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Automotive assembly lines are often characterized by robots’ failures that may result in

stoppages of the lines and manual backup of tasks. The phenomena tend to impair

throughput rate and products’ quality. This paper presents a backup strategy in which

working robots perform tasks of failed robots. The proposed Mixed-Integer Linear-

Programming based approach minimizes the throughput loss by utilizing the robots’

redundancy in the system. Two algorithms are developed to comply with stochastic

conditions of a real-world environment. The performance of these algorithms is

compared with several heuristics, and the downstream-backup based algorithm is

found superior to all other methods.

& 2009 Elsevier B.V. All rights reserved.
1. Introduction: body-shop systems in the automotive
industry

High-volume body-shop systems in the automotive
industry often consist of a series of assembly zones that
are serially connected via automated material handling
(MH) systems. A zone contains several robotic cells (also
called stations), each of which consist of several welding
robots that are working simultaneously. The automated
MH system is used for feeding the stations with parts that
are assembled (welded) to the vehicle body. These MH
systems are usually asynchronous where carriers can
circulate if they are not blocked or starved.

Weld spots are grouped on the basis of their location in
the vehicle body and performed sequentially by a single
welding robot. There are two types of weld spots:
dimensional control welds (DCWs) and respot welds
(RSPs). In DCWs, a new part is welded to the vehicle’s
body to define a new geometry of the vehicle. A station
which performs DCWs is usually facilitated by an auto-
ll rights reserved.
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).
mated MH system (and sometimes by another dedicated
robot) which transfers the parts that have to be
assembled. RSPs are performed on an existing geome-
try—no new part is assembled, and the sole purpose of
the RSPs is to strengthen the vehicle’s body.

Each robot can weld a single group of spots or multiple
groups of spots in a single work cycle. The welding task,
performed by a spot welding-gun, consists of the robot
motion from the ‘‘Home position’’ to the welding area and
back to the ‘‘Home’’ position, in addition to the time
dedicated to each welding spot.

The problem addressed in this paper refers to a
situation, depicted in Fig. 1, in which one robot or multiple
robots fail during the operation time. The proposed
recovery plan or a backup plan should then indicate
which robot(s) replace the failed ones during the repair
period. The backup plan aims at minimizing the failures
effects on the throughput rate.

It is assumed that the capability of each robot, in terms
of the weld spots it can perform, is known and given, as
well as the precedence relationships among various groups
of spots. The precedence relationships indicate the
assembly sequence among groups of spots, and eliminate
infeasible situations. For example, a situation where a
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Fig. 1. The problem illustration: robot R4 in station A fails and is replaced by robot R4 in station B.
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downstream robot has to backup a weld spot on a surface
which has been already covered by other parts. Here we
propose a backup plan only to the RSPs (about 85% of the
total number of spots). For the DCWs it is assumed that
the existence of the automated MH system, which handles
the newly assembled parts, prevents the possibility to
perform this task in another station.

The proposed approach solves a static problem, in
which one or more robots fail in some observed state of
the system. Given this state, the suggested procedure
provides the optimal backup robot(s) to perform the
groups of spots that were previously performed by the
failed robot(s). In practice, the proposed procedure can be
executed offline by considering in advance common
failure scenarios and obtaining a list of backup robots
per potential failure. Since we consider the reallocation of
only those spots that belong to failed robots, while
maintaining the original welding allocation, the number
of decision variables is relatively small. As a result, the
obtained algorithmic backup procedure is computation-
ally tractable, and thus can be executed online. The online
backup plan is executed following each robot failure while
updating the system state based on the robots’ status.
Both types of solutions are further discussed in later
sections.

The remainder of the paper is organized as follows. In
the next section related literature is reviewed, particularly
literature concerned with assembly line balancing. In
Section 3, mixed integer linear programming (MILP)
formulations are developed for the selection of the backup
robot(s) in case of a failure(s). The concept of a capability
matrix (CM) required for this end is also presented. In
Section 4, a small scale illustrating example is given, along
with the analysis of the solution characteristics as a
function of the problem parameters. Section 5 deals with a
real-world environment which captures the stochastic
characteristics of robots’ failure and repair. Several backup
heuristic rules are developed and a comprehensive
comparison between the proposed solution approach
and these heuristics is presented. The summary and
concluding remarks are given in Section 6.
2. Literature review

The considered problem can be viewed as a sub-
problem of the body shop design and operation. Due to
the complex nature of this problem, most of the research
in this field regarding the system design and operation has
been based on simulation. Several different types of
simulation software packages have been used for this
purpose. In general, the design process consists of the
work-cell design and the system design (Moon et al.,
2006). For the former, 3D simulation software can be used
(e.g. IGRIPs, RobCADs, QUESTs, Factory CADs) in order to
examine the detailed motion of the robots, collisions
among parts, jigs and robots. These tools can enable us to
construct and simulate virtual factory relatively fast. Such
an approach is suggested by Noh et al. (2001). For the
system design stage, discrete event simulation software
can be used to examine system performance measures
such as cycle time, work-in-process inventory, flowtime,
etc. A procedure for simulation-based optimization is
presented in Spieckermann et al. (2000), who combine
simulation with metaheuristics such as simulated anneal-
ing and genetic algorithm. The existed gap in the above
approaches concerns with the interface between the two
modules (work cell and system design). Since either of the
simulation tools is highly time consuming, in particular
the 3D simulation, one cannot apply an efficient combi-
natorial optimization approach for the spot allocation
problem. Such an approach is suggested in this paper, as
the considered problem is viewed as a special case of the
assembly line balancing problem.

In most manufacturing environments, as in the
environment addressed here, there is a clear motivation
to balance the work load among the system’s resources.
Work load balance avoids idleness of resources and often
results in a higher throughput rate. This concept is
explicitly applied in the assembly line balancing problem,
where a set of assembly tasks are assigned to assembly
stations in order to minimize the number of stations
subject to a required throughput rate, or minimize the
cycle time subject to a given number of stations. In both
cases, the utilization of the resources is maximized and
the idle time is minimized. When a single product type
(single model) is concerned, the problem is defined as the
simple assembly line balancing problem (SALB-P). This
problem is proven to be NP-Hard (Karp, 1972), and many
optimal and heuristic algorithms for this problem have
been developed during the last 50 years. Baybars (1986)
presents a survey on optimal procedures developed for
this problem. Scholl and Becker (2006) present a state of
the art survey of optimal and heuristic procedures for the
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SALB-P. Amen (2000) presents a survey on heuristic
approaches for assembly line balancing when cost is
explicitly considered. The assembly line balancing litera-
ture consists of many variations of the basic problem, such
as assembly lines with stochastic task times, mixed-model
lines (where different product types are assembled on the
same line), paced lines versus un-paced lines, equipment
selection, etc. Ghosh and Gagnon (1989) review optimal
and heuristic procedures for several variations of the
problem. An up-to-date survey is provided in Becker and
Scholl (2006), which addresses the generalized assembly
line balancing (GALB-P). Boysen et al. (2008) addresses
the gap between research and practice. They classify the
variations of the line balancing problem and suggest
relevant models for the real-world problems.

Although most traditional literature addresses manual
assembly lines, some papers take into account the
equipment required for the assembly process. Graves
and Holmes Redfield (1988) consider the mixed-model
assembly line design problem, where each task can be
performed by one or more alternative types of equipment.
Assuming a fixed sequence of the assembly tasks and
large similarities among different products, they suggest a
procedure for the design process, consisting of the
simultaneous task assignment and equipment selection.
Rubinovitz and Bukchin (1993), and later on Bukchin and
Tzur (2000), address a similar problem, where a single
model is concerned with a relatively flexible assembly
sequence, expressed by a precedence diagram. The task
assignment, along with equipment selection out of multi-
ple alternatives, is performed by using a branch and
bound optimal procedure for moderate sized problems.
Another branch and bound based heuristic is proposed for
solving large scale problems. Bukchin and Rubinovitz
(2003) extend the above problem to address the possibi-
lity to apply parallel stations in the assembly line.

The problem considered in this paper can be viewed as
another variation of the classic assembly line balancing
problem, where the assembly equipment, spot-welding
robots in this case, is taken into account. Nevertheless,
unlike the above, an operational problem rather than a
design problem is considered here, where the robots are
already placed in stations. Each time one or more robots
fail, the problem of assigning the group(s) of spots (tasks)
of the failed robot(s) to other working robot(s) can be
considered as a re-balancing problem. Fortunately, since
only the failed groups (i.e., the groups that were assigned
to the failed robot) are to be reassigned to the backup
robots, it is found that relatively large problems can be
solved in a relatively reasonable amount of time.
3. Spot re-allocation models

3.1. Preliminaries and definitions

The problem of spots reallocation due to a robot’s
failure can be addressed in three hierarchical levels:
(level 1) single-robot backup; (level 2) group allocation
based multi-robot backup; and (level 3) spot allocation
based multi-robot backup. In the first level, the whole
work content, consisting of one or several groups of
welding spots of the failed robot(s), is reallocated to a
single backup robot. In the second level, each group
performed by the failed robot is reallocated as a whole;
yet, different groups of spots can be allocated to different
backup robots. In the third level, any of the spots in each
of the failed groups can be individually allocated among
different backup robots.

There is a clear tradeoff between the quality of the
proposed solution and the required algorithmic complex-
ity. The proposed solution framework is general enough to
be implemented in each of these hierarchical levels.
Nevertheless, the proposed solution approach focuses on
the first two hierarchical levels from practical considera-
tions. Splitting spots within a group (the third hierarchical
level) might be attractive with regard to the cycle time
reduction. However, the current available technology,
both at the controllers and the robotics stations, do not
enable an efficient execution at this level.

As discussed above, the determination of the backup
robot(s) is somewhat similar to the re-balancing of an
assembly line which aims at minimizing the cycle time.
Consequently, the proposed MILP, on which the solution
approach is based, is an enhanced version of similar
formulations known in the area of assembly line balan-
cing. In the proposed formulation, robots and groups of
spots are analogous to the stations and tasks in the
traditional assembly line, respectively. Consequently, we
assume that the robot load is equal to the summation of
all welding times of the groups of spots assigned
to this robot, and the line cycle time is determined
by the most loaded robot. In the proposed model we
consider only the group of spots of the failed robot(s)
to be reallocated, while shifting groups of working robots
is not allowed. Accordingly, we expect the number of
integer variables to be much smaller with respect
to the assembly line balancing problems. As noted above,
the reduction in the number of variables leads to a
solution which can be attained in a relatively small
amount of time. Next we present the used notation and
formulations.

Notation

Sets and parameters

I set of total groups of spots
IW set of total groups of spots assigned to working

robots, IWDI

IF set of total groups of spots assigned to failed
robots, IF

¼ I=IW

R set of all the robots located in the assembly line
RW set of working robots, RWDR

RF set of failed robots, RF
¼ R\RW

Ti performance time of group of spots i (including
setup)

IPW
i set of immediate predecessors of group of spots i

assigned to working robots
ISW

i set of immediate successors of group of spots i

assigned to working robots
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IPF
i set of immediate predecessors of group of spots i

assigned to failed robots
ISF

i set of immediate successors of group of sport i

assigned to failed robots

Matrices
Two matrices describe the current and the potential

work allocation in the system. The former is given by the
initial matrix (IM) and the latter given by the CM. The
entries in these matrices satisfy the following rule.

IMir ¼

1; if a group of spots i is performed by robot

r the system’s initial state

0 otherwise

8>><
>>:
8i 2 I; 8r 2 R,

CMir ¼
1; if a group spots i can performed by robot r

0 otherwise
;

(

8i 2 I; 8r 2 R

Note that CMirXIMir 8i 2 I; 8r 2 R.
A third matrix, which represents the solution of the

backup problem, is the recovery matrix (RM) and will be
explained later.

Decision variables

xr ¼
1; if robot r is a backup robot

0 otherwise

�
8r 2 R,

c—cycle time of the system

xr ¼
1; if group spots i is performed by robot r after failure

0 otherwise
;

(

8i 2 IF ; 8r 2 RW

Prior to implementing the solution procedure, the CM

and the precedence diagram should be obtained. The CM
captures the redundancy of the system and the capability
of different robots with regard to performing different
groups of spots. The precedence diagram consists of the
precedence constraints among groups. The CM, along with
the precedence diagram, establish the sets of constraints
for the backup strategy.

As noted above, each element CMir of the CM is equal to
1 if group of spots i can be performed by robot r and 0
otherwise. The CM is generated on the basis of the initial
matrix, IM. Each row of IM is examined with respect to
those robots that are capable of performing the respective
group of spots, in addition to the originally allocated
robot. For each robot r, which is capable to backup group
of spots i, we set Cmir ¼ 1. The capability of a robot to
become a backup robot mainly depends on its gun
configuration and its physical location. The latter deter-
mines the work envelope of the robot and its feasibility to
perform group of spots i. The capability of the robot
remains unchanged as long as no technological changes
were applied. If no redundancy exists (CM ¼ IM), i.e., each
group can be performed by a single robot only, no backup
is available and the groups of the failed robot(s) should
either wait for the robot to recover or be backed up in a
manual station at the end of the zone. The other extreme,
according to which CMir ¼ 1 8i, 8r, represents a maximal
redundancy level, which is uncommon in practice.

The precedence diagram consists of the technological
precedence relationships between groups of spots or
between spots within groups. These constraints result
from the product structure along with the characteristics
of the production system. For example, a precedence
constraint may result if during the assembly process the
access to a certain location in the body is avoided due to
its covering by a welded part. Note, that a common
precedence diagram provides much flexibility which
enables numerous feasible assembly sequences. The
precedence constraints can be expressed in a diagram,
as shown later on in Fig. 4.

3.2. General robot backup (GRB) formulation

The proposed formulation considers a situation where
one or more robots fail and their groups of spots are
reallocated to multiple backup robots simultaneously; still
this number can be limited subject to managerial
decisions. This new allocation should satisfy the capability
and precedence constraints while minimizing the
throughput loss (or the cycle time). The proposed model
is a general one; some special cases are derived later on, as
seen in the sequel.

Model GRB:

Minimize c (1)

Subject to:X
i2IW

Ti � IMir þ
X
i2IF

Ti � rmirpc 8r 2 RW (2)

X
r2RW

rmir ¼ 1 8i 2 IF (3)

xrXrmir 8i 2 IF ; 8r 2 RW (4)

rmirpCMir 8i 2 IF ; 8r 2 RW (5)

X
k2RW

k � IMhkp
X
l2RW

l � rmil 8i 2 IF ; 8h 2 IPW
i (6)

X
k2RW

k � rmikp
X
l2RW

l � IMgl 8i 2 IF ; 8g 2 ISW
i (7)

X
k2RW

k � rmhkp
X
l2RW

l � rmil 8i 2 IF ; 8h 2 IPF
i (8)

X
k2RW

k � rmikp
X
l2RW

l � rmhl 8i 2 IF ; 8h 2 ISF
i (9)

X
r2RW

xrpRMAX (10)

rmir 2 f0;1g 8i 2 IF ; 8r 2 RW (11)

xr 2 f0;1g 8r 2 R (12)

cX0 (13)
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The objective function (1) minimizes the system’s cycle
time, i.e., maximizes the throughput rate. The cycle time
constraint set (2) enforces the system’s cycle time to be
larger than or equal to the assembly time of the most
loaded robot. The assembly time of a single operational
robot consists of two components; the first component
captures the constant assembly time, namely, the initial
assembly time of a specific robot, prior to any robot’s
failure, and the second component contains the additional
assembly time added to a working robot due to other
robots’ failures. Note that the values of Ti can be taken
either directly from the line or using robotic CAD systems.
According to constraint set (3), each group of spots
previously done by the failing robot(s) will be backed up
by some working robot. Constraint set (4) enforces the xr

variables to be equal to 1 if robot r is a backup robot. The
suitability of each robot r to serve as a backup robot, based
on the CM, is verified in constraint set (5).

Constraint sets (6)–(9) are precedence constraints
which assure that the new assignment of the failed
groups will still satisfy the technological precedence
relationships. Constraint sets (6) and (8) assure that a
failed group i will be performed after the completion of
each of its immediate predecessor, h, as group h belongs to
a working robot in the former and to a failed robot in the
latter. Constraint sets (7) and (9) enforces the failed task i

to be completed before starting each of its immediate
successors, g, as group g below to a working robot in the
former and to a failed robot in the latter.

Constraint set (10) is optional and enables to limit the
number of backup robots. Constraints sets (11) and (12)
are integrality constraints and (13) is the non-negativity
constraint of the cycle time, c.

Several special cases can be derived from the above
formulation. In case RMAX ¼ 1, each time a failure occurs
all the groups of the failed robot(s) are performed by a
single backup robot. This limitation simplifies the solution
implementation; however, it will most likely result in a
poor solution, especially in a relatively balanced system.
In this case, the backup robot will end up with a relatively
high cycle time. This model is called the single-robot
backup (SRB) model. The other extreme refers to the
situation where constraint sets (4), (10) and (12) are
omitted. In this case, there is no limitation on the number
of backup robots and the solution is expected to be much
better. We refer to this model as the multiple-robot
backup (MRB) model. Another difference between SRB
Zone D

Station D010 Station D020

R1 R3

R2 R6R4

R5 R7

R8

Fig. 2. The layout of the i
and MRB model relates to the solution run time, as the
latter model is expected to take higher computation time
due to the additional integer variables.

4. Problem analysis

In this section we start with a small-scale problem,
focusing on a single assembly zone, in order to illustrate
the difference between the SRB and the MRB formula-
tions. Next, the MRB formulation is tested and analyzed
under a large scale environment. By using a full factorial
experiment, we examine the effect of main problem
parameters on the cycle time following a robot’s failure
and a reallocation of welding spots.

4.1. Small-scale illustrative example

To illustrate the performance of the above formulation,
a small scale example is presented, focusing on a single
zone. Fig. 2 depicts the layout of the considered assembly
zone which consists of four stations with a total of 14
robots. Let us assume that robot no. 7 and robot no. 12,
marked by the gray color in the figure, fail and require
backup by the working robots. The problem to be solved is
how to reallocate the group of spots of these failed robots.

The initial matrix, IM and the CM are presented in
Fig. 3(a) and (b), respectively. Each column (row)
represents a robot (a group of spots). The bolded columns
and rows represent failing robots and their corresponding
groups of spots (i.e., RF

¼ {7,12} and IF
¼ {8,9,15,16,17}).

Note that groups of spots 1 and 2 are considered as DCWs,
i.e., they do not have any backup. The precedence
constraints among groups and the process times are given
in Fig. 4, where each node represents a group of spots with
its process time, Ti, written above the node. The gray cells
in Figs. 3 and 4 represent the reallocated groups and their
respective process times.

Note that at the initial state, prior to any failure, the
bottleneck robot is robot no. 2 with a cycle time of 38 s.
When failure occurs, we start by solving the SRB model,
which results in robot no. 11 as the chosen backup robot.
Under this scenario, the obtained cycle time is equal toP

i2IW Ti � IMi;11 þ
P

i2IF Ti � rmi;11 ¼ 100 s. Note that the
‘‘single robot constraint’’ yields a significant increase in
the cycle time. Next, we solve the MRB model, which
allows backup by multiple robots. Now the obtained
Station D030 Station D040

R10

R9 R11

R12

R13

R14

llustrative example.
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Robot Robot

1 2 3 4 5 6 7 8 9 10 11 12 13   14 1 2 3 4 5 6 7 8 9 10   11 12 13 14
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
2 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
3 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
4 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0
5 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0
6 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0
7 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0

Group 8 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0
of 9 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0
spots 10 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0

11 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0
12 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 1 0 0 0
13 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
14 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0
15 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1
16 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0
17 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 1
18 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 1 0 1 0 1 0 1 0
19 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1

Fig. 3. Input data of the small-scale example. (a) initial matrix, IM (b) capability matrix, CM.

1

2

3 4

5

7

6

9

8

13

12

17

16

15

14

11

10

18

19

Independent groups of spots

33

36

20

15 17

30

3238

12

10

34
17

16
36

16 14

37 30

29

Fig. 4. Precedence diagram of the small-scale example.

Robot

1 2 3 4 5 6 8 9 10 11 13 14

8 0 0 0 0 0 0 0 0 0 1 0 0

Reallocated 9 0 0 1 0 0 0 0 0 0 0 0 0

Group of 15 0 0 0 0 0 0 1 0 0 0 0 0

spots 16 0 0 0 0 0 0 0 0 1 0 0 0

17 0 0 0 0 0 0 0 0 0 0 0 1

Fig. 5. Recovery matrix (RM) for the small-scale example.
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solution, consisting of the reallocation of the failed groups,
is given in the RM. This matrix consists of the failed groups
only (rows) and the robots (columns), as can be seen in
Fig. 5. Consequently, each column containing an element
with a value of 1 represents a backup robot. As we can see,
the five failed groups, 8, 9, 15, 16 and 17 are now
performed by five different backup robots no. 11, 3, 8, 10
and 14, respectively. The new bottleneck robot, is still
robot no. 11 (resulting from arg maxr2RW ð

P
i2IW Ti�

IMir þ
P

i2IF Ti � rmirÞ ¼ 11, consequently with a much low-
er cycle time of

P
i2IW Ti � IMi;11 þ

P
i2IF Ti � rmi;11 ¼ 49 s.
4.2. Analysis of the solution approach

In the following experimentation, we examine the
effect of some of the problem parameters on the cycle
time after the reallocation of failed spots, using the MRB
model. The examined environment is based on a full
body-shop assembly line, consisting of four zones, in
which 128 groups of spots are performed. The cycle time
of the line before failure is 42 s. The problem parameters
that are used as the experimental factors for the analysis
are the following:
1.
 The number of failed groups.
2.
 The flexibility ratio (F-ratio) as defined by Dar-El
(1973). This factor provides a quantitative expression
for the level of flexibility in the assembly sequence,
as represented by the precedence diagram. In parti-
cular, F-ratio ¼ 1�H/B, where H is the actual number
of precedence constraints and B is the maximal
possible number of precedence constraints. Note that
0pF-ratiop1, where F-ratio ¼ 1 denotes a maximal
flexibility where no precedence constraints among
groups exist (see, for example, the part of the
precedence diagram in Fig. 4, which consists of groups
of spots no. 3, 4 and 15), while an F-ratio ¼ 0 denotes a
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Robot

Ni 1 2 3 4 5 6

1 5 1 0 1 0 1 0

Group of

2 7 1 0 1 0 1 0

spots

3 4 0 1 0 1 0 1

4 8 1 0 1 0 1 0

5 5 0 0 0 1 0 1

6 5 0 0 1 0 1 0

7 6 0 0 1 0 1 0

8 4 0 0 0 1 0 1

Fig. 6. Capability matrix (CM) for redundancy calculation.

Table 1
ANOVA table for the cycle time.

Source Sum of squares DF Mean square F value Prob 4 F

Model 2376.96 7 339.57 15.944 o0.0001

# failed 1913.86 3 637.95 29.955 o0.0001

F-ratio 292.44 2 146.22 6.866 0.0028

RDF w 555.10 2 277.55 13.032 o0.0001

Residual 809.28 38 21.30

Lack of fit 512.06 24 21.34 1.005 0.5127

Pure error 297.22 14 21.23

Cor total 3186.25 45

T. Kahan et al. / Int. J. Production Economics 120 (2009) 315–326 321
situation with no flexibility at all, where the assembly
sequence is strict (see for example the groups of spots
no. 6, 12 and 18 in Fig. 4).
3.
 The redundancy factor, RDF, reflects the percentage of
redundancy in the CM. This proposed factor, has two
forms—a weighted and an un-weighted expression
given by RDF ¼ ð

P
i2I

P
r2RCMirÞ � jIj=ðjIjðjRj � 1ÞÞ and

RDFW¼
P

i2INið
P

r2RCMir�1Þ=ððjRj � 1Þ
P

i2INiÞ, respect-
ively. The former expression gives the amount of
redundancy that exists in the system, as a zero RDF
value stands for a ‘‘no backup’’ situation in the system,
while an RDF value of one stands for maximal backup,
where each group of spots can be performed by all
robots. In the latter expression, the groups of spots are
weighted by the number of spots in each group. Based
on the sample data which appears in Fig. 6,
RDF ¼ 12=40 ¼ 0:3, and while considering the
number of spots in each group i, we get RDFW ¼

66=220 ¼ 0:309.

A full factorial experiment is conducted by determin-
ing three levels for the F-ratio and the RDF factors
resulting in scenarios of failed robots. In each scenario,
six replications have been performed, where in each time
the number of failed robots was randomly generated
between 1 and 4 resulting in a number of failed groups,
which is between 1 and 8. Consequently, an overall of 54
experiments are conducted in total. The system config-
uration was given and remained unchanged along the
experimentation. An ANOVA with a confidence level of
95% has been constructed for the cycle time, and the
results are described below. The analysis of variance,
presented in Table 1, indicates that the model, as well as
each of the three factors, is significant. The obtained
results show that the cycle time increases significantly
with the number of failed groups and decreases signifi-
cantly with the F-ratio and the RDFW factors, as can be
seen in Fig. 7. One can see that these results are quite
intuitive; the cycle time is supposed to increase in the
amount of work to be reallocated. The number of backup
options is expected to increase in the values of the F-ratio
and the RDFW, resulting in an improved cycle time.
Nevertheless, one can see a ‘diminishing return’ of the
F-ratio and the RDFW factors with regard to the cycle time,
as the major part of the improvement is associated with
the F-ratio (RDFW) increase from the lower level, F1, (R1)
to the medium level, F2, (R2), while a smaller improve-
ment is associated with an increase from the medium
level, F2, (R2) to the higher level, F3, (R3).

5. Performance analysis of a ‘‘real-world’’ setting

5.1. Aspects of real-world implementation

The implementation of the above model in a stochastic
industrial environment is not straight-forward. The model
presented above focuses on a particular system state after
a failure occurs, and aims at finding the best backup
solution for this occurrence without taking into con-
sideration future trajectories of failures and repairs.
However, in a real-world environment, failures occur
randomly over time, the repair time is a random variable
and the number of simultaneously failed robots may
change. In such an environment, the effectiveness of our
myopic solution is no longer guaranteed. In this section,
we aim at analyzing the effectiveness of implementing the
MILP model to a real world setting. The implementation of
the proposed procedure should consider the following
two aspects:
1.
 Avoiding the reallocation of ‘working’ groups: the
chronology of the decision-making process may imply
the reallocation of groups of spots of working robots.
Assume, for example, that robot X has failed, and a
backup solution was applied. While robot X is down,
robot Y also fails. Clearly, the backup solution for both
failed robots, X and Y, may require an additional
reallocation of the groups of robot X. However, from
practical considerations, we avoid applying such an
action in the proposed procedure since it would
increase the variability in the system, which has to
be avoided in real settings. Consequently, we allow the
reallocation of groups of failed robots only.
2.
 Online versus offline procedure: each time a robot state
is changed, the solution is either calculated online, or
a-priori generated solution is implemented. The im-
plementation of an online procedure depends on the
capabilities of the online computing system in the shop
floor and the expected algorithmic run time (note that
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experiments resulted in negligible computation time
for real size problems). In a case where the online
procedure cannot be implemented, an offline proce-
dure is applied instead. In this case, all the solutions of
all possible (or reasonable) scenarios are generated a-
priori and stored in the system. As a consequence, each
time a robot’s state changes, the a-priori generated
solution is retrieved from the database and implemen-
ted. Clearly, the number of possible scenarios depends
on the number of robots that can break down
simultaneously. For example, when two out of sixty-
five robots can break down simultaneously, the
total number of failure scenarios is given by

65

1

� �
þ

65

2

� �
¼ 2;145. This number should be kept

to a relatively small value to enable the implementa-
tion of the offline procedure. Another reasonable
scenario which may occur in such a stochastic system
is the failure of a robot while another robot is down
(rather than a simultaneous fall of two robots). In order
to avoid reallocation of ‘working’ groups (as may
happen when applying the above solution for two
failed robots), one should generate the solutions of
such scenarios in the offline procedure.

The implementation process of the proposed procedure
is summarized in Fig. 8. As the system’s state changes,
two options arise. If a failed robot is up again, the original
allocation is resumed, regardless of whether there are
currently other failed robots. The reason relies on our
assumption that the initial matrix represents the best
work allocation when all robots are up, and this way,
the work allocation of the initial matrix will be resumed
each time the failed robots will be repaired. In case
the change is a result of a newly failed robot, we either
use the MILP formulation to generate a backup solution
(online procedure) or retrieve the solution from a set
of a-priori generated and stored solutions (offline proce-
dure). In case such a solution does not exist, the groups
of the newly failed robot are allocated to the MR
station.

5.2. Performance evaluation

Although the proposed formulation can be solved to
optimality, obtaining a global optimum is not guaranteed
due to the stochastic nature of the failures and repairs
process, which is not taken into account by the MILP
formulation. Consequently, the performance of the pro-
posed procedure should be validated in a real-world
stochastic environment. To this end, two variations of the
proposed procedure are compared with various online
heuristic allocation rules, by relying on two performance
measures, cycle time and quality, while the latter is mainly
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Fig. 9. Body-shop illustration.
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affected by the manual welding backup. A discrete event
simulation based on a real sized body-shop, (implemented
via Arena 5.0 software) is utilized for the validation
process.

The body-shop, which is used in this set of experi-
ments, is depicted in Fig. 9. It consists of four zones, each
of which contains several stations and one MR station at
the end of the zone. In each station several robots are
working simultaneously. This production environment is
similar to automotive plants founded in the 90’s across
the US and Europe. The time-between-failure and the
time-to-repair are assumed to follow the exponential
distribution. This assumption is quite common in the
literature, however, one should note that some cases the
time to repair may not follow the exponential distribu-
tion. The mean values (MTBF and MTTR) are based on a
real dataset. Among the 65 robots located on the line, we
assume that only 20 robots are prone to failure, while at
the maximum two robots can fail simultaneously. Further
support for this assumption was obtained by running a
simulation of the line with the actual MTBF and MTTR that
resulted with a negligible number of scenarios with more
than two failed robots simultaneously. The problem is
tested on a relatively high redundancy and medium
flexibility environment. The MR station is utilized in cases
where no backup solution exists. Note that in order to
avoid situations of line stoppage, we assume that the MR
is always feasible as a last resort when no robotic backup
exists, regardless of the precedence constraints.

The solution approaches compared in this experimen-
tation are described as follows.
1
 Backup by MR only—this solution approach charac-
terizes a common default situation where no backup
strategy is applied. When a failure occurs, the MR
station, which is located at the end of each zone,
backup all the spots that were not performed as
planned.
2
 MRB Formulation based algorithm—the optimal MRB
formulation is applied, according to the implementation
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scenarios that were described in Fig. 8. If no solution
has been found, the groups are allocated to the MR
station.
3
 MRB downstream formulation based algorithm
(MRBD)—the MRBD is a variation of the MRB formula-
tion, in which a backup robot is searched for only
among downstream stations. If no solution down-
stream has been found, the groups are allocated to the
MR station. The motivation behind this approach is to
decrease the use of manual stations which have
negative effect on the product’s quality, as well as the
cycle time (downstream stations are preferred since
they can backup the entire failed groups since the time
of the failure. In comparison, upstream backup requires
a manual backup for all the bodies that are between
the backup station and the failed station at the time of
the failure).
4
 Heuristic allocation rules—the following heuristics are
state-dependent in nature, by which the backup robots
are chosen online. Each time a robot fails, a feasible set
of backup robots (candidates) is obtained taking into
consideration the precedence constraint and the CM.
The reallocation of groups is performed in a descend-
ing order of process times, namely, the group with the
highest process time is reallocated first, the one with
the second highest time is reallocated next, etc. If the
set of feasible robots is empty, the groups of spots will
be sent to the MR station. The backup robot is selected
based on one of the following rules:
4.1 Nearest capable robot (NCR)—the nearest capable

robot is selected to perform the failing groups of
spots. This heuristic approach searches first for a
downstream candidate and only then, if such a
robot does not exist, it searches for an upstream
candidate.

4.2 Most reliable/least loaded robot (RLR)—this rule
combines two characteristics of each robot: its
reliability, defined by its MTBF, and its current
load. Clearly, a robot with higher MTBF and lower
current load is preferred for serving as a backup
robot. The weighted sum of these measures, RLRr, is
calculated for each capable robot, r:

RLRr ¼ a1 �
MTBFrP

r2RCiðtÞ
MTBFr

" #

þ a2 �

1
pr ðtÞP

r2RCiðtÞ
1

pr ðtÞ

" #
; 8r 2 RCiðtÞ; 8i 2 IF

where RCi(t) is the set of robots capable of
performing group of spots i at time t; MTBFr is
the mean time between failures of robot r; pr(t) is
the process time already allocated to robot r at
time t; and a1 (a2) is the weight of the reliability
measure (load measure). Note that the values of
the two measures are normalized between zero
and one for scaling purposes. The closest candidate
serves as a tie breaker in this rule. In this
experiment three rule combinations were chosen,
defined by three different weights combinations:
(a1,a2) ¼ (0.5, 0.5), (1,0) or (0,1).
4.3 Random capable robot (RCR)—the backup robot is
randomly chosen out of the set of possible
candidates RCi(t).
As noted above, the two performance measures con-
sidered here are the cycle time and the quality. The quality
measure is associated with the percentage of groups of
failed robots that are backed up in the MR station. The
reason is that the quality of spots performed by robots is
much higher than those that were performed manually,
and hence, one prefers to minimize the use of the
MR stations. Moreover, the MR also has a negative effect
on the cycle time, since the performance time in the
manual station is about three times higher than the
robotic time.

5.3. Simulation results

A comparison of the commonly implemented backup
policy (‘‘MR only’’), the MRB, the MRBD and the five
proposed heuristics (NRC, three variations of RLR and RCR)
involves in total eight different solution approaches for
the reallocation problem. A large scale discrete event
simulation based on a real body-shop was implemented
and analyzed via Arena Software 5.0. Every configuration
was simulated by running 50 replications, each of which
of two eight-hour shifts and a warm-up period of 2 hours
(statistics were not collected during this period). Since the
cycle time is around 1 minute, each run consists of
approximately 1,000 cycles. The number of 50 replications
was large enough to guarantee a relatively tight con-
fidence interval, as seen next.

The average cycle time, its standard deviation (among
replications) and the corresponding half width 95%
confidence level were collected from the simulation study.
The number of groups reallocated to the MR stations’ and
particularly the percentage of this number with respect to
the total number of reallocated groups, were collected and
used to define the quality measure of the line. The
simulation results are presented in Table 2. One can see
that the MRBD (based on the proposed MILP formulation
where only downstream backup is allowed) outperforms
all other methods in both the cycle time and the quality
performance measures. These results are statistically
significant with a confidence level of 95%. In particular,
the MRBD provides an average cycle time of 56.69 s versus
a cycle time of 63.21 s of the default situation—a
reduction of 10.3%. In addition, only 3.2% of the groups
which require backup are allocated to the MR station.

The MRB is the second best with regard to the cycle
time performance, however, significantly inferior to MRBD
in this measure. Moreover, it suffers from low quality
grade due to an extensive usage of the MR station for
backup (49.7%). This is due to the use of upstream backup
robots by the MRB approach. In this case, all the groups of
spots located between the backup robot and the failed
robot at the moment of failure are reallocated to the MR
station. As for the quality measure, we can see that
the NCR approach is the second best with only 6.3%
of the backup groups being allocated to the MR station.



ARTICLE IN PRESS

Table 2
Results summary of the experimentation.

MR only MRB MRBD NCR RLR (0.5,0.5) RLR (1,0) RLR (0,1) RCR

Cycle time

Average cycle time 63.21 57.9 56.69 58.32 58.3 58.16 58.34 60

STD cycle time 1.414 1.131 1.202 0.955 1.025 1.025 1.061 1.096

Cycle time half width (95%) 0.4 0.32 0.34 0.27 0.29 0.29 0.3 0.31

Failure data

Groups MR counter 487.5 260.9 16.3 34.2 144.76 86.9 170.46 183.4

Groups backup counter 0 264.1 498.7 506.5 382.14 453.7 357.6 328.6

MR Groups (%) 100.0 49.7 3.2 6.3 27.5 16.1 32.3 35.8

Backup Groups (%) 0.0 50.3 96.8 93.7 72.5 83.9 67.7 64.2
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This result is not surprising since in this approach
we first look for downstream backup and only in cases
where such a backup is infeasible, an upstream backup is
adopted.

Regarding the RLR rules one can see that the cycle time
performance of these three rules is quite comparable, yet,
allocating groups to robots with lower MTBF (RLR(1,0))
yields a better quality measure than the other two
combinations. Note that the effect of the MR station on
the cycle time results in a higher cycle time even when
allocating groups to the least loaded robots (RLR(0,1)). As
could be expected, the RCR is the worst heuristic both in
terms of its cycle time and its quality measure.

The comparative results are also illustrated in Fig. 10,
which shows the values of the two performance measures
for each allocation method. It is evidently seen that all
methods are dominated by the MRBD. In addition, one can
see that the commonly implemented backup policy,
where backup is performed only manually, is fully
dominated by all the other policies, and in particular by
the MRBD. Hence, we recommend using the MRBD as the
backup approach.
6. Summary and concluding remarks

In this paper we consider a practical spot welding
reallocation problem due to robots’ failures. Two MILP
formulations have been suggested to solve the problem
where a single robot or multiple robots are chosen as the
backup robot(s). Note that the number of integer variables
is relatively small due to the fact that only the groups of
spots of the failed robots are considered as decision
variables. Consequently, relatively large real-sized pro-
blems can be solved via the proposed formulations.
Moreover, although the proposed mathematical model
was designed for a deterministic environment, which does
not take into account future failures and repairs of robots,
a slight variation of it (the MRBD policy) has been found to
dominate various other backup policies under stochastic
conditions.

Future research may include a generalization of the
proposed approach to support a mixed-model environ-
ment; a dynamic reallocation model—in order to increase
the system’s robustness; and a comparison between the
suggested approaches and other heuristic allocation rules.



ARTICLE IN PRESS

T. Kahan et al. / Int. J. Production Economics 120 (2009) 315–326326
Another possible direction may be associated with
developing a solution approach which allows group
splitting. In this case, a development of easy to use
welding time estimation tools will be needed.
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