute that partitions the 

dataset as little as required, or in other words, staying as close as possible to the class 

attribute, while avoiding unnecessary splitting. 

 

1A  2A  Y  

1 1 X 
2 1 X 
3 1 X 
4 2 O 
5 2 O 
6 2 O 

Figure 1. Small data example of  6 instances. 1A  , 2A  depict the attributes 
and Y  depicts the class label of  each record. Each attribute alone classifies 
the class attributeY , however 1( ) 1.58H A Y  and 2( ) 0H A Y . 

 

Under practical considerations, obtaining a more refined partition with respect to the 

class partition is sometimes unnecessary and costly. An example for such a practical 

situation can be found in the area of  medical tests, where some types of  tests are more 

expensive than others. Thus, the first type of  tests might only determine whether the tissue 

is contaminated or not and is relatively cheap. The second type of  test, on the other hand, 

also distinguishes between the possible sources of  the contamination. If  the rough 

partitioning, which is achieved by the first type of  test, is enough for the classification 

purpose, it will obviously be preferable by the Rokhlin distance.  

It is important to note that other distance measures can be also used between different 

partitions. Not all the distances measures are proper metrics in terms of  the mathematical 

requirements; however, many such measures could possibly lead to good classification 

results. The optimal selection of  distance measure for various classification and clustering 

problems is a subject of  ongoing research work (see [9], [15]). 

3. The Proposed DID Approach 

As a general framework for the proposed classification method, we use an iterative 

version of  Korf ’s Learning Real Time Algorithm (LRTA*) [10]. The suggested DID tree is 

constructed by using a sequential partitioning scheme, where in each stage of  the 

construction, the selected attributes up to this stage define the current partition of  the 

sample space. In the next construction stage, a selection of  a new attribute in a new tree 

level refines (in most cases) the current partition. This process of  continuous refinements 

ends when the obtained partition of  the sample space is at least as refined as the class 

partition, thus, all instances in all the sub-partitions belong to the same class, or when no 

attributes are left for selection. 

Specifically, at each step the algorithm acts on the restricted partitions as follows. Let 

     1 2, ,..., m  be an attribute partition. Let us denote by |  a restriction of  the 

attribute partition   by a partition   X , as defined by Equation (4). Assume that a 

probability mass function is defined over the sample space  X and that the probabilities of  

the instances are, without loss of  generality, equal. In addition, let us assume that attribute 

Y  is the desired class attribute partition. 
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Let us denote the current partition of  the dataset by      1 2, ,..., m
c c c c . Then, the 

recursive DID creates m threads. In the i-th thread, i=1,…,m, the current partition  i
c  is a 

set of  elements having normalized probabilities with respect to the sum of  elements of   i
c . 

The selection of  the next partition is taken from the current partition neighborhood 

  i
cN , which includes the following partitions: 

    
  | ,i

c

i
c j cN j F , 

where     { :    }c j not selected by the algoriF thmj yetA and where the probabilities are 

normalized over each sub-partition. 

If  the classification is achieved in a subset, then the thread terminates. If  no further 

attributes are left for selection, then the thread terminates and the classification is 

determined by the major class in the sub-partition. If  the cardinality of  the chosen 

sub-partition is not greater than 1, then the thread terminates and classification is achieved. 

Otherwise, the chosen set defines the current partition for this thread and the process 

continues. Analogously to the presented concepts of  the chain rule of  information in 

Equation (1), the proposed objective function for selecting the partitioning attribute in each 

step is to maximize the orthogonality between the current partition c  and the next 

candidate partition  j , while minimizing the distance between the considered (restricted) 

partition  j  and the class partition Y . Using the Rokhlin distance metric in Equation 

(9), this objective is defined as follows: 

    1 2, ,
j

min w Rokhlin w Rokhlin


c j j Yα α α α .             (13) 

For simplicity purposes, let us mark the above two distances with 1d  and 2d , 

resulting in: 

    1 1 2 2min , ,
j

c j j Yw d w d


    ,                     (14) 

where 1 0w  and 2 0w . 

The term   1 ,c jd  denotes the orthogonality measure distance between the current 

partition and the next chosen partition, which we try to maximize, analogous to the first 

term in Equation (1); the highest the orthogonality between the next restricted partition and 

the current partition, the better. High orthogonality values often lead to a situation where 

future selections of  attributes result in a refined partition with respect to the class partition. 

Let us note that measuring the orthogonality between attributes is not a new idea. In 

fact, this is a basic principle used in design of  experiments for example by the D-optimality 

criterion [12]. In the data mining society, measuring the orthogonality between attributes is 

sometimes performed as part of  the pre-processing stage (e.g., [19]) by considering the 

entire attribute vector. In our approach, however, we measure the orthogonality during the 

construction of  the classification tree – only when it applies to a sub-set of  the attribute. 

Such an approach enables us to reveal the effective orthogonal relations between the 

restricted partitions of  interest. In other words, we look for orthogonality in sub-partitions 

where they are most effective, rather than using is as a general feature-selection measure. 

The second distance   2 ,j Yd  denotes the information distance, therefore measures 

the difference between the considered partition  j  – obtained by selecting an additional 

attribute that refines the current partition – and the final class partition Y , i.e. this term 

measures the remaining uncertainty in the considered partition  j  about the final class 

partition Y , which is analogous to the second term in Equation (1). By using this distance, 
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one seeks to find a partition which gives the maximum information about the class 

partition.  

For a better algorithmic flexibility, we allow to combine these distance measures by 
using different weights, 1w  and 2w , in a single objective function. Such a weighting 
enables refining the constructed classification tree to better suit the data and address issues 
of  variance-bias effects, where 1w  is usually selected as a negative integer (maximizing the 
orthogonality distance), and 2w  is usually selected as a positive integer (minimizing the 
information distance) .  The exact values of  the weights can be determined in the learning 
phase. The pseudo code of  the recursive DID algorithm is given below (see also [9]). 
 
Algorithm (DID) 
Input: 

(i) set of  weights 1 2,w w .  

(ii) attributes partitions 1 2, ,..., n   . 

(iii) class partition Y . 

Initialization: 

(i) Initialize current partition 0c  .  

(ii) Define E  to contain the used attributes for partitioning. Init  E  . 

(iii) Define F  to contain the unused attributes for partitioning. Init  1,2,...,F n . 

Step: 

For each sub-partition i
c c 

 
such that: 

(i) 1.i
c    

(ii) i
c

Y 
  is not yet classified. 

(iii) F  is not empty. 

start the Search procedure for the sub-partition i
c . 

Function Search: Given set i
c , E  and F .  

(1) Initialize current partition c  by i
c . 

(2)  ;c cinit E E F F   where instances in the sub-partition i
c  are considered 

equi-probable and the probabilities of all instances of the sub-partition sum up to 1. 

(3) Normalize probabilities of the elements of i
c . 

(4) Create local class partition 
cY  .  

(5) Generate neighborhood partitions:    , .
cc j cN j F     

(6) Normalize probabilities of neighbors and of the class partition. 

(7) Obtain distance measures by calculating  2 ,
cc jd   and  2 , , .

c cj Y cd j F      

(8) Choose next partition              


 1 1 2 2, , .
c c cj c

next c j j YN
argmin w d w d  

(where ties are resolved arbitrary). 

(9) Update cE  and cF  (move j  from cF  to cE ). 

(10) Move to next partition: .c next   
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(11)  For each sub-partition i
c c   such that 

(i) 1.i
c    

(ii) i
c

Y 
  is not yet classified. 

(iii) cF  is not empty. 

start the Search procedure (for sub-partition i
c , cF , cE ). 

(12) Stop condition 

(i) If   
cY   is classified, return.  

(ii) If   1c    classify according to the instance’s class value, return. 

(iii) If  cF   classify according to the most common value of the class attribute, 

return. 

The suggested DID tree can also be pruned according to different criteria. In our study, 

if  the tree is chosen to be pruned, the train dataset could be divided into two different 

datasets – the first is used for building the tree, and the second dataset to validate the 

pruning efficiency. Our strategy was to prune the different nodes until the average accuracy 

of  all records in the second dataset could not be improved. 

4. Experiments and Analysis 

In this section the proposed approach is tested on several different known classification 

problems, and compared against the popular ID3 and C4.5 classifiers. 

Our testing methodology uses a training set to construct the classification tree model. 

The partitioning process is then performed until each reached subset (leaf  in the tree) is 

fully classified, when the predefined stopping criterion is reached1, or when no further 

attributes are left for selection (then the classification is defined according to the majority 

rule of  the instances in this sub-set). The validity of  the classification model is performed 

over a test set, often by various holdout datasets. Some of  the published datasets are already 

partitioned into a training set (sometimes more than one) and a test set. In these cases we 

used the sets as represented. In cases where the datasets were not split into training and test 

sets, we randomly divided the data into training and test alien sets. In such cases, the 

splitting procedure was replicated several times (usually between 5 to 10 times) to calculate 

the average performance values, as well as the standard deviation2. 

The programmed application can handle different distance metrics, as well as 

assigning different weights for these distances. The obtained results rely particularly on the 

following performance measures, based on the classification tree and the test set: 

 The tree average depth (known also as the average path length). 

 True classification percentage (the accuracy) of  the test set by the classification. 

 The number of  leaves in the classification tree. 

 The number of  decision nodes in the classification tree. 

                                                 
1 The programmed application can handle different stopping rules, such as stopping the partitioning 
process when a sub-partition reaches some predefined size. 
2
 The standard deviation was calculated for the average depth of  the tree. 
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Two other measures that were analyzed were the minimum and the maximum number 
of  decisions required for the classification model. In practice, the average number of  

decisions is often associated with the implemented test procedure that requires an 
economic justification and affects cost and time measures. 
 

Table 1. Summarizing Comparison between ID3, C4.5 and DID decision trees. 

Dataset Domain Size ID3 C4.5 DID 

  

Number of  

instances in 

dataset (and 

the test set) 

Number of   

Attributes 

Average 

Depth 

True 

Classification 

Percentage 

Average 

Depth 

True 

Classification 

Percentage 

Average 

Depth 

True 

Classification 

Percentage 

(w1, w2) 

Monk's-1 Robotics 
124 

(432) 
6 3.21 82% 3.32 82% 2.66 96.7% (-5,1) 

Monk's-2 Robotics 
169 

(432) 
6 4.34 70.4% 4.6 75% 4.2 66% (-2,1) 

Monk's full 

Random set 
Robotics 

216 

(216) 
6 1.93 100% 2.04 100% 1.8 100% (-2,1) 

Connect4 Games 67,557 42 5.85 73.8% 10.16 79.4% 5.64 75% (-5,1) 

SPECT Heart Medicine 
80 

(187) 
22 9.6 75.1% 10.2 80.3% 9.3 76% (-5,1) 

Voting Social 435 16 1.8 96% 2.2 96.6% 2.1 96% (-1,1) 

Balance Scale Social 625 4 3.4 76.3% 3.4 78.6% 3.3 76.6% (-2,1) 

Cars General 1728 6 2.82 77.1% 2.83 77% 2.77 78.5% (-1,1) 

Tic-Tac-Toe Games 958 9 4.62 80.6% 4.62 80.4% 4.6 76.2% (-1,1) 

Soy Beans Life 47 35 1.35 100% 2.37 97% 1.32 97% (-1,1) 

Lymphography Medicine 148 18 2.71 75.1% 6.51 77.3% 2.6 72.6% (-2,1) 

 

In Table 1, we outline a summarized comparison for nine published problems (using 

eleven configurations). For each problem we present the dataset size, the number of  

attributes available for classification, the average depth of  the obtained classification tree 

and the true classification rate over the test set (i.e., the percentage of  instances correctly 

classified).  

As the construction of  the DID tree depends on the weights of  the distances, these 

parameters are also listed in the last column of  the table. By analyzing several combinations 

of  weights over the train set, we searched for the most promising weights combination that 

could result primarily in a relatively small tree with a lower average depth, yet with 

relatively high classification accuracy. 

As can be seen in Table 1, the proposed algorithm outperforms both ID3 and C4.5 

classifiers in almost all of  the considered classification problems in terms of  the average 

depth of  the tree. For the Monk’s-1 dataset, the proposed algorithm results in a tree model 

with an average depth of  2.66 decisions, while the ID3 and the C4.5 average depths are 

3.21 and 3.32 decisions respectively. The difference is even more significant with respect to 

the Connect4 dataset – a relatively large dataset, consisting of  more than 67,000 instances 

and 42 available attributes. In this case, the DID classifier results in a tree with 5.64 

decisions in average, while the C4.5’s model requires 10.16 decisions on average. A 

significant difference was also discovered with the Lymphography dataset, in which the 

DID algorithm produced a tree with an average depth of  2.6 decisions, compared with 

C4.5’s average depth of  6.51 decisions. In one of  the tested datasets, the DID algorithm 

resulted in a higher average length than the ID3: in the Congressional Voting dataset, the 

ID3 produces a slightly lower average than that of  the DID algorithm, yet, the DID 

algorithm was still better than the C4.5’s. 
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With respect to the true classification percentage, the DID algorithm was found to be 

less accurate. In most of  the problems the C4.5 model obtained a better classification rate 

than the DID and the ID3, yet this difference was relatively marginal. The DID algorithm 

performs better than the other two algorithms when applied to the Monk’s-1 dataset. It 

produces a model with a true classification rate of  96.7%, compared to a classification rate 

of  82% produced by both ID3 and C4.5. For example, in the CARS dataset, the DID 

algorithm results in a true classification rate of  78.5%, slightly better than the ID3 and the 

C4.5 models. A relatively inferior accuracy for the DID was obtained in the Monk’s-2 

dataset, in which the DID algorithm succeeded in classifying only 66% of  the cases, 

compared with 70.4% and 75% for the ID3 and the C4.5 algorithms, respectively. In most 

of  the other cases, the DID algorithm ranks second, usually only slightly worse than the 

best classifying algorithm. The potential effects of  the type and features of  the database on 

the success of  different classification algorithms, including the DID, will be the subject for 

future research. 
 

Table 2. Classification accuracy of  SMV, C4.5 (J48 implementation) and DID 
for different problems taken from the UCI Repository. 

Case 
No. of  
features 

Type 
of  data 

SVM best 
accuracy% 

J48 Best 
accuracy % 

J48 pruning 
coefficient 

DID best 
accuracy % 

DID parameters 
( 1 2,w w , prune 

tree) 

australian 14 continuous 55.5 86.2 0.05 86.9 (-0.7, 1, true) 

breast 9 continuous 96.5 93.6 0.1 93.5 (-0.65, 1, false) 

diabetes 8 continuous 65.1 74.2 0.2 72.6 (-1.6, 1, true) 

glass 8 continuous 69.16 50.1 0.05 51.8 (-0.1, 1, false) 

glass2 8 continuous 76.68 75.3 0.45 82.1 (-2.05, 1, true) 

heart 13 continuous 55.93 79.4 0.45 79.5 (-0.05, 1, true) 

iris 4 continuous 96.67 94.4 0.25 95.6 (-0.5, 1, true) 

pima 36 continuous 65.1 73.1 0.15 72.2 (-0.8, 1, true) 

segment 18 continuous 63.9 94.1 0.05 93.6 (-0.8, 1, false) 

shuttle-small 9 continuous 89.41 62 0.3 61.9 (-0.8, 1, false) 

vehicle 18 continuous 30.5 69.7 0.25 65.2 (-0.8, 1, false) 

waveform-21 21 continuous 86.1 76.3 0.1 73.5 (-0.65,1, true) 

cleve 13 mixed 54.73 78.9 0.4 78.0 (-0.45, 1, true) 

crx 15 mixed 65.67 87.5 0.35 87.6 (-0.15, 1, true) 

german 20 mixed 70 65.2 0.15 66.6 (-0.8, 1, true) 

hepatitis 19 mixed 83.55 57.4 0.45 64.2 (-2.8, 1, true) 

chess 36 discrete 93.83 99.3 0.05 99.8 (-1.05, 1, false) 

corral 6 discrete 96.89 98.1 0.3 98.3 (0, 1 , false) 

flare 9 discrete 82.37 61.2 0.05 68.9 (-0.35, 1, true) 

mofn-3-7-10 10 discrete 100 100 0.05 100 (-2.45, 1, false) 

soybean-large 35 discrete 87.19 95.8 0.05 94.2 (-0.85, 1, false) 

vote 15 discrete 95.35 94.7 0.3 95.4 (-1.6,1,true) 

4.1. Testing the Robustness of  the Algorithms to Features Removal 

In the second stage of  the analysis, we compared the DID and the C4.5 (using the J48 

implementation) classifiers, with respect to the robustness of  the classification when key 

features are removed from the dataset. The order of  features’ exclusion was set from the 

most influential feature to the least influential one, as measured by the mutual information 

gain between the feature and the class attribute. The exclusion of  the features was 

performed as follows: the first classification comparison was based on all the available 

features; the second comparison was based on all the features except the most influential 



144                                                      Ben-Gal, Dana, Shkolnik and Singer 

one; in the third comparison, we excluded the two most influential features, while the last 

comparison was based on the least influential feature.  

The classifiers were tested on several different known classification problems taken 

from the UCI Repository [1] and compared to the results obtained by the C4.5 (J48) and 

SVM [3] classifiers. For each case presented in Table 2, all available records of  each 

evaluated dataset were divided into train and test datasets using a five-folds validation 

procedure. Attributes with non-discrete values (i.e. less than 12 unique values) were 

discretized into four equal probability intervals. Both trees were assessed in terms of  the 

average classification accuracy (over all folds). The different free parameters of  the 

classification trees (for the C4.5 - the pruning coefficient when implementing its J48 version; 

and for DID the 1, 2w w  weights and whether to prune the tree) were set to achieve 

maximal average classification accuracy when considering all available features (see details 

in Table 2). The results in Table 2 indicate that for part of  these cases, such as Glass2 and 

Flare, the DID algorithm outperforms the existing C4.5 decision tree. For the remaining 

cases, similar classification accuracies to C4.5 were obtained. In addition, the DID 

algorithm outperformed the SVM classifier accuracy in 13 out of  21 cases, indicating that 

this method is comparable to one of  the best know classifiers to this date. 
 

 

Figure 2. Accuracy of  C4.5 (J48) and DID as a function of  the number of  removed features 

for different cases taken from the UCI Repository. The blue graphs represent the accuracy 

percentage difference between DID and J48 (DID–J48), averaged on the five-folds and 100 

different runs. Significant differences (unpaired t-test, p<0.01 are marked with a red *). 

Finally, we looked at the robustness of  the difference between the classification 

accuracies of  the C4.5 (J48) and the DID trees under features removal conditions for 100 

different train-test divisions. Subsequently, we investigated the statistical significance of  the 

accuracy differences under features removal using the unpaired t-tests. Figure 2 shows for 

each case study the difference between the percentage accuracy between the DID and the 

C4.5 (J48) algorithms (averaged across all five-folds and 100 different runs).  For part of  

the datasets, the DID algorithm was found to be significantly (p<0.01) more robust to 

features removal than the C4.5 (e.g. the australian, diabetes, pima, german, hepatitis and flare 

datasets). 
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5. Discussion and Conclusions 

In this work we suggested a general framework for the construction of  classification 

trees. The new framework models the classification problem by mapping it to a problem of  

finding the shortest-path over a graph of  partitions, while using a dual information distance 

(DID) measure. The partitions in this graph are constructed by combinations of  the input 

attributes, as well as by the class attribute itself. Any combination of  the input attributes 

can generate a partition which can be examined by the DID measure. The framework of  

finding the shortest-path over a graph of  partitions allows the use of  different distance 

metrics. In this paper, we mainly focused on information-related metrics and used the 

conditional entropy, the information gain and the Rokhlin measures, as the distances 

measures between the partitions. Using the proposed graphic representation, the proposed 

DID method can represent known classification algorithms, as well as new and attractive 

ones, and can be further expanded to address the complexity-optimization tradeoff  that 

exists in these problems. The use of  other metrics over the graph of  partitions is subject to 

future research. 

The proposed DID algorithm takes into account two distance measures that 

traditionally were addressed in two distinct scientific fields. The first distance measure 

examines the orthogonality between the current partition and the next partition. This 

measure is commonly used in the field of  design of  experiments, for example when 

implementing D-optimal design. The second distance measure, which is vastly used in data 

mining, considers the information distance (measured by the conditional entropy) between 

the candidate partition and the class partition. This measure reflects how the candidate 

partition can contribute to the entropy reduction - a measure that can be found in other 

decision trees. To obtain algorithmic flexibility we allow implementing different weights to 

these two distance components that can be adjusted in the learning phase.  

The DID algorithm was found to be competitive to the popular C4.5 (J48), ID3, SVM 

algorithms with respect to both the classification accuracy and average depth (also known 

as EPL – “Expected Path Length”). The average depth of  the tree is an important measure 

that represents how many tests are required on the average to classify new instances. This is 

a critical measure for online classification in Big-Data environments, when only part of  the 

features are known. For example, in a healthcare system, with hundreds of  patients 

admitted every day to a hospital, the medical stuff  must quickly diagnose each patient and 

recommend a correct treatment. This occurs when not all possible symptoms are expressed 

and not all laboratory results are known upfront. Therefore, as opposed to classical 

classification methods such as SVM, short depth trees (that are used “online”) can reduce 

the time required for treating each patient while using fewer laboratory tests, therefore 

saving time and money. Another example that reflects the advantage of  shallow and 

relatively accurate decision trees in Big Data environment is related to content-searching 

sites via the internet. In this case, visitors should reach their desired content quickly without 

moving to another site. The Nielsen NetView Survey performed in June 2010 [8] indicates 

that in the US, users spend 819 million hours a month on online related sites (i.e., portals, 

video/movies, search, software Info, entertainment and auctions). Therefore even a 

reduction of  1% of  this spent time implies a potential saving of  more than 8.1M man hours 

each month. In addition, the true classification rate of  the DID was found to be relatively 

robust to feature removal with respect to the C4.5 (J48 implementation), emphasizing the 

advantage of  the DID in making real-time decisions. 
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Let us note that the DID heuristic can be extended  in several research directions, 

such as: i) Allowing different weights in different levels of  the tree, thus adding a degree of  

freedom to adjust the weight parameters along the tree levels, as the orthogonality measure 

is potentially more important at higher tree levels; ii) Considering different orthogonality 

and information metrics, such as the Ornstein metric as indicated in [9]; iii) Studying 

different target functions to evaluate the distances between different partitions over the 

partitions space; and iv) Combining the DID algorithm with look-ahead and 

look-backward procedures. Such a direction will allow not only k -steps look-head moves, 

but also k -steps backward moves. Thus, developing a sensitive-enough metric to allow the 

designer, during  the construction of  the tree over the graph of  partitions, to abandon a 

path on the graph and go backwards if  the potential benefit of  this path is not sufficiently 

promising. 

Another potential extension of  the DID algorithm is the use of  mid-level points (MLP) 

in the graph of  partitions. The MLP refer to nodes over the graph of  partitions that 

represent a promising combination of  features under some orthogonality/information 

criteria. The proposed approach can focus on estimating those “appealing” MLP, enabling 

to “jump” to these MLP to find the shortest path in the graph.  

A concluding note is that integrating concepts of  design of  experiments, data mining 

and information theory, as exercised in this work, can be beneficial for the construction of  

better classification tree models.  
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