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Neural Joint Entropy Estimation
Yuval Shalev, Amichai Painsky and Irad Ben-Gal

Abstract—Estimating the entropy of a discrete random vari-
able is a fundamental problem in information theory and related
fields. This problem has many applications in various domains,
including machine learning, statistics and data compression. Over
the years, a variety of estimation schemes have been suggested.
However, despite significant progress, most methods still struggle
when the sample is small, compared to the variable’s alphabet
size. In this work, we introduce a practical solution to this
problem, which extends the work of McAllester and Statos
(2020). The proposed scheme uses the generalization abilities
of cross-entropy estimation in deep neural networks (DNNs) to
introduce improved entropy estimation accuracy. Furthermore,
we introduce a family of estimators for related information-
theoretic measures, such as conditional entropy and mutual infor-
mation. We show that these estimators are strongly consistent and
demonstrate their performance in a variety of use-cases. First,
we consider large alphabet entropy estimation. Then, we extend
the scope to mutual information estimation. Next, we apply the
proposed scheme to conditional mutual information estimation,
as we focus on independence testing tasks. Finally, we study a
transfer entropy estimation problem. The proposed estimators
demonstrate improved performance compared to existing meth-
ods in all tested setups.

Index Terms—Joint Entropy, Neural Network, Cross-Entropy,
Mutual Information, Transfer Entropy.

I. INTRODUCTION

ENTROPY is one of the basic building blocks of infor-
mation theory [1]. It quantifies the minimum average

number of bits required to represent an event that follows a
given probability distribution rule. Many important information-
theoretic measures such as mutual information (MI) and
conditional MI (CMI) include marginal, conditional and joint
entropies. These measures have many applications in machine
learning, such as feature selection [2], [3], representation
learning [4], [5] and analyses of the learning mechanism [6],
[7].

One of the first and basic entropy estimation methods
is the classic plug-in scheme. In this scheme, an empirical
distribution replaces the true (unknown) probability rule, and
the corresponding empirical entropy is the estimated entropy.
Unfortunately, this estimation scheme suffers from a negative
bias [8], [9], leading to limited outcomes. A variety of
parametric and nonparametric methods have been proposed to
improve the entropy estimation, such as in [8]–[10]. Recently, a
neural network-based method was proposed to estimate entropy
by minimizing the cross-entropy (CE) loss [11] as an upper
bound of the entropy. The CE measures the average number
of bits required to represent an event that is generated from a
probability distribution P by a different probability distribution
Q. CE has its minimum when P = Q. Thus, minimizing CE
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implies searching for a Q that is as similar as possible in
a log-loss [12], [13] sense to P . This approach has several
advantages. First, it uses the generalization power of neural
networks and their universality [14]–[16]. Second, CE is less
prone to negative bias and high variance in large entropy values
[11]. However, this approach has certain limitations. First, it
requires prior assumptions on the true underlying distribution,
as discussed in Section III. Second, the statistical properties
of this CE estimator are currently unexplored. Therefore, the
existence of a neural network-based estimator that can provide
an accurate estimation of entropy, is not guaranteed.

These challenges in entropy estimation are also related to
other information-theoretic measures. For example, one of
the most common MI estimation schemes is the K-nearest
neighbour (KNN) estimator [17]. This estimator was shown
to introduce a significant negative bias in setups with high
dependencies between the variables, resulting in large MI values
[18]. Neural-network-based approaches have been recently
proposed to overcome this problem using variational bound
optimization [18]–[20]. Although a significant improvement
in the MI estimation has been achieved, the results are not
yet satisfying and suffer from theoretical limitations that are
primarily manifested in large MI values [11], [19]. There is
also a large body of work on fundamental estimation bounds
for different information-theoretic measures (see [9], [21] and
related work).

In this paper, we address the inherent estimation challenges
discussed above. The proposed estimation scheme focuses
on joint entropy estimation. This problem is similar to the
standard entropy estimation problem as any univariate random
vector may be represented, for example, as a binary multivariate
vector. In particular, we combine the chain rule with the CE loss
minimization procedure using neural networks to obtain a more
accurate joint entropy estimation. We denote this estimation
procedure as the Neural Joint Entropy Estimator (NJEE). We
study the properties of NJEE and show that it is strongly
consistent. In a similar manner, we obtain the conditional NJEE
(C-NJEE), as an estimator for the joint conditional entropy
between two or more multivariate variables.

Having these two estimators, it is straightforward to estimate
the MI between two random variables. Adding a second
conditioning variable results in the CMI estimator. Additionally,
we apply the proposed scheme to transfer entropy estimation
(TE). Given two time series, the TE is defined as the CMI
between the ”past” of the first series and the ”future” of
the second series given its ”past”. TE is used to explore the
information flow and causality among time-dependent data in
neuroscience [22], [23], finance [24], [25], process control [26],
[27] and many other applications. We show that by using an
autoregressive neural network model, such as a recurrent neural
network, C-NJEE can be used for efficient TE estimation.
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The advantages of the estimators proposed in this paper
are demonstrated in various use-cases. First, we study the
entropy estimation of a discrete random variable with a large
alphabet size. Applying NJEE to this problem, we outperform
existing methods when the sample size is much smaller than
the alphabet size. Further, we focus on MI estimation between
two multivariate variables. A commonly used toy problem
is used for this task. The performance of the proposed MI
estimator demonstrates improved results in terms of lower
bias and variance, compared to existing methods. This result
is specifically manifested in larger values of MI. Next, we
demonstrate the performance of the suggested CMI estimator,
as we focus on conditional independence tests. We study a
real protein dataset where dependencies among the variables
(protein elements) are known. Also, the proposed estimation
scheme demonstrates better results than existing methods.
Finally, the CMI estimator is applied to a TE estimation task.
Specifically, we study a real financial dataset of stock index
prices and show that the C-NJEE-based estimation provides
additional insights on the information flow between the time
series that are not discovered by the other methods. These
insights are in line with domain knowledge and the world
financial timeline.

To summarize, the contributions of this paper are threefold.
First, we extend the work of [11] and introduce strongly
consistent estimators for joint entropy and conditional joint
entropy. The proposed estimators, NJEE and C-NJEE, are based
on minimization of the CE loss while applying the entropy
chain rule property. Second, we use these estimators to obtain
estimators for related measures such as MI, CMI and TE.
Third, we propose a practical implementation scheme of these
estimators that demonstrates better performance than existing
methods on various tasks and datasets.

The remainder of this paper is organized as follows. Related
works on entropy, MI, CMI and TE estimation are discussed in
Section II. In Section III, definitions and related mathematical
overview are given to support the scheme and ideas proposed
in this paper. The primary results are shown in Section IV. An
empirical study of various tasks and comparisons with different
benchmark methods are provided in Section V. We conclude
this paper in Section VI.

II. RELATED WORK

Estimating information-theoretic measures is a well-studied
problem. We refer the reader to [8], [9], [17], [19], [28], [29]
for a comprehensive review of these measures. The following
literature review focuses on estimators that are relevant for this
work.

A. Entropy Estimation in Large Alphabet

As mentioned in Section I, the simplest method to estimate
the entropy of a discrete random variable is the so plug-in
estimator [1]. The Miller-Madow estimator [30] adds a bias
correction to the plug-in estimator. This correction depends on
the ratio between the number of symbols from the alphabet
that appear at least once in the sample and the sample size.

More recently, [10] proposed an estimator for the entropy of
species in a community (in this biological context, the entropy
is called the diversity index), where the number of species
(alphabet size) is large and unknown. This estimator is based
on the Horvitz-Thompson estimator for population size and
the Good-Turing estimator for the probability of unseen events.
In [9], an entropy estimator is obtained using a polynomial
approximation for the terms in the entropy sum that involve
small probabilities with respect to log k, where k is the alphabet
size. For larger probabilities, an unbiased plug-in estimator
is used that is similar to the Miller-Madow estimator. Thus,
improved results are demonstrated on simulated data of discrete
random variables with large alphabet sizes where many symbols
have relatively low probability.

B. MI and CMI Estimation

One of the most popular MI estimators in recent years is
the KNN-based KSG estimator [17], which uses KNN-based
density estimation over a shared space of the marginal and
conditional entropy. Using the connection between the MI and
entropy (see III-B), the entropies’ bias terms are subtracted
to provide a more accurate MI estimation. This metric suffers
from the curse of dimensionality and underestimates the MI
when the interaction between the variables is strong [31].

The recent advances in deep learning motivated various
researchers to address the dimensionality problem by estimating
the MI with neural networks. This is usually obtained by finding
variational lower bound for the MI (typically, a differentiable
function that its supremum is the MI). These functions are
approximated by neural networks to maximize the lower bound
[18]–[20]. These methods yield improved results compared to
the KNN-based estimator, but are quite limited when estimating
large MI values, since their estimation complexity increases
exponentially with the number of samples [11], [19]. To
overcome this problem, [11] proposed using the CE as an
upper bound for the entropy and minimize it by training a
neural network. Thus, an MI estimate is obtained by subtracting
the estimated conditional entropy from the estimated marginal
entropy. This approach underlines the proposed estimation
scheme as discussed in further detail in subsection III-C. A
similar approach for MI estimation using the softmax function
(e.g., as the output layer in a neural network), was suggested
in [32]. However, this scheme is limited to the case where
the input variable is multivariate, while the target variable
is univariate. Classifier based conditional mutual information
(CCMI) was proposed in [33]. A two-sample classifier was used
to distinguish between samples from the joint distribution and
samples from the marginal distribution. Combining conditional
generative models (e.g., Conditional Generative Adversarial
Networks (CGAN) or Conditional Variational Autoencoders
(CVAE)), an estimator for the CMI was developed. This
approach introduced a significant improvement over other
recently proposed methods.

C. TE Estimation

The TE is defined as a form of CMI between
time series. Specifically, TE(Yfuture;Xpast) =
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CMI(Yfuture, Xpast|Ypast) (see a formal definition of
TE in Subsection III-B). There are two primary approaches
for TE estimation. The first approach considers every variable
in every timestamp as a separate variable, and uses any
MI or CMI estimator to estimate the TE [34]–[36]. The
second approach applies a sequential model that considers
the time dependencies among different time lags to extract
an estimator for the TE and its related measures [37], [38].
As a representative of the first approach, a recently proposed
estimator [36] applies a neural network two-sample classifier
to estimate the TE. Using the second approach, the Context
Tree Weighting (CTW) algorithm [39] is utilized in [37] for
directed information estimation (a closely related measure to
TE [40]). Both works investigate a financial time series of
index prices to evaluate their estimators. we use the same
dataset to evaluate the proposed method.

III. BACKGROUND

A. Notations
The following notations are used throughout this paper. A

univariate discrete random variable is denoted by an upper-case
letter (e.g., X), that obtains values x from the alphabet Ax =
{1, . . . , ax}. A multivariate variable with dimensions dx is
denoted by an underline, (e.g., X), where its values are denoted
by underlined lower-case letter x. The mth component of X
is denoted as Xm, which obtains values xm from the alphabet
Axm = {1 . . . axm} which can be different for different values
of m. The vector of the first k components of X is denoted
by Xk.

We denote Ĥn(X) as the estimator of X’s entropy given a
sample S = {. . .}ni=1, where it is implied from the text that S
is a collection of n samples of X . This notation holds for other
estimators as well. For example, În(X;Y |Z) is an estimator
of the CMI between X and Y given Z, from a collection of n
samples from the joint distribution of X , Y and Z. To avoid
an overload of notation, we denote xi as the ith sample in S,
while Xm is the mth component of the random vector X .

For the time notation, a multivariate variable in time t
is represented by a bracket index, e.g., X(t) and a matrix
that represents its past l time lags is represented by X

(l)
(t) =

[X(t−l) . . . X(t)].

B. Definitions
Let X be a discrete random variable that follows a probability

distribution P (X). Shannon’s entropy is defined as:

H(X) = −EP (X) [logP (x)] . (1)

The entropy (1) can be represented by the chain-rule

H(X) = H(X1, X2, . . . , Xdx) =
dx∑
m=1

H(Xm|Xm−1, . . . , X1),
(2)

where H(X1|X0) abbreviates H(X1).
The CE between any two distribution functions P (X) and

Q(X) is defined as:

CE(Q(X)) = −EP (X) [logQ(X)] , (3)

where the expectation is over the distribution of X , namely,
P (X).

The following inequality holds for every pair of distributions
P (X) and Q(X):

CE(Q(X)) ≥ H(X), (4)

Where an equality is obtained for Q(X) = P (X).
A related measure to CE is the Kullback-Leibler divergence

(DKL) between P (X) and Q(X)

DKL(P (X)||Q(X)) = EP (X)

[
log

P (X)

Q(X)

]
. (5)

The DKL is a nonnegative measure and equals zero iff P (X) =
Q(X).

The MI, denoted as I(X;Y ), quantifies in bits the entropy
reduction in X given the knowledge obtained from another
random variable Y , i.e.,

I(X;Y ) = H(X)−H(X|Y ). (6)

Another important measure that is represented by the
difference of entropies is conditional mutual information (CMI)

I(X;Y |Z) = H(Y |Z)−H(Y |X,Z). (7)

CMI is also used to evaluate the TE, which is defined as

TEX→Y = I(X
(k)
(t) ;Y (t+1)|Y

(l)
(t)). (8)

Assuming discrete time, the TEX→Y is the CMI between the
past k time lags of X and Y at time t + 1 given the past l
time lags of Y .

C. CE-Based Entropy

Let P (X) be the distribution function of X . Let Tθ(X) be
a neural network that approximates it. In [11], the following
upper bound for the entropy of X was proposed

HΘ(X) = inf
θ∈Θ

CE(Tθ(X)), (9)

and HΘ(X) = H(X) iff P (X) = Tθ(X). Given a sample S
of size n, the sample mean is used to estimate the CE,

ĈEn(Tθ(X)) = − 1

n

n∑
i=1

log Tθ(xi). (10)

Then, an estimator of the entropy is:

Ĥn(X) = inf
θ∈Θ

ĈEn(Tθ(X)). (11)

In [11], the authors suggest an entropy estimator based on the
above. However, they require prior knowledge of P (X) for
the training of their neural network.
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IV. MEASURING THE JOINT ENTROPY WITH NEURAL
NETWORKS

In this section we discuss the primary concepts of this paper.
First, the neural network classifier and its respective CE are
formally defined. Then, the neural joint entropy estimator is
introduced. Next, we define a strongly consistent estimator and
show that the proposed joint entropy estimator satisfies this
property. We also provide an algorithmic implementation of
the proposed estimator and discuss practical aspects of its im-
plementation. Next, estimator for the joint conditional entropy
is provided with the corresponding algorithmic implementation.
Using the estimators of the joint entropy and the conditional
joint entropy, estimators for MI, CMI and TE are obtained.

A. Neural Network Classifier and Classification CE

The following basic definitions are used throughout this
section.

Definition IV.1. (Neural network classifier). Let Gθ(Y |X)
be a neural network model with a random variable input
X and parameters θ in a compact domain Θ ∈ Rk. The
outputs of Gθ(Y |X) are defined over the probability simplex:
{Gθ(y|x) ∈ Ray :

∑ay
y=1Gθ(y|x) = 1, Gθ(y|x) ≥ 0}.

Next, we define the CE of this classifier.

Definition IV.2. (Classifier CE). Let Gθ(y|x) be a neural
network classifier. The CE of this classifier is defined as

CE(Gθ(Y |X)) = −EP (X,Y ) logGθ(y|x), (12)

where Y ∈ Ay = {1, . . . , ay}, ay ≥ 2.

We assume that − log(Gθ(y|x)) ≤ η for all x ∈ X and for
all θ ∈ Rk, for any value of Y . Practically, this assumption is
used in many model training procedures to avoid an unbounded
loss [13]. The empirical estimator of this CE is given by [41],
namely

ĈEn(Gθ(Y |X)) = − 1

n

n∑
i=1

log(Gθ(yi|xi)). (13)

B. Neural Joint Entropy Estimation

Using (2) and Definitions IV.1 and IV.2, we define the
estimator of the joint entropy.

Definition IV.3. (Neural Joint Entropy Estimator (NJEE)).
Let Ĥn(X1) be an estimated marginal entropy of the first
components in X and let Gθm(Xm|Xm−1) be a neural
network classifier. Then, NJEE is defined as

Ĥn(X) = Ĥn(X1) +

dx∑
m=2

ĈEn(Gθm(Xm|Xm−1). (14)

In words, the joint entropy estimator consists of a marginal
estimator for the first component, followed by estimators for
the conditional entropies H(Xm|Xm−1), for m = 2, . . . , dx.

Definition IV.4. (Strong consistency (following [18])). The
estimator Ĥn(X) is strongly consistent if for all ε, δ > 0 and

a constant C > 0, there exists a positive integer N and a
choice of a neural network such that:

∀n ≥ N, |H(X)− Ĥn(X)| ≤ C · ε+ δ, a.e.

Theorem 1. NJEE is strongly consistent.

C. Proof of Strong Consistency Property

In this section we follow the scheme shown in [18] to prove
Theorem 1. This proof includes the following main steps:

1) Connecting the true CE of a classifier-based neural
network and the conditional entropy H(Y |X) (Lemmas
1 and 2).

2) Showing the convergence of the empirical CE to the true
CE (Lemma 4).

3) Showing that the empirical CE can approximate with
high accuracy the conditional entropy (Lemma 5).

4) Applying the chain-rule property and the previous steps
to show that the proposed estimator of the joint entropy
is strongly consistent.

We begin with the first step. Formally, since neural networks
are universal approximation functions [14]–[16], the following
holds:

Lemma 1. For any ε > 0, and any conditional distribution
function P (Y |X), there exists a neural network Gθ(Y |X) such
that:

DKL(P (Y |X)||Gθ(Y |X)) ≤ ε

2
, a.e. (15)

That is, it is possible to find a neural network that can
approximates P (Y |X) in any desired approximation level.

The next Lemma states that the CE can be used to estimate
the conditional entropy.

Lemma 2. Let P (Y |X) be a conditional distribution and let
H(Y |X) be the entropy associated with this distribution. Then,
for any ε > 0, there exists a neural network Gθ(Y |X) such
that

|CE (Gθ(Y |X))−H(Y |X)| ≤ ε

2
, a.e. (16)

The proof of this lemma follows the ideas shown in [11]).

H(Y |X) = EP (X,Y ) log
1

P (y|x)
=

EP (X,Y ) log
1

Gθ(y|x)

Gθ(y|x)

P (y|x)
=

EP (X,Y ) log
1

Gθ(y|x)
−DKL(P (y|x)||Gθ(y|x)) ≥

CE(Gθ(Y |X))− ε

2
,

(17)

where the last line follows Lemma 1. As shown in (4), we
have that

CE(Gθ(Y |X))−H(Y |X) ≥ 0, (18)

therefore

|CE (Gθ(Y |X))−H(Y |X)| ≤ ε

2
.
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The empirical estimator for this classifier CE is obtained
from (13). The conditions for the convergence of this estimator
are defined by the uniform law of large numbers.

Lemma 3. The uniform law of large numbers [42]. Let Θ
be a compact set of parameters. Let fθ(xi) be a continuous
function at each θ ∈ Θ and xi ∈ X . Assume there exists an
upper bound η(X) such that ‖f(x)‖ ≤ η(x) for all θ ∈ Θ
and E[η(X)] <∞. Then, E[fθ(X)] is continuous and

sup
θ∈Θ
‖ 1

n

n∑
i=1

fθ(xi)− E[fθ(X)]‖ p→ 0. (19)

Using Lemma 3, the convergence of the classifier CE is
obtained

Lemma 4. For any ε > 0 and ∀θ ∈ Θ, there exists a positive
integer n ≥ N such that:

P (|ĈEn(Gθ(Y |X))− CE(Gθ(Y |X))| ≤ ε

2
) = 1. (20)

The proof of this Lemma is an immediate application of (13)
with

fθ((xi, yi)) = − log(Gθ(yi|xi)). (21)

since − log(Gθ(yi|xi)) ≤ η, then fθ((xi, yi)) ≤ η and Lemma
3 holds.

Lemma 5. The estimator ĈEn(Gθ(Y |X)) is strongly con-
sistent. That is, for all ε > 0, there exists a positive integer
n ≥ N and a choice of neural network such that:

|H(Y |X)− ĈEn(Gθ(Y |X))| ≤ ε, a.e. (22)

This lemma is obtained using the triangular inequality with
Lemmas 2 and 4:

|H(Y |X)− ĈEn(Gθ(Y |X))| ≤
|CE (Gθ(Y |X))−H(Y |X)|+
|ĈE(Gθ(Y |X))− CE(Gθ(Y |X))| ≤ ε.

(23)

Restating (2),

H(X) = H(X1) +

dx∑
m=2

H(Xm|Xm−1). (24)

Suppose there exists dx − 1 neural networks that approximate
each term in the sum with an ε accuracy. Then, the total error
of the sum expression is ε · (dx − 1). The marginal entropy
H(X1) is estimated with an estimator Ĥn(X1) that guarantees
an error that is not larger than certain δ > 0. Several estimators
can provide such a guarantee, e.g., [8], [9]. In this case:

|H(X)− Ĥn(X)| = |H(X1)− Ĥn(X1)+
dx∑
m=2

H(Xm|Xm−1)−
dx∑
m=2

ĈEn(Gθm(Xm|Xm−1)|

≤ |H(X1)− Ĥn(X1)|+

|
dx∑
m=2

H(Xm|Xm−1)−
dx∑
m=2

ĈEn(Gθm(Xm|Xm−1)|

≤ δ + C · ε,

(25)

where C = dx − 1. �

D. Algorithmic Implementation of NJEE

The implementation of the NJEE estimator is described in
Algorithm 1.

Algorithm 1 NJEE

1: input: Sample S = {xi}ni=1 from P (X)
2: hm ← 0, for m = {1, . . . , dx}
3: h1 ← Ĥn(X1)
4: Initialize {θm}dxm=2

5: for m in 2 to dx do
6: hm ← Minimize ĈEn(Gθm(Xm|Xm−1))
7: end for
8: Ĥn(X)← h1 +

dx∑
m=2

hm

9: return: Ĥn(X)

Practically, Algorithm 1 can be implemented in parallel per
each value of m. Another approach is to use a recurrent neural
network (RNN) that replaces the dx− 1 networks. In this case,
the sequential input to the RNN is the components vector of
X (e.g., see distribution estimation with RNN in [43]). Then,
the estimated entropy would be the sum of all the CE losses in
every time step. The empirical results of this implementation
demonstrate similar performance to Algorithm 1.

We also note that by using the CE loss, it is possible to
replace the neural network model with any other classifier to
estimate the entropy. However, in this case, Lemma 1 may not
apply, and strong consistency is not guaranteed.

E. Conditional-Neural Joint Entropy Estimation

The conditional entropy of two multivariate random variables
X and Y is

H(X|Y ) =

dx∑
m=1

H(Xm|Y ,Xm−1). (26)

To estimate (26), a slight change is made to NJEE, where all
components in the proposed estimator are neural networks.

Definition IV.5. (Conditional Neural Joint Entropy Estimator
(C-NJEE)). Let Gθm(Xm|Y ,Xm−1) be a neural network
classifier with inputs Y and Xm−1. Then C-NJEE is defined
as,

Ĥn(X|Y ) =

dx∑
m=1

ĈEn(Gθm(Xm|Y ,Xm−1)). (27)

Corollary 1.1. C-NJEE is strongly consistent.

|H(X|Y )−
dx∑
m=1

ĈEn(Gθm(Xm|Y ,Xm−1))| ≤ dx · ε, a.e.

(28)

The proof of Corollary 1.1 is straightforward. Notice that
every conditional entropy in the sum expression of (26) can be
estimated by a classifier CE with ε estimation error. Since there
are dx conditional entropies estimators, the total estimation
error of Ĥ(X|Y ) is dx · ε. The implementation of C-NJEE is
described in Algorithm 2.
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Algorithm 2 C-NJEE

1: input: Sample S = {xi, yi}
n
i=1 from P (X,Y )

2: hm ← 0, for m = {1, . . . , dx}
3: Initialize {θm}dxm=1

4: for m in 1 to dx do
5: hm ← Minimize ĈEn(Gθm(Xm|Y ,Xm−1))
6: end for
7: Ĥn(X|Y )←

dx∑
m=1

hm

8: return: Ĥn(X|Y )

We now apply NJEE and C-NJEE to introduce an estimator
for the MI.

În(X;Y ) = Ĥn(X1) +

dx∑
m=2

ĈEn(Gθm(Xm|Xm−1)

−
dx∑
m=1

ĈEn(Gθm(Xm|Y ,Xm−1)),

(29)

Similarly, given a variable Z, an estimator for the CMI (7) can
be obtained

În(X;Y |Z) =

dx∑
m=1

ĈEn(G(Xm|Z,Xm−1))

−
dx∑
m=1

ĈEn(G(Xm|Z, Y ,Xm−1)).

(30)

Again, since all models are trained independently, the worst
case error of these estimators is the sum of the errors of NJEE
and C-NJEE, thus these estimators are also strongly consistent.

V. EXPERIMENTS

In this section we demonstrate the performance of the
proposed estimators in various estimation tasks.

To apply these estimators, we train a set of neural networks.
Unless stated otherwise, the following basic network structure
is considered throughout these experiments: An input layer,
two fully connected layers with 50 nodes, a ReLU activation
function and an output softmax layer. The loss is optimized
with the ADAM [44] optimizer with the following parameters
(lr = 0.001, β1 = 0.9, β2 = 0.999).

A. Entropy Estimation with Large Alphabet

We begin this experimental section with large alphabet
entropy estimation using NJEE. Prior to applying NJEE, we
change the univariate representation values of the alphabet
to their binary representation. Any other small alphabet
representation, such as ternary, is also valid. The evaluation is
preformed on six simulated studies, most of which were used
in previous works (e.g., [9]):
• Uniform distribution.
• Zipf’s law distribution with parameters α = 1, 2.
• Geometric distribution with p = 1/105.
• Symmetric mixture of a Zipf’s law distribution (α = 1)

and Geometric distribution (p = 2/105).

• Discrete Laplace (DL), where DL(X,σ) ∝ 1
2σ e
−Xσ and

σ = 10−4.
The alphabet size of X is set to 105 (excluding the last
experiment where the alphabet is not limited). Every simulated
study (defined by a distribution type and a sample size) is
repeated 100 times.

Figure 1 demonstrates the root mean squared (RMSE) of the
entropy estimation as a function of the sample size for NJEE
and other entropy estimators described in Section II-A1. As
shown, NJEE demonstrates the lowest RMSE in most cases.
Specifically, NJEE demonstrates the lowest error in all the
experiments where n ≤ 1000.

B. Multivariate MI Estimation

In the following set of experiments we apply the proposed
scheme to a simple and commonly used multivariate MI
estimation problems, as used in [18], [19], [33]. The setup is
defined as follows. Let X and Y be two random vectors in
Rd such that [

X Y
]T ∼ N (0,ΣXY )

ΣXY =

[
Id ρId
ρId Id

]
.

(31)

Notice that the correlation between the pairs (Xi, Yj) is ρ when
i = j and zero otherwise. Further, Cov(X) = Cov(Y ) = Id,
and the MI between X and Y is thus simply:

I(X;Y ) = −d
2
· log(1− ρ2).

In this study, samples are generated from the model above,
using different values of ρ (or equivalently, different values
of MI). Since the proposed algorithm is designed for discrete
variables, we quantize the samples using a simple binning
scheme. Binning continuous data for MI estimation has been
extensively studied over the years. The interested reader is
referred to [11], [25], [35], [37], [46], [47] for a thorough
discussion.

In Figure 2, the NJEE-based algorithms are compared to the
KNN MI estimation method [17]. With low absolute values
of ρ, the two methods yield accurate results. As ρ increases
(and thus the MI increases), the KNN estimator significantly
deviates from the true value, as demonstrated in [18]. NJEE
yields better results for greater MI, similar to [11], yet without
a prior assumption on the characteristics of the underlined
distribution.

Let us now turn to an additional synthetic experiment,
following [19]. Again, we draw samples from the model
described in (31). In this experiment, we begin with ρ = 0
and draw a total of 4000 batches with 64 samples in each
batch. Then, we estimate the MI from the drawn samples. We
increase ρ and repeat the previous step. We terminate at ρ = 1.
În(X;Y ) is compared to the recently proposed variational
methods 2. As demonstrated in Figure 3, the results achieved

1The code of the polynomial method is provided by [9] in
https://github.com/Albuso0/entropy. See the Entropy R package in [45] for the
implementation of the other benchmark methods.

2We thank the authors of [19] for providing us with the implementation
code for the variational methods.

https://github.com/Albuso0/entropy
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Figure 1: The log of the RMSE of entropy estimations versus the log of the sample size for NJEE and benchmark methods in
different simulated studies. The results are the average of 100 measurements per each sample size and distribution type.

Figure 2: MI estimation of the study in (31) with various values
of ρ. În(X;Y ) is compared to the KNN (k = 3) method [17].
The dimensions of X and Y are 20.

by the proposed estimator exhibits lower bias and variance
with respect to the variational benchmark methods. The upper
rows of Table I demonstrate the best estimation results for each
method obtained by hyperparameter grid search. The proposed
NJEE scheme yields better results for most MI values ranging
from 2 to 20. The reasons for the bias and variance errors in
the variational bound methods are discussed in [19].

Let us now study estimator sensitivity to invertible trans-
formation, in which we do not expect any change in the
MI under such transformations. The cubic transformation
y ⇒ z = (Wy)3 is chosen for this experiment, where W
is an invertible d× d matrix with the entries wij ∼ N (0, 1).
The lower rows of Table I summarize the results. As shown, the
proposed MI estimator yields identical results to the original
problem, while the alternative methods yield lower estimates.

Due to stability issues in the benchmark methods, we could
not obtain estimates for the cubic transformation when the
underlying MI equals 20.0 nats.

Table I: Best results of every estimator following a hyperparam-
eter grid search for the Gaussian setup (31) (upper rows) and
its cubic transformation (lower rows). The true MI values are
shown in the first row. The results of the benchmark methods
for 2 to 10 nats are also reported in [19].

TRUE MUTUAL INFORMATION
2.0 4.0 6.0 8.0 10.0 20.0

GAUSSIAN SETUP
NJEE 2.2 4.1 5.9 7.8 9.6 17.8
α 1.9 3.8 5.7 7.4 8.8 11.7
JS 1.2 3.0 4.8 6.5 8.1 15.5
NWJ 1.6 3.5 5.2 6.7 8 10.8
InfoNCE 1.9 3.6 4.9 5.7 6 6.2

CUBIC SETUP
NJEE 2.2 4.1 5.9 7.8 9.6 17.8
α 1.7 3.6 5.4 6.9 8.2 -
JS 1 2.8 4.5 6.1 7.6 -
NWJ 1.5 3.2 4.7 5.9 6.9 -
InfoNCE 1.7 3.2 4.1 4.6 4.8 -

C. Conditional Independence Testing

We now investigate the proposed method in conditional
independent testing (CIT). CIT is a basic task in statistics
with applications to a variety of domains, such as Bayesian
networks and causality analysis [49]–[51]. In this experiment,
we use a flow-cytometry dataset [52]. This dataset describes the
connections between eleven proteins in different experimental
setups. Sachs et al., [52] introduced a consensus Bayesian
network (see Figure 3 in their work) that is considered the
ground truth of the connections mapping among the proteins.
The flow-cytometry dataset was extensively studied in several
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Figure 3: MI estimation with NJEE versus recently proposed variational methods from [19]. Samples from two multivariate
random variables in d = 20 are generated according to (31) with an increasing ρ every 4000 batches. The estimated MI in
every batch appears in light blue, the moving average of the MI over a rolling window of 200 batches is shown in dark blue
and the true MI value is represented by the black line. The variational bounds shown in this figure are further discussed in the
literature (see NWJ [48] , InfoNCE [5], Jensen-Shannon lower bound (JS), and the interpolated bound between NWJ and NCE
with α = 0.01 and α = 0.99 [19]).

works. In [33], the authors introduced a CIT method that
incorporates a two-sampled classifier and generative models.
In [50], a KNN bootstrap and binary classifier procedure was
proposed to perform the CIT.

Before we describe the results of the experiment, we provide
some preliminaries on Bayesian networks that are used for this
experiment. In a Bayesian network, features are represented by
nodes, and their dependencies are represented by edges [53].
Node A is a parent of node B if there is a directed edge from
A to B, and B is considered a child of A. Y is conditionally
independent of X when Z is a subset of the features that
holds all available information about Y . These features are
the parents of Y , its children and the parents of its children
(Markov Blanket [54]). Based on these notations, one can
choose multiple combinations of dependent and conditionally
independent triplet sets of variables. Following the procedures
proposed in [50] and [33], 50 dependent and 50 conditionally
independent triplets (X,Y, Z) are randomly chosen and their
CMI is estimated using În(X;Y |Z). For every triplet we have
the ground truth (dependent/independent), and its corresponding
estimate În(X;Y |Z). Since the estimates În(X;Y |Z) are
continuous (nonnegative) numbers, we may set a decision
threshold. Specifically, we say that a triplet is conditionally
independent if its În(X;Y |Z) value is lower than a decision
threshold ε (and vice versa). Thus, one could construct an
ROC curve where every point in the curve represents a value
of the threshold ε, the value of the false positive rate (the
horizontal axis) and the true positive rate (the vertical axis).
Figure 4 illustrates the ROC curve and the area under the
curve (AUC) values of the independence test performed with
În(X;Y |Z) and with the benchmarks as reported in [33]. As

Figure 4: The ROC curve and the AUC values of C-NJEE
based estimation, CCIT [50] and CCMI [33] for conditional
independence testing task on the flow-cytometry dataset. The
dashed line denotes a random model.

shown, În(X;Y |Z) outperforms the alternative methods.

D. Estimating TE on Financial Dataset

Finally, we apply C-NJEE to TE estimation. For this
experiment, we study a financial dataset that contains the daily
closing prices of the Dow-Jones Index (DJI - the stock index of
30 large companies in the U.S. stock exchange) and the Hang
Seng Index (HSI - the stock index of 50 large companies in
the Hong-Kong stock exchange) between 1990 and 2011. As
the DJI index is considered more influential than the HSI on
the world’s financial markets, we expect the transfer entropy
TEDJI→HSI to be significantly greater than TEHSI→DJI .
Additionally, we expect to see changes in the TE that are
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coordinated with related economic events (e.g., significant
financial crises).

To estimate the TE, we reproduce the preprocessing used in
[37] and [36], and bin the data to three levels of daily price
change. A negative change of more than −0.8% is denoted by
-1, an absolute change that is below 0.8% is denoted by 0, and
a change that is greater than 0.8% is denoted by +1. Then, the
C-NJEE algorithm is applied with a recurrent neural network
that has the following structure: an input layer, followed by an
LSTM cell [55] with 50 nodes, a fully connected layer with
50 nodes with ReLU activation and an output softmax layer.
Input data are divided into sequences of length five (i.e., five
consecutive trading days). The optimization procedure includes
an ADAM optimizer [44], with the following parameters: lr =
0.001, β1 = 0.9, β2 = 0.999.

The upper chart of Figure 5 illustrates the 30 day moving
average of TEDJI→HSI and TEHSI→DJI , as measured by
C-NJEE. As expected, the information flow from DJI to HSI
exceeds that of the opposite direction. Compered to the real
prices in the lower chart of Figure 5, a relatively sharp increase
in TEDJI→HSI is observed in times of financial stress where
prices decreasing sharply, such as in the Asian financial crisis
(1997-1998), the dot-com crisis (2000-2002) and the 2008-2009
financial turmoil [56]. This phenomenon is well known in the
financial literature (e.g., [25]).

Comparing the results of the proposed method to those
reported in [37] and [36], we observe that these methods also
found that the information flow from DJI to HSI is much larger
then in the opposite direction. However, they did not clearly
determine a connection between information values and the
world’s financial timeline.

VI. CONCLUSIONS

In this work, we introduce a neural joint entropy estimator
(NJEE). The proposed estimator is based on minimizing the CE
using neural networks. Expending earlier works, we show that
NJEE is strongly consistent and provide a simple algorithmic
implementation. We apply the proposed approach to entropy
estimation of random variables, specifically those with a large
alphabet, using a simple binary transformation. Further, we
introduce the conditional neural joint entropy estimator (C-
NJEE), which is an estimator for conditional joint entropy. We
use NJEE and C-NJEE to estimate both mutual information
(MI) and conditional mutual information (CMI).

We demonstrate the performance of the proposed schemes in
synthetic and real-world experiments. NJEE achieves a lower
RMSE on various simulated setups of random variables with
large alphabets and relatively small sample size. Moreover,
the proposed MI estimator exhibits lower bias and variance
compared to newly-proposed variational lower bounds methods.
This result is specifically evident in large MI values. The CMI
estimator is further used to execute conditional independence
tests. Again, the proposed estimator yields larger AUC value
than other existing methods. Finally, we demonstrate the
abilities of C-NJEE in estimating the TE. We investigate the
dynamics of information flow among financial time series and
show their correlation with significant economic events. Certain

Figure 5: TE and daily closing prices of the Dow Jones
Index (DJI) and the Hang Seng Index (HSI). The upper chart
demonstrates the 30-day moving average of the TE estimated by
the C-NJEE of DJI to HSI (DIJ → HSI) and in the opposite
direction (HSI → DJI). The lower chart demonstrates the
original closing prices of the two time series. Periods of
financial stress with a significant decrease in the index prices
are defined between a pair of dotted lines of the same color:
the green lines represent the beginning and end of the Asian
financial crisis, the red lines represent the beginning and end of
the dot-com crisis, and the black lines represent the beginning
and end of the 2008 global financial crisis.

important characteristics of these dynamics are not captured by
other estimation methods that were implemented on the same
dataset.

We believe that future research will use the proposed entropy
estimators to develop advanced compression schemes for vari-
ous types of datasets. Additionally, the MI and CMI estimation
capabilities can be used to improve the understanding of
complex systems and deep learning frameworks.
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