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Abstract

The objective of design of experiments (DOE) is addressed by introducing an information
optimality criterion, which is based on concepts adopted from information theory. In particular,
experiments are speci�ed to maximize the information in the system responses about estimators of
the system parameters. It is shown that one has to maintain certain resolution of the design matrix
to maximize the information, obtainable by a design, about a system described by a linear model
with interactions. The correspondence between error-correcting codes and fractional factorial
experiments provides a method to attain the required resolution with a smaller fractional factorial
experiment by increasing the number of levels associated with each factor – a result that in the
context of experimental design seems counterintuitive. In particular, the Gilbert–Varshamov and
the Singleton bounds are employed to obtain bounds on the size of the fractional experiment.
Analytical approximations and numerical results are given and illustrated by examples. c© 2001
Elsevier Science B.V. All rights reserved.
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1. Introduction

Fractional factorial experiments (FFE) are often applied to screening experiments
in which many factors are considered with the purpose of identifying those that have
a signi�cant e�ect on the response. Screening experiments are often used as building
blocks to �t empirical response models, seeking to relate a response Y to the values of

∗ Corresponding author.
E-mail addresses: bengal@eng.tau.ac.il (I. Ben-Gal), levitin@enga.bu.edu (L.B. Levitin).

0378-3758/01/$ - see front matter c© 2001 Elsevier Science B.V. All rights reserved.
PII: S0378 -3758(00)00165 -8



268 I. Ben-Gal, L.B. Levitin / Journal of Statistical Planning and Inference 92 (2001) 267–282

control factors x1; : : : ; xn where the underlying relationship is unknown. The empirical
model can be written as

Y = g(x1; x2; : : : ; xn;B1; : : : ; Bp) + �; (1.1)

where g approximates an unknown function by a �rst- or second-order polynomial in
x1; : : : ; xn with coe�cients B1; B2; : : : ; Bp, which are the estimators of the unknown sys-
tem parameters �1; �2; : : : ; �p and � represents the observation error (noise). In practice,
estimators are usually obtained by the method of least squares or maximum likelihood
from a set of m experiments. Then, the experiments are represented by the m×p
design matrix, x, whose rows correspond to the experiments and columns are asso-
ciated with the system parameters (untraditionally, the design matrix is denoted here
by small letter to distinguish it from random variables that are denoted by capital
letters).
In this paper, the task of de�ning a fraction of a factorial design, out of all

possible combinations of factor levels, is considered and analyzed from an informa-
tion–theoretical perspective. Section 2 gives some background on Shannon’s informa-
tion measure, the construction of linear error-correcting codes and its correspondence
to the construction of FFE. In Section 3, we introduce an information optimality cri-
terion, which is based on Shannon’s information measure. The new criterion seeks
to maximize the information gained from experiments about estimators of the system
parameters. It is shown that, for systems described by a multiple linear regression
model, this criterion requires to maintain a certain resolution of the design matrix. The
problem of obtaining a desired resolution with limited number of experiments is then
analyzed in Section 4, by using the isomorphism between the construction of FFE and
linear error-correcting codes. In particular, the desired resolution is achieved with an
FFE of a smaller size by increasing the number of levels associated with each factor
– a result that seems somewhat paradoxical. Bounds on the size of the fractional fac-
torial designs are given by use of the Gilbert–Varshamov and the Singleton bounds.
Section 5 concludes the paper.

2. Background

2.1. Shannon’s information measure

Let Y and � be two continuous random variables (r.v.’s) with marginal probability
density functions (pdfs) denoted, respectively, by fY (y) and f�(�) and a joint pdf
f(y; �) (random variables, other than �, are denoted here by capitals, and their values by
small letters). The information in Y about �, denoted by I(Y ;�), has been introduced
by Shannon (1948) and de�ned as

I(Y ;�) = H (�)− H (� |Y ) =
∫
{y;�}

f(y; �) log
f(y; �)

fY (y)f�(�)
dy d�; (2.1)
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Fig. 1. The binary entropy of a discrete random variable.

where H (�) is the di�erential entropy of � de�ned as

H (�) =−
∫
{�}
f�(�) logf�(�) d� (2.2)

and H (� |Y ) is the conditional di�erential entropy of � given Y which is de�ned
as the expected value of the entropy of the conditional distribution, averaged over the
conditioning random variable, i.e.,

H (� |Y ) =−
∫
{y;�}

f(�; y) logf�|Y (� |y) dy d�: (2.3)

Thus, information is interpreted as the reduction of the entropy of one r.v. condi-
tioned by another r.v. and entropy is used as a measure of uncertainty. For example,
in Fig. 1 the entropy of a discrete r.v. taking one value with probability � and an-
other value with probability 1 − �, is plotted. The binary entropy function, given by
h(�) =−� log �− (1− �) log(1− �), is measured in shannons (or bits) if the log is to
the base 2. Note that the entropy depends only on the probability distribution of the
r.v. and not on the values taken by the r.v. It is a concave function of the probability �
and equals 0 when �=0 or 1, i.e., when the variable is not random and no uncertainty
is associated with its outcome. Moreover, it can be shown that Shannon’s de�nition of
entropy is closely related to the notion of entropy in thermodynamics (e.g., see Cover
and Thomas, 1991).

2.2. Linear error-correcting codes (ECC) and fractional factorial experiments
(FFE)

Block codes introduce controlled amounts of redundancy into transmitted data stream,
providing the receiver with the ability to detect and to correct errors caused by noise in
the communication channel. A q-ary block code C of length n and size M consists of
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M codewords {c0; c1; : : : ; cM−1}, each codeword being a vector from Znq : ci ∈ Znq (i=
0; 1; : : : ; M − 1) where Zq = {0; 1; : : : ; q − 1}. If any error that results in a change of
values of no more than t symbols in a codeword can be corrected with code C , the
code is called t-error-correcting code.
The Hamming distance between two vectors from Znq is the number of coordinates in

which these words di�er. The distance d of a block code C is the minimum Hamming
distance between any two distinct codewords from C . It can be seen that d= 2t + 1.
If M = q� and C is a linear subspace of Znq ; C is called a linear (n; �) code of
dimension �. Since every �-digit q-ary message can be encoded by a codeword of
C ; � is the number of information digits, r=n−� is the number of redundant digits,
or redundancy of the code (see, e.g., Wicket, 1995) for more details on error-correcting
codes).
To construct a linear q-ary (n; �) code with distance d, one has to �nd a linear

subspace C in Znq of dimension � such that any vector in C has a weight (number
of nonzero components) not less than d. The null space of C (called also the dual
subspace or orthogonal subspace) is a linear subspace of Znq of order q

n−� (dimension
r) that is interpreted as the dual code C⊥. Any vector from C is orthogonal to any
vector from C⊥. C⊥ can be represented by a matrix whose rows are the qr vectors
(codewords) of C⊥. Then, the n column vectors of C⊥ form a column space of rank
r, which is a linear subspace of Z �q ; �= q

r .
It has been known that there exists a correspondence between error-correcting codes

and fractional factorial designs. Bose (1950, 1961) has presented a mathematical iso-
morphism between those structures and showed how both the problem of determining
the alphabet of a code and the problem the selection of experiments to be included
in an FFE design (the subset selection problem) can be reduced to the �-surjective
matrix problem. Delsarte (1973) has obtained a linear programming bound for orthog-
onal arrays. Sloane and Stufken (1996) extended this bound for orthogonal arrays with
mixed levels. Hardin and Sloane (1993) suggested a numerical algorithm to construct
optimal designs for several performance criteria. We follow Kishen (1948) and Bose
(1961) in the presentation below.
An isomorphism between ECC and FFE can be established (see Bose, 1961) by

mapping vectors of Znq to a group of elements, Ei; i=1; : : : ; q
n, where the zero vector

is mapped to the identity element of the group. Addition of vectors (component-wise
addition modulo q) is preserved and represented by multiplication of elements in the
group. Multiplication (modulo q) of a vector by a constant p (p = 0; 1; : : : ; q − 1) is
preserved and represented by multiplication of the exponents (by p modulo q) of gener-
ators of the group forming the image of the vector. Then, the problem of constructing a
fractional factorial experiment (FFE) with resolution d is directly related to the problem
of constructing a t-error-correcting code (ECC) with distance d= 2t + 1. The images
of the basis elements of the vector space Znq , denoted here by F1; F2; : : : ; Fn are the
generators of the group that can be identi�ed with the n factors of a factorial exper-
iment, in which each factor can be chosen at one of q distinct levels. An individual
treatment in which the factor Fi is experimented at the level qi (i = 0; 1; : : : ; n) may
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be written as

f q11 f
q2
2 : : : f qnn ; 06qi6q− 1: (2.4)

where each treatment is a row in the design matrix.
Then, an element E of the group can be expressed in the form

E = Fa11 F
a2
2 : : : F

an
n where 06ai6q− 1; i = 1; : : : ; n: (2.5)

E is a t-factor interaction, if t of the numbers a1; a2; : : : ; an are nonzero (when t=1; E
is a main factor e�ect). Any �-independent interactions E1; E2; : : : ; E� (such that their
images in the vector space Znq are linearly independent) generate a subgroup G of
order q�, which corresponds to the linear code C . Accordingly, the images of the
codewords of the dual code C⊥ (which are the rows of the design matrix) constitute
a q−�th fraction of the total number of qn possible experiments. Hence, this subgroup
is a fractional factorial experiment (FFE). Let L be any interaction not belonging to
G. Then the interactions LEa11 E

a2
2 : : : E

a�
� 06ai6q− 1; i = 1; 2; : : : ; �, are aliases of L.

The set of all such interactions for given L is said to be the alias set of L (this alias
set is the image of a coset of the linear code in Znq ). By observing the responses
of a fractional factorial experiment, one can estimate the e�ects of the sum of all
the aliases of L, though the e�ect of L individually cannot be estimated (Bose 1950,
1961; Finney, 1945; Kishen, 1948). Since it is in general more important to estimate
lower-order interactions, it is of interest to choose the fundamental subgroup G in
such a way that (for a speci�ed t) no t-factor or lower-order interaction is aliased
with another t-factor or lower-order interaction, i.e., such that any alias set should not
contain more than one t-factor or lower order interaction. A fractional factorial design
with such a property is said to have a resolution d, where d = 2t + 1. It is known
that in order to achieve such resolution d it is necessary and su�cient that every
interaction represented by a nonzero element of G should have 2t + 1 or more factors
(Bose, 1961). Thus, the distance d of the primary code C appears to be an important
parameter of a fractional factorial experiment, where it is interpreted as the experiment
resolution with the properties outlined above.

3. Information optimality criterion in experimental design (H -optimality)

3.1. Measuring the information obtained in sequential experiments

Let us apply Shannon’s information measure to the subset selection problem and
de�ne a family of information quantities. Consider a system described by an empirical
model where Y and � are continuous random variables representing, respectively, the
experiment response and the estimator of an unknown characteristic of the system. A
conceivable formulation of the subset selection task (which seeks to de�ne a subset
of experiments out of all possible combinations of factor levels) can now be writ-
ten as achieving maxx [I(Y ;�)], i.e., as maximizing the information in the experiment
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responses about a system estimator over a set of feasible designs. Our approach is sim-
ilar to those suggested by Box and Hill (1967) and Fedorov (1972) where experiments
are designed to provide maximum discrimination among various models or hypotheses
based on the information measure.
In a sequence of k experiments, one can consider the conditional information,

I(Yk ;� |Y1; : : : ; Yk−1) = H (� |Y1; : : : ; Yk−1)− H (� |Y1; : : : ; Yk−1; Yk); (3.1)

which, in the context of experimental design, is interpreted as the incremental infor-
mation gained from the kth experiment response Yk , given the responses of previous
experiments Y1; : : : ; Yk−1. Since information satis�es the chain rule, the total informa-
tion, which is gained from a set of experiments, can be expressed as

I(Y1; : : : ; YK−1; YK ;�) =
K∑
k=1
I(Yk ;� |Y1; : : : ; Yk−2; Yk−1): (3.2)

Let us specify an information criterion for the multi-dimensional case, when one
considers information in the experiment responses about the parameter estimators.
Speci�cally, we de�ne � ≡ B, where B is a random vector of parameter estima-
tors. The information criterion for choosing the design matrix x is then to achieve
maxx [I(Y ;B)], where Y is a random vector of system responses. In particular, consider
an experiment that consist of m individual treatments with n control factors represented
by the following p-dimensional, multiple linear regression model,

Y = x� + �; (3.3)

where, � is a m-dimensional (m-dim) vector of i.i.d. Gaussian random variables with
zero mean and variance �2; � is a p-dim vector of unknown parameters; x is a m×p
design matrix of controlled factors, which is to be determined by the designer; and Y
is a random vector of experiment responses which is m-variate normally distributed.
The additive Gaussian noise models are considered here for certain reasons. First,

the Gaussian distribution maximizes the entropy over all distributions with the same
covariance matrix (Cover and Thomas, 1991). Thus, the normal distribution provides
us with an upper bound on the uncertainty of a r.v. with an unknown pdf. Second, the
normal distribution is widely used in DOE and regression models, and is practically
justi�ed in many situations by the Central Limit Theorem. Last, the Gaussian models
allow us to obtain general analytic expressions.
Let B be the maximum likelihood estimator of �, which is also the least-squares

estimator for the Gaussian case. As well known (e.g., see Myers and Montgomery,
1995), B is p-variate normally distributed, i.e.,

B = (x′x)−1x′Y ∼ Np(�; �2(x′x)−1); (3.4)

where x is a design matrix of rank p (p6m), which guarantees that the matrix x′x is
nonsingular, and x′ is x transposed.
Let Yk be the response vector of the kth experiment in a multiple linear regression

model,

Yk = xk� + �; (3.5)
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where xk is the design matrix used in the kth experiment. Then, the maximum like-
lihood estimator Bk , whose pdf fBk (bk) = fB|Y1 ;:::;Yk (b | y1; : : : ; yk), is distributed as
follows:

Bk ∼ Np
[(

k∑
i=1
x′ixi

)−1( k∑
i=1
x′iyi

)
;
(

k∑
i=1
x′ixi

)−1
�2
]
; (3.6)

where the pdf of the estimator represents the “partial knowledge” about the system
parameters resulting from a series of k experiments.
The conditional marginal distribution of Yk can be obtained by applying a Bayesian

inference approach using the previous k − 1 responses and designs. Thus,

Yk | (Y1 = y1; : : : ;Yk−1 = yk−1)

∼ Nm
[
xk

(
k−1∑
i=1
x′ixi

)−1(k−1∑
i=1
x′iyi

)
;
(
k−1∑
i=1
x′ixi

)−1( k∑
i=1
x′ixi

)
�2
]
: (3.7)

Recall (e.g. Cover and Thomas, 1991) that the di�erential entropy of a Gaussian
p-dimensional r.v. � with a covariance matrix � is given by

H (�) = 1
2 log(2�e)

p det�: (3.8)

Now, the incremental information in the responses about the parameter estimators
can be obtained.

Theorem 1. The incremental information in the responses about the parameter esti-
mators in a Gaussian multiple linear regression model is given by

I(Yk ;B|Y1; : : : ;Yk−1) = 12 log det
[
Ip + x′kxk

(
k−1∑
i=1

x′ixi

)−1]
; (3.9)

where Ip is the p-dim identity matrix.

Proof. The conditional distribution of Bk , fB|Y1 ;:::;Yk (b|y1; : : : ; yk), is given by (3.6).
Then, using (3.8) to express di�erential entropies of Bk and Bk−1, one obtains that

I(Yk ;B|Y1; : : : ;Yk−1) =H (B|Y1; : : : ;Yk−1)− H (B|Y1; : : : ;Yk−1;Yk)

=
1
2
log det

[(
k∑
i=1
x′ixi

)(
k−1∑
i=1

x′ixi

)−1]

=
1
2
log det

[
Ip + x′kxk

(
k−1∑
i=1

x′ixi

)−1]
: (3.10)

One can also calculate the total amount of information gained from K sequential
experiments as follows.
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Corollary 1. The total information gained from K experiment responses about the
parameter estimators in a Gaussian multiple linear regression model is given by

I(Y2; : : : ;YK−1;YK ;B|Y1) = 12 log det
[(

K∑
k=1

x′kxk

)
(x′1x1)

−1
]
: (3.11)

Proof. The proof follows from (3.2) and (3.10) by summation of K − 1 incremental
information terms:

I(Y2; : : : ;YK−1;YK ;B|Y1) =
K∑
k=2

I(Yk ;B|Y1; : : : ;Yk−2;Yk−1)

=
K∑
k=2

1
2
log det

[(
k∑
i=1
x′ixi

)(
k−1∑
i=1

x′ixi

)−1]

=
1
2
log

K∏
k=2

det

[(
k∑
i=1
x′ixi

)(
k−1∑
i=1
x′ixi

)−1]

=
1
2
log det

K∏
k=2

[(
k∑
i=1
x′ixi

)(
k−1∑
i=1
x′ixi

)−1]

=
1
2
log det

[(
K∑
k=1

x′kxk

)(
x′1x1

)−1]
: (3.12)

Here the conditioning over Y1 comes from the use of the Bayesian inference ap-
proach in situations when the designer has no advance knowledge about the pdf of B.
Then, the vector of the �rst experiment responses Y1 enables the designer to establish
a prior distribution of B which is updated by successive experiment responses.

3.2. The H-optimality criterion and orthogonal designs

Observations given below may assist in specifying designs that maximize the total
information. We call these designs H -optimal, where H stands for entropy. The �rst
observation relates the H -optimality criterion to the well-known D-optimality criterion.

Theorem 2. In the multiple linear regression model with an additive Gaussian noise
the H -optimality criterion and the D-optimality criterion coincide.

Proof. The D-optimality criterion implies minimization of the determinant of the co-
variance matrix of the vector of parameter estimators Bk . In our case, as seen from
(3.6), the D-optimality criterion requires that in a series of K experiments the deter-
minant �−1 of the matrix(

K∑
i=1
x′ixi

)−1
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is to be minimized. This is equivalent to maximization of the determinant � of the
inverse matrix

K∑
i=1
x′ixi :

On the other hand, by (3.11), the total information gained in K experiments is a
monotonically increasing function of � (for given x′1x1). Thus, maximization of the
total information I(Y2; : : : ;YK−1;YK ;B|Y1) is equivalent to minimization of �−1, which
proves the theorem.

The coincidence of H -optimality and D-optimality in the Gaussian case should not
be surprising: it is simply due to the one-to-one relation between the di�erential entropy
and the determinant of the covariance matrix, as seen from (3.8). D-optimal designs
have been extensively investigated in DOE literature (see, e.g., Hardin and Sloane,
1993; Keiefer and Wolfowitz, 1959; St. John and Draper, 1975; Wynn, 1970). In
particular, it is known that for multiple linear regression model with coded factors
(i.e. factors with level range from −1 to 1), the D-optimality criterion (and hence, in
Gaussian case, the H -optimality criterion) requires the normalized design matrix to be
orthogonal so that all o�-diagonal elements of x′x are zeros and the diagonal elements
of x′x are forced to be as large as possible (Box and Draper, 1971; Montgomery,
1991; Myers and Montgomery, 1995). For a normalized matrix the covariance matrix
is the identity.
Orthogonal designs play an important role in DOE. First, since the covariance matrix

of B is given by �2(x′x)−1, it is clear that by making the o�-diagonal elements of
x′x zeros, one keeps components of B uncorrelated, and by maximizing the diagonal
elements of x′x, one minimizes the individual variance of the components of B. Second,
if columns of the design matrix are orthogonal, then the vectors of levels of the factors
(or interactions) associated with these columns, are linearly independent. Thus, their
e�ects are not aliased and can be estimated from the experiment independently of
each other. The minimum number of columns that are linearly dependent determines
the design resolution. Thus, orthogonality of the design matrix x requires a resolution
level that assures that all the model terms are not aliased with each other. In general, a
resolution at least d=2t+1 is necessary and su�cient to make all interactions of order
t or lower independent (note, however, that for certain models no FFE can provide
orthogonality).
Consider now the H -optimality criterion where information is obtained by using

orthogonal designs with coded factors. Theorem 3 and Corollary 3 then follows.

Theorem 3. The incremental information gained from the response of the kth orthog-
onal experiment with coded factors about the parameter estimators in a Gaussian
multiple linear regression model is given by

I(Yk ;B|Y1; : : : ;Yk−1) = p2 log
(

k
k − 1

)
: (3.13)
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Proof. Orthogonal designs with coded factors satisfy x′x = m · Ip. By applying this
result to (3.9) the following incremental information is obtained:

I(Yk ;B|Y1; : : : ;Yk−1) = 12 log det[(kmIp)((k − 1)mIp)
−1]

=
p
2
log

(
k

k − 1
)
: (3.14)

Corollary 3. The total information gained from responses of K orthogonal experi-
ments with coded factors about the parameter estimators in a Gaussian multiple
linear regression model is given by

I(Y2; : : : ;YK−1;YK ;B|Y1) = p2 logK: (3.15)

Proof. The result follows directly by applying (3.13) to (3.2).

Note that (3.15) is the maximum amount of information obtained from a series of
K-coded experiments about the parameters of a multiple linear regression model with
Gaussian noise. It is of interest to point out that information per estimator component,
which is equal to 1

2 logK , increases at a slow logarithmic rate with the number of
experiments (or equivalently, that asymptotically the incremental information decreases
inversely proportionally to k). Thus, as K → ∞ one can obtain in�nite amount of in-
formation (since B is a continuous r.v.), however, at a decreasing rate. This observation
implies that at a certain point of time it is no longer e�cient to continue experimenting
when considering the cost of the experiment. The answer to the interesting question
“when should one stop experimenting”? is further complicated when the value of �2

is unknown and has to be estimated from the responses. A suggested solution, which
implies an optimal stopping rule, is considered in Ben-Gal and Caramanis (1998) by
application of a dynamic programming framework to the DOE.
Summarizing the above, one can see that as the order of factor interactions in the

linear regression model grows, one requires a design matrix with a higher resolution
in order to maintain orthogonality, and hence, in the Gaussian case, H -optimality. The
problem of obtaining designs with high resolution for a limited number of experiments
is one of the central problems in DOE. It has been pointed out in Section 2.2 that
an isomorphic problem can be poised in the �eld of error-correcting codes. In the
next section we use the correspondence between error-correcting codes and fractional
factorial designs to maintain the required resolution that assures H -optimality when the
number of experiments is limited.

4. Construction of smaller FFE by increasing the number of levels

As described in Section 2.2, the construction of a FFE with n factors, q levels per
factor, qr treatments and resolution d is isomorphic to the construction of a (n; �; d)
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q-ary linear error-correcting code C with �=n−r. The FFE matrix is, in fact, the matrix
which has all the words of the dual code C⊥ as rows. Accordingly, the construction
problem discussed above can be formulated in both �elds as follows. Given number
of factors (code length) n and a required resolution (distance) d, �nd a subgroup G
with the maximum � so that the size of the FFE (dual-code) qn−� is minimized. An
equivalent problem is the following. Given number of factors (code length) n and a
fraction parameter (dimension) �, �nd a subgroup G such that the FFE (ECC) attains
the maximum resolution (distance) d.
In many systems the number of levels associated with each factor is large. Speci�-

cally, for continuous factors it is a common practice to discretize the level range by a
large number of discrete points. Usually, it is bene�cial to restraint q to a small number
in order to maintain a small size of the FFE. However, for codes with a small q-ary
alphabet and a �xed distance d, the number of redundant digits r is large, and vice
versa. This dependence between the values of r and q leads to a tradeo� optimization
problem. It is possible, therefore, that decreasing the number of levels can, in fact,
increase the size of the FFE. It is a challenging problem to �nd, for a given resolution
d, the optimal number of levels qopt for which the size qropt of the FFE is minimal.
Unfortunately, this problem cannot be solved completely at present time since the ex-
act functional relationship between d, q and r is unknown. Yet, some results can be
obtained by using the correspondence described above and by applying known coding
bounds and constructions to the design of FFE.
The analysis presented below shows that in many cases one can achieve a smaller

FFE for a required (�xed) resolution by increasing the number of levels. This is an
interesting observation, which in the context of experimental design seems somewhat
counterintuitive.
Note that if the number of levels q (the size of the code alphabet) is consider-

ably smaller than the number of the factors n (the length of the code) then the only
guaranteed minimum value of r is given, in general, by the Gilbert–Varshamov bound
(Gilbert, 1952; Macwilliams and Sloane, 1977):

d−2∑
i=0
(q− 1)i

(
n− 1
i

)
¡qr: (4.1)

However, if the number of levels q (the size of the code alphabet) exceeds n − 2
and q is a power of a prime then the Singleton bound (Singleton, 1964; Wicket,
1995),

d6n− � + 1 = r + 1; (4.2)

is attainable and there exist codes that satisfy this bound. These codes are called
maximum distance separable codes (MDS codes) and their construction is known
(Reed and Solomon, 1960). Thus, for q = n − 1 we can always construct a FFE of
size (n − 1)d−1. This is, for a given resolution, the smallest attainable size of FFE
based on MDS codes. Denote the sizes of FFE (in binary logarithmic scale) based on
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Fig. 2. The FFE size according to the Gilbert–Varshamov bound (s1) as a function of the number of levels
(q), for �xed number of factors (n = 42) and a �xed resolution (d = 5). s2 (dashed) is the size according
to the Singleton bound at q = n− 1 = 41.

(4.1) and (4.2) at q= n− 1, respectively, by

s1 = log2
d−2∑
i=0
(q− 1)i

(
n− 1
i

)

and

s2 = (d− 1) log2(n− 1): (4.3)

Fig. 2 compares s1 and s2 for various values of q, while both the number of factors
and the resolution are �xed (n = 42, d = 5). It is seen that at approximately q = 7:4
these bounds intersect. Hence, if the number of levels associated with each factor is 8
or higher, then it is better to increase the number of levels to q = n− 1 (in this case
to q= 41) in order to achieve a smaller FFE, keeping the same resolution.

Theorem 4. Let qmin be the positive root of the equation

d−2∑
i=0
(q− 1)i

(
n− 1
i

)
= (n− 1)d−1; (4.4)

for given values of n and d (provided that n− 1 is a power of a prime).

Then, for any q¿qmin the left-hand part of (4.4) is larger than the right-hand part.
Thus, for any given n and d, and for q, qmin6q6n− 1, the size of an FFE based on
an MDS code with an alphabet of n − 1 symbols is smaller than the size of an FFE
based on a code with q symbols which satis�es the Gilbert–Varshamov bound.

Proof. Note that, obviously, qmin¿ 1, and the left-hand part of (4.4) is a monotonically
increasing function of q for any q¿qmin. Thus, by de�nition of qmin, the left-hand part
of (4.4) is larger than the right-hand part for q¿qmin. Since the right-hand part of
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(4.4) expresses the size of an FFE based on an (n; �; d) MDS code with an alphabet
of n− 1 symbols, this proves the theorem.

Theorem 4 implies that if qmin6q6n − 1, it is better to increase the number of
levels to n−1 and to use a MDS code rather than one that lies on Gilbert–Varshamov
bound, as illustrated by Fig. 2.
An explicit approximate expression for qmin can be obtained in the case when d=n.1.

Theorem 5. Let qmin be the positive root of (4:4). Then for d=n.1, qmin can be
approximated by

qmin(n; d) ≈ (d− 2)
e

(n− 1)1=(d−2) + 1: (4.5)

Proof. We use the well-known approximation for the sum of terms of a binomial
expansion which is valid for any l=n¡ 1

2 ; a¿1; n/1:

l∑
i=0
ai
(n
i

)
≈ al exp

[
n · h

(
l
n

)]
: (4.6)

Here h(x) =−x ln x − (1− x) ln(1− x) is the binary entropy function (to the base e).
Then, from (4.4), we obtain

(q− 1)d−2 exp
[
(n− 1)h

(
d− 2
n− 1

)]
= (n− 1)d−1

or

(d− 2) ln(q− 1) + (n− 1)h
(
d− 2
n− 1

)
= (d− 1) ln(n− 1): (4.7)

For x. 1; h(x) ≈ x − x ln x.
Hence, for d=n. 1, (4.7) yields

ln(q− 1) = 1
d− 2 ln(n− 1) + ln(d− 2)− 1: (4.8)

Thus, the positive root qmin(n; d) of (4.4) is approximately equal to

qmin(n; d) ≈ (d− 2)
e

(n− 1)1=(d−2) + 1: (4.9)

It is readily seen from (4.5) that qmin is rather sensitive to the value of d and
less sensitive to the value of n, as shown in Fig. 3. Moreover, qmin behaves in a
nonmonotonic fashion as a function of d for �xed n (see Fig. 4 for various values of
n). The same properties of qmin can be seen from Table 1, which gives the exact values
of qmin computed numerically from (4.4) for certain values of n and d. The results
for small distances (resolutions) (d=3; 4; 5) are presented for illustration purposes (to
show the behavior of qmin), since for small distances, codes that lie substantially higher
than Gilbert–Varshamov bound are known.
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Fig. 3. Approximated values of qmin computed from (4.5) as a function of the number of factors
(n = 60; : : : ; 100) and the resolution (d = 5; : : : ; 30).

Fig. 4. Exact values of qmin, computed numerically from (4.4) as a function of the resolution (d=4; : : : ; 20)
for various values of n.

5. Conclusions

The results presented in this paper can be divided into two parts. In the third section
the subset selection problem is analyzed by introducing a new information optimal-
ity criterion called H -optimality. The coincidence of this criterion to the D-optimality
criterion is shown for the case when the system is subjected to Gaussian noise. More-
over, it is shown that for the multiple linear regression model, H -optimality requires
a certain design resolution, so that all terms in the model can be estimated indepen-
dently (i.e., such that they are not aliased). This requirement is further addressed in
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Table 1
The exact qmin values, computed numerically from (4.4), as a function of the number of factors n and the
required resolution d

d=n 10 14 20 30 42 60 98

3 9.89 13.92 19.94 29.96 41.97 59.97 97.98
4 5.37 6.22 7.28 8.71 10.14 11.93 14.99
5 5.13 5.55 6.06 6.75 7.39 8.18 9.42
6 5.47 5.67 5.96 6.38 6.80 7.27 8.05
7 6.09 6.07 6.19 6.45 6.73 7.08 7.63
8 6.93 6.63 6.59 6.71 6.89 7.15 7.58
9 8.02 7.32 7.08 7.07 7.17 7.36 7.69
10 9.46 8.14 7.65 7.50 7.53 7.65 7.91
11 — 9.11 8.30 7.98 7.93 7.99 8.18
12 — 10.27 9.02 8.50 8.36 8.36 8.49
13 — 11.69 9.82 9.07 8.83 8.76 8.84
14 — 13.46 10.72 9.68 9.33 9.19 9.20
15 — — 11.71 10.32 9.85 9.63 9.58
17 — — 14.11 11.74 10.96 10.57 10.39
20 — — 19.46 14.24 12.82 12.10 11.68
23 — — — 17.33 14.92 13.76 13.05
25 — — — 19.86 16.48 14.96 14.01
27 — — — 22.96 18.19 16.19 14.98
30 — — — 29.46 21.08 18.91 16.51
35 — — — — 27.17 21.93 19.22
40 — — — — 36.15 26.29 22.13

Section 4, where the problem of maintaining a desired resolution with limited number
of experiments is analyzed. The analysis is based on the isomorphism between the
construction of fractional factorial experiments and error-correcting codes. The corre-
spondence between these areas was summed up by Sloane (1994): “A good code is
a large set of vectors of given length, from a given �eld, such that the Hamming
distance between them is as large as possible; a good orthogonal array is a small set
of vectors such that their ‘dual distance’ is as large as possible”. It has been shown
that, under certain conditions, one can design a smaller H -optimal fractional factorial
experiment by increasing the number of levels. This phenomenon, which in the context
of experimental design looks paradoxical, is due to the advantage of having a small
number of redundant digits for codes with a large alphabet.
An interesting example of such a situation has been pointed out by an anonymous

referee for Ben-Gal and Levitin (1998): “suppose n = 30, d = 5, q at least 4. Then
with q=4 one gets k623, thus a dual code (FFE) size of 47 = 16384, but with q=5
one has an example where k = 24 and a dual code (FFE) size of 56 = 15625”.
In practice, this result is applicable for large size experiments which should be

conducted fast and within a reasonable cost. These conditions, for example, take place
in computer hardware testing where each experiment is essentially a single test pattern
generated by the tester.
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