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Abstract

Background

Contact mixing plays a key role in the spread of COVID-19. Thus, mobility restrictions of

varying degrees up to and including nationwide lockdowns have been implemented in over

200 countries. To appropriately target the timing, location, and severity of measures

intended to encourage social distancing at a country level, it is essential to predict when and

where outbreaks will occur, and how widespread they will be.

Methods

We analyze aggregated, anonymized health data and cell phone mobility data from Israel.

We develop predictive models for daily new cases and the test positivity rate over the next 7

days for different geographic regions in Israel. We evaluate model goodness of fit using root

mean squared error (RMSE). We use these predictions in a five-tier categorization scheme

to predict the severity of COVID-19 in each region over the next week. We measure magni-

tude accuracy (MA), the extent to which the correct severity tier is predicted.

Results

Models using mobility data outperformed models that did not use mobility data, reducing

RMSE by 17.3% when predicting new cases and by 10.2% when predicting the test positiv-

ity rate. The best set of predictors for new cases consisted of 1-day lag of past 7-day aver-

age new cases, along with a measure of internal movement within a region. The best set of

predictors for the test positivity rate consisted of 3-days lag of past 7-day average test posi-

tivity rate, along with the same measure of internal movement. Using these predictors,

RMSE was 4.812 cases per 100,000 people when predicting new cases and 0.79% when

predicting the test positivity rate. MA in predicting new cases was 0.775, and accuracy of

prediction to within one tier was 1.0. MA in predicting the test positivity rate was 0.820, and

accuracy to within one tier was 0.998.
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Conclusions

Using anonymized, macro-level data human mobility data along with health data aids pre-

dictions of when and where COVID-19 outbreaks are likely to occur. Our method provides a

useful tool for government decision makers, particularly in the post-vaccination era, when

focused interventions are needed to contain COVID-19 outbreaks while mitigating the collat-

eral damage from more global restrictions.

Introduction

The global spread of SARS-CoV-2, the virus that causes COVID-19, has brought about the

worst public health crisis in a generation. As of April 2021, there have been nearly 150 million

COVID-19 cases and more than 3.1 million COVID-19 deaths [1, 2]. To curb the spread of the

virus, many countries have implemented interventions such as social distancing requirements,

school closures, prohibitions on public gatherings, and complete lockdowns, with varying

degrees of success [3–6]. While lockdowns stymie COVID-19 transmission, drastic measures

to encourage physical distancing may also cause social and economic harm [6, 7]. Moreover,

some interventions have come too little or too late, causing unnecessary hospital admissions

and deaths [8, 9]. Thus, early detection and prompt action are needed to contain outbreaks

and minimize economic damage. It is also important to determine the appropriate severity of

mobility restrictions: a full lockdown may not be called for when there is a minor outbreak,

whereas minor social distancing restrictions will be insufficient if there is a major outbreak.

To appropriately target the timing, location, and severity of such measures, it is essential to

be able to predict when and where outbreaks will occur and how widespread they will be.

Recent work has focused on using past health data to forecast accumulated COVID-19 cases

and deaths using exponential smoothing models [10, 11], autoregressive moving average mod-

els [11–13], and deep learning models [13–18].

One potentially useful input to such forecasts is human mobility data in the form of cell

phone data [19, 20]. Past studies have successfully used mobile phone geolocation data to pre-

dict the spatial spread of cholera and malaria [21, 22]. Several studies have found relationships

between mobile phone data and the spread of COVID-19 [23–25]. However, these studies

have not used the mobile phone data to make predictions about the trajectory of the COVID-

19 epidemic.

Several studies have incorporated aggregated and anonymized mobile phone geolocation

data into epidemic models to analyze the spread of COVID-19. One study used mobile phone

data indicating “time spent at home” in an SEIR model [26], demonstrating that pandemic-

induced decreases in mobility, as reflected by time spent at home, significantly reduced trans-

mission of the virus in the U.S. Another study combined an SEIR model with a mobility net-

work generated from mobile phone data [27]. The analysis identified certain superspreader

points inside cities that led to COVID-19 outbreaks, and then estimated the potential impact

of closing various gathering places (e.g., restaurants, fitness centers, grocery stores). A study in

Brazil used mobile phone data to predict the spatial-temporal spread of COVID-19 infections

in cities within the states of São Paolo and Rio de Janeiro [28]. The authors modeled the spread

of infection within each city with an SI model, and captured travel between cities using cell

phone data.

Due to constant updates in measures and changes in individuals’ behavior (e.g., face masks,

physical distancing regulations, shelter-in-place restrictions), the use of an epidemic model for
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prediction necessitates calibration to realized data at each stage of the epidemic in each region.

Because we do not model transmission explicitly but instead use a model that learns from past

health and mobility data, our approach to prediction is distinct from that of past work. Fur-

thermore, our methods are generalizable to a wide range of applications as they can be used to

predict outbreaks of other communicable diseases such as influenza, measles, and SARS.

Our work adds to the literature on how human mobility drives disease transmission and is

the first to use mobility data directly to predict daily new cases and the COVID-19 test positiv-

ity rate in each region of a country over time. We find that aggregated, anonymized human

mobility data improves predictions of new COVID-19 cases and the test positivity rate, and

classifications of outbreak severity, beyond predictions made using only past health data. Our

forecasts are especially useful in the post-vaccination era as they can help determine when and

where outbreaks will occur, and how severe they will be.

Materials and methods

Using aggregated, anonymized health data and cell phone mobility data, we forecast next

7-day averages of new cases of COVID-19 and the COVID-19 test positivity rate for different

geographic regions of Israel from March to December 2020. We combine these forecasts with

a categorization system to predict the severity of COVID-19 in each region one week in

advance.

Our work is motivated by the link between mobility and epidemic severity. Fig 1 highlights

several regions of Israel over consecutive two-week periods in late 2020, with arrows denoting

significant travel between regions in each period and shading indicating the transmission

level. Regions that experienced inflows of people from high-transmission districts had higher

Fig 1. Association between movement between districts and epidemic severity for two two-week periods in late

2020. Arrows denote significant travel between regions over the two-week period. Epidemic severity is indicated by

shading.

https://doi.org/10.1371/journal.pone.0253865.g001
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transmission levels in future periods. For example, in the period beginning on November 12,

the transmission level in the Golan Heights (upper right district in panel A) was high, and

there was significant travel from this district to the Akko and Yizre’el districts (upper two dis-

tricts marked by arrows in panel B). In the next time period, Akko and Yizre’el saw an increase

in cases.

Data

Health data. We used publicly available, daily data on accumulated COVID-19 cases,

active cases, tests, and recoveries from the Israeli Ministry of Health from February 1, 2020 to

January 7, 2021 [29]. Individuals were considered to have COVID-19 if they tested positive in

an RT-PCR test. Individuals were deemed to be recovered either ten days after a positive test

or three days after COVID-19-related symptoms disappear (excluding loss of smell and persis-

tent cough), whichever is greater [30]. Concurrent work has estimated that cases in this dataset

are active on average for 8 days [31, 32]. The dataset is stratified by 1,642 statistical regions

comprising Israel as defined by the Israeli Central Bureau of Statistics.

We mapped the 1,642 statistical regions to 16 districts (Israeli “nafot”, S1 Fig). Our use of

these larger districts neutralizes the noise in the lower-level data and allows for more accurate

predictions.

We computed daily prevalence, new cases, new tests, and test positivity rate from this data.

We normalized new cases and new tests by the population size of each district to be in terms of

100,000 people; “new cases” and “new tests” in the remainder of the paper refer to these popu-

lation-adjusted values.

For privacy purposes, districts were included in our dataset when at least one statistical

region in the district had accumulated at least 15 cases, tests, and recoveries. Seven-day average

new cases for each district are displayed in S1 Fig. Most districts had similar trends. In our

analysis we excluded one district (district 71) because the health data followed a pattern not

seen by any other district (S1 Fig, pink line dominating all others). We excluded another dis-

trict (district 29) that had fewer than 50,000 residents, far smaller than the average district size,

as the data were not sufficient for prediction. The two excluded districts collectively contained

5.3% of Israel’s population; thus, our analysis focuses on 14 of the 16 districts, covering 94.7%

of Israel’s population.

Mobility data. We used aggregated, anonymized cell phone mobility data from February

1, 2020 to November 30, 2020. This dataset was obtained from an Israeli cell phone carrier and

is based on over 3 million Israeli cell phone users who are demographically, ethnically, and

socioeconomically representative of the Israeli population. The dataset comprises daily and

hourly movement patterns within and between 2,630 traffic analysis zones (TAZ regions,

defined by the Israeli Ministry of Transportation) covering all of Israel. The movement pat-

terns take the form of origin-destination (OD) data representing daily and hourly numbers of

trips between pairs of regions. For privacy considerations, if fewer than 50 individuals were

moving from one region to another in a given hour, the number of reported individuals was

set to 1. We replaced these 1’s with a more realistic value of 7 in our analysis [33]. Because the

mobility dataset ended on November 30, 2020, for the next 31 days from December 1, 2020 to

December 31, 2020, we used perturbed estimates based on mobility data from earlier dates

during the pandemic that had similar restrictions in effect (details in S1 Appendix).

We mapped the 2,630 TAZ regions to the 16 districts for analysis.

Socioeconomic and demographic data. For each district, we obtained 2017 data on the

age distribution, the population size, and socioeconomic score from the Israeli Central Bureau

of Statistics (CBS). The socioeconomic score is an integer value between 1 and 10, with 1
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reflecting the most impoverished regions and 10 reflecting the wealthiest regions. The socio-

economic score is calculated by the CBS from demography, education, employment, and stan-

dard of living. Lastly, we calculated the median age for each district from the age distribution.

Model inputs and outputs

Model inputs: Developing predictors. We use 7-day average lagged health features to

reflect COVID-19 incidence in each district over the past week. In addition to these solely

health-based predictors, we combine health and mobility data to develop predictors reflecting

the spread of COVID-19 between and within districts.

Lag features. Due to the availability of daily updated data, when predicting values for the

next week, our models can see the previous days’ realized values for incidence and the test pos-

itivity rate. Thus, we introduce lag features, which allow pure time series problems to be con-

verted into supervised learning problems. For example, a 1-day lag would have the label of day

X − 1 input as a predictor for predicting on day X. Similarly, a 6-day lag would have the labels

of days [X − 6, X − 5, −, X − 1] as six different predictors for predicting on day X. We test

1-day, 3-day, and 6-day lagged features for each prediction task.

Pressure score. The Pressure Score for a district reflects potential cases imported into that

district over the past n days. This metric has been used in the literature to predict the spatial

spread of cholera with mobile phone data [21]. For each day t, we have an origin-destination

(OD) matrix with elements mab
t that represent the number of trips from district a to district b

on day t. If a person makes a trip from district a to district b and comes back to district a
within the same day, this is counted as two separate trips, one from district a to district b, and

one from district b to district a. Let jat be the reported prevalence (active cases) of COVID-19

in district a on day t. We define the Pressure Score for district b from the past n days (non-

inclusive of the current day) as:

Pb
nðt þ 1Þ ¼

X

a;a6¼b

Xt

k¼t� n

jakm
ab
k

 !

ð1Þ

We normalize the Pressure Score for each district by that district’s population size so the score

is calculated per 100,000 people. For our forecasts, we calculate the Pressure Score with n = 7

to reflect a week of travel, and often close to the incubation period of COVID-19 before it is

observed and tested.

Internal movement score. The Internal Movement Score within a district reflects potential

cases spreading within a district over the past n days. The diagonal of the OD matrix, given by

maa
t , reflects the number of travelers who made a trip within district a on a certain day. We

multiply this diagonal by daily COVID-19 prevalence within district a for the past n days

(non-inclusive of the current day) and sum the results:

IMa
nðt þ 1Þ ¼

Xt

k¼t� n

jakm
aa
k ð2Þ

Excess pressure and internal movement scores. The Pressure and Internal Movement scores

reflect absolute amounts of travel. However, we also want to understand how more or less

travel compared to the norm affects the number of COVID-19 cases. We assume that the

mobility data from February 2020 represents normal, pre-COVID-19 movement.

To compute the Excess Pressure score, we first compute excess daily OD matrices by sub-

tracting from each day’s daily OD matrix the average OD matrix from that day of the week

from February 2020. For example, if day t is a Friday, then we subtract the average OD matrix
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of the four Fridays in February 2020 (February 7, 14, 21, and 28) from mab
t . Let m0abt represent

the excess number of trips compared to February 2020 from district a to district b on day t. If

m0abt is positive, then there were more trips made on day t from district a to district b than the

average for that day of the week in February 2020; and similarly, if m0abt is negative, then there

were fewer trips. The Excess Pressure and Internal Movement Scores are given by

P0bnðt þ 1Þ ¼
X

a;a6¼b

Xt

k¼t� n

jakm
0ab
k

 !

ð3Þ

and

IM0a
nðt þ 1Þ ¼

Xt

k¼t� n

jakm
0aa
k ; ð4Þ

respectively.

Weekly differenced scores. To capture the weekly dynamics of mobility, we calculate weekly

differenced values of the OD matrix by subtracting from each element of the OD matrix the

corresponding value from seven days earlier. Let m�abt ¼ mab
t � mab

t� 7
represent the weekly dif-

ferenced number of trips from district a to district b on day t. If m�abt is positive, then there

were more trips made on day t from district a to district b than there were on day t − 7; and

similarly, if m�abt is negative, then there were fewer trips. The Weekly Differenced Pressure

Score and Internal Movement Score are given by

P�bnðt þ 1Þ ¼
X

a;a6¼b

Xt

k¼t� n

jakm
�ab
k

 !

ð5Þ

and

IM�a
nðt þ 1Þ ¼

Xt

k¼t� n

jakm
�aa
k ; ð6Þ

respectively.

Model outputs. For each district, we predict new cases per 100,000 people and the pro-

portion of new tests that are positive, each averaged over the next seven days.

Predictive modeling

An overview of our predictive modeling process is shown in Fig 2.

Model type. Our predictive models use one-step-ahead linear regression. The model is

retrained using daily updated data to make use of the most recent data in the predictions.

Once all data is available to predict a given data point, we add that data point to our training

set. Our problem is well suited to such a model because we have daily updated data for fore-

casting. In addition to one-step-ahead linear regression models, we tested deep learning mod-

els in the form of recurrent neural networks (RNNs) (details in S3 Appendix). Though

autoregressive moving average (ARIMA) models can accurately forecast COVID-19 in other

situations [11–13], the high variance and lack of weekly repeating patterns in daily new cases

(as seen in S1 Fig) and tests made ARIMA models impractical for our dataset. We found that

one-step-ahead linear regression generated the most accurate predictions (S2 Table).

Our linear regression model weights data points with a weekly exponential decay multiplier

of
ffiffiffiffiffiffiffi
0:5
p

(half-life of two weeks). With this decay factor, the most recent week’s data has no
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decay, data from three weeks prior is weighted at half the most recent week, and from five

weeks prior is weighted as one-fourth of the most recent week. We assign greater significance

to more recent data points because the epidemic spread changes over time, as do social dis-

tancing regulations. We used the scikit-learn Python implementation [34] for the linear regres-

sion model.

Time scales for prediction. Because our prediction problem involves time series data, we

are restricted to training on previous data and evaluating our model on future forecasts. We

define a training interval from April 6 − October 24, 2020, and two evaluation intervals from

November 1–30, 2020, and from December 1–31, 2020 (Fig 2, horizontal axis). We began

training on the earliest date for which each district had data, the earliest of which was April 6,

the date when the first three districts in our dataset reported nonzero accumulated cases, tests,

and recoveries. October 24 reflects an arbitrary “point of adoption” for our models, after

which the model has learned enough from the training interval to forecast into the future. To

prevent data leakage, we ensure a difference of seven days between the training interval and

evaluation interval to account for the fact that our prediction encodes information for the fol-

lowing seven days. The November and December evaluation intervals are separate because the

November evaluation interval includes realized mobility data, whereas the December evalua-

tion interval uses perturbed estimates of mobility data.

Model scope. We randomly sorted the 14 districts into 7 validation districts and 7 test dis-

tricts (Fig 2, vertical axis). Models for the validation districts were trained on the training inter-

val, then evaluated on the evaluation interval to determine the best model attributes. We

evaluate the model and report results on the test districts over the evaluation interval. We used

the same model predictors for all districts, chosen by best performance on the validation dis-

tricts. Each district has its own model to be trained and evaluated on, so the weights of each

district’s model are tuned according to the specific dynamics in that district.

Fig 2. Overview of our predictive modeling process.

https://doi.org/10.1371/journal.pone.0253865.g002
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Model evaluation. All models were evaluated by mean squared error (MSE), averaged

over all districts in each evaluation set. MSE measures the average of the squares of the errors,

or the difference between the actual (Y) and predicted (Ŷ ) values of n data points, as follows:

MSE ¼
1

n

Xn

i¼1

ðYi � Ŷ iÞ
2
:

We report root mean squared error (RMSE, the square root of the MSE) because it is inter-

pretable in terms of measurement units of a certain number of cases per day (for new cases) or

a percentage (test positivity rate). Validation RMSE reflects performance on the 7 validation

districts through November and December (Fig 2b), and test RMSE reflects performance on

the 7 test districts through November and December (Fig 2d).

Severity categorization

We use a decision rule to classify the predicted severity of a COVID-19 outbreak in each dis-

trict over the following week. We report results for each district-date pair. The scheme catego-

rizes new cases and the test positivity rate into five tiers (Table 1). From the validation districts

over the training interval (Fig 2a), we computed the 20th, 40th, 60th, and 80th quantiles of

new cases and the test positivity rate, respectively. These values define the tiers, which repre-

sent quintiles within our training set. We note that these tiers were developed with some

hindsight bias, assuming that the large spike Israel faced in the late summer of 2020 is repre-

sentative of future spikes they could face.

We compare results using our categorization scheme to results using a four-tier system

used by the State of California, which categorizes COVID-19 spread as “minimal,” “moderate,”

“substantial,” or “widespread” based on new cases and the test positivity rate (S1 Table) [35].

This is similar to the four-tier system used in Israel, which calculates a score based on new

cases, the test positivity rate, and the daily growth rate of active cases [36].

We use magnitude accuracy (MA) to evaluate the performance of our predictions when

classified into severity tiers. All magnitude accuracy metrics reflect performance on the 7 test

districts through November and December (Fig 2d). We measure the proportion of days for

which the predicted and actual values fall within the same tier and for which the predicted

value falls within one tier of the actual value’s tier. We also report confusion matrices that visu-

alize the accuracy of our predictions as classified into the tiers.

Selection of model predictors

To inform the selection of predictors for our models, we explored correlations within the

health data and correlations between the health data and the non-COVID-related data such as

mobility and socioeconomic data (details in S2 Appendix). We calculated linear correlation

scores (Pearson’s r score) over two periods: the period for which we have actual mobility data

Table 1. Severity categorization scheme defined by the quintiles of the training set.

Severity New Cases Test Positivity Rate

Tier 5 � 33.0 � 10.0%

Tier 4 16.0–32.9 7.0–9.9%

Tier 3 9.0–15.9 5.0–6.9%

Tier 2 3.0–8.9 2.5–4.9%

Tier 1 < 3.0 < 2.5%

https://doi.org/10.1371/journal.pone.0253865.t001
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(April 6 − November 30, “actual mobility period”) as well as the period of the entire dataset

(April 6 − December 31, “extended mobility period”). The extended mobility period includes

the month of December and uses perturbed estimates of mobility during that month. S2 and

S3 Figs show key correlations for new cases and the test positivity rate, respectively, over the

actual mobility period and the extended mobility period. The correlation coefficients over

these two evaluation sets are comparable, indicating that our perturbed mobility estimates are

reasonable.

We defined 54 unique combinations of predictors from the predictors defined in Model

inputs: developing predictors. We considered the best set of predictors that did not include

mobility data, evaluated based on RMSE, as the baseline. Then we assessed whether including

mobility predictors improved performance in terms of both RMSE and MA. We ranked the

models that included a mobility predictor and had lower RMSE than the baseline in increasing

order of RMSE. Starting from the model with the lowest RMSE, if the subsequent model had

higher MA, we selected that model instead. We stopped iterating when both RMSE increased

and MA decreased and report this as the best model that includes a mobility predictor. We

selected features in this way rather than performing ANOVA or selecting features through

Lasso regression because this selection method is transferrable to other model types (S3

Appendix).

Ethics approval

The IRB chair of Tel Aviv University, Prof. Meir Lahav, determined on March 24, 2020 that an

IRB approval is not needed for this study. We received consent from the data provider to use

the aggregated and anonymized human mobility data in the way it is used in this study.

Results

Characteristics of districts

Table 2 presents descriptive statistics for the 14 included districts, stratified by whether the dis-

tricts were randomly sorted into the validation or test sets. On average, the validation districts

were less populated than the test districts, and their population was younger and more

Table 2. Descriptive characteristics of the districts in our dataset.

All Districts Validation Districts Test Districts

# Districts 14 7 7

Median earliest day in dataset April 23 April 23 April 20

Characteristic Mean 95% CI Mean 95% CI Mean 95% CI

Population 590,624 386,058–795,190 445,902 126,851–764,952 735,346 436,955–1,033,738

Socioeconomic Score 3.96 3.03–4.88 3.44 1.89–4.99 4.48 3.13–5.82

Median Age 29.7 27.7–31.7 28.2 25.4–31.0 31.2 28.1–34.2

Active Cases 266.4 257.5–275.3 303.1 287.6–318.6 229.5 220.9–238.2

New Cases 21.78 20.87–22.69 24.96 23.38–26.54 18.59 17.71–19.47

New Tests 366.6 354.4–378.9 362.5 343.1–381.9 370.8 355.8–385.8

Test Positivity Rate 0.0516 0.0502–0.0530 0.0564 0.0542–0.0586 0.0467 0.0451–0.0484

Pressure Score 79.1 76.8–81.4 102.2 98.2–106.2 55.9 54.1–57.7

Internal Movement Score 210.3 202.0–218.5 178.9 171.3–186.4 241.8 227.3–256.3

Population size, socioeconomic score, and median age are fixed over time. Active cases, new cases, new tests, test positivity rate, pressure, and internal movement reflect

daily values per 100,000 people. Pressure score is calculated daily.

https://doi.org/10.1371/journal.pone.0253865.t002
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impoverished. The validation districts had a greater number of daily new cases, but fewer new

tests, so the proportion of COVID-19 tests that were positive was slightly higher in the valida-

tion districts than in the test districts. The validation districts had more travel from outside the

district but less travel within the district than the test districts. The overall median age of 29.7

years in our dataset is close to the reported median Israeli age of 30.5 years [37].

Predictive modeling

Because the state of the epidemic differed between November and December, we selected the

best predictors over both evaluation periods. In November, there was a lull in cases in most

districts. Then, in most districts, there was a spike in cases near the end of December. An ideal

model would be able to predict both scenarios (low cases and a spike in cases) with equal abil-

ity, rather than specializing for one task. Therefore, we weighted the evaluation periods equally

when selecting predictors. S4 Fig shows the tradeoff between November and December in the

performance of different sets of predictors in predicting new cases and the test positivity rate.

Models using mobility data outperformed models that did not use mobility data, reducing

RMSE by 17.3% when predicting new cases and by 10.2% when predicting the test positivity

rate (Table 3).

RMSE for predicting new cases. The best set of predictors for new cases comprised 1-day

lag of past 7-day average incidence and the Excess Internal Movement Score. This model had

an RMSE of 6.825 new cases per day on the validation set and 4.812 new cases per day on the

test set (Table 3). Fig 3 shows predictions of new cases for the validation and test districts.

Despite significant fluctuations in the true number of new cases in the following week, our

model accurately predicts levels and trends in new cases a week in advance.

RMSE for predicting the test positivity rate. The best set of predictors for the test posi-

tivity rate comprised 3-days lag of past 7-day average test positivity rate and the Excess Internal

Movement Score. This model had an RMSE of 1.02% and 0.79% on the validation and testing

districts, respectively.

Severity categorization

Magnitude accuracy for the prediction of new cases and the test positivity rate is shown in

Table 4. Each of the 7 testing set districts contributes 61 data points (30 from November and

31 from December), yielding a sample size of 427. The use of mobility data improved magni-

tude accuracy in predicting new cases by 24% and magnitude accuracy in predicting the test

positivity rate by 5%. Test positivity rate predictions are less affected by mobility because the

variance in the daily number of new tests affects the results more.

Magnitude accuracy for new cases. Confusion matrices are shown in Fig 4. Our severity

categorization scheme for new cases never misidentifies a minor outbreak (Tiers 1–3) as a very

severe one (Tier 5) or a very severe outbreak (Tier 5) as a minor one (Tiers 1–3). These are

Table 3. Performance of one-step-ahead linear regression in predicting new cases and test positivity rate, averaged over the next 7 days, reported as root mean

squared error (RMSE).

RMSE

Prediction Task Best Predictors Validation Districts Test Districts
New Cases With mobility 6.825 4.812

Without mobility 8.205 5.817

Test Positivity Rate With mobility 1.02% 0.79%

Without mobility 1.21% 0.88%

https://doi.org/10.1371/journal.pone.0253865.t003
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Fig 3. Predicted and actual next 7-day average new cases in the seven validation districts (left) and the seven test

districts (right). Our predictions, made a week in advance, are shown as a dashed, darker line. The 95% confidence

interval, computed using the past 14-day average standard deviation in predicted new cases, is shown in gray shading.

Vertical dotted lines delineate the separate prediction intervals of November and December. The lower bound of Tiers

2–5 used for classifying the level of epidemic severity from Table 1 are shown as horizontal dotted lines.

https://doi.org/10.1371/journal.pone.0253865.g003
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respectively visualized through zeroes in the rightmost column, top three squares, and zeroes

in the bottom row, leftmost three squares of Fig 4a.

We accurately predicted 38 of 57 district-date instances where next week truly fell into Tier

5, and 38 of the 41 district-dates that were predicted to be in Tier 5 were truly in Tier 5, leading

this tiering system to have a sensitivity of 0.67 and a positive predictive value of 0.93 for new

cases being in the most severe tier.

The overall proportion of days for which the predicted and actual average new cases fall in

the same severity tier is 0.775, which is significantly higher than would be achieved by random

guessing (.20). The tier-specific classification accuracies are 0.86, 0.89, 0.65, 0.73, 0.67, for

Tiers 1–5 (Fig 4a). Misclassified district-date pairs always fell within one tier of the actual

severity tier; thus, the accuracy of our model in predicting severity within one tier is 1. This is

reflected in the dark color of the diagonal shifted by one square in each direction in Fig 4a.

Magnitude accuracy for the test positivity rate. Magnitude accuracy using the test posi-

tivity rate tiers is 0.820 when using mobility data (Table 4). The tier-specific classification accu-

racies vary from 0.95 for Tier 1 to 0.71, 0.47, 0.33 for Tiers 2–4, respectively (Fig 4b).

Our tiers were selected based on test positivity rates that occurred between April to Octo-

ber. In November and December, most districts had lower daily test positivity rates. The

Table 4. Performance of our best performing predictions as classified into tiers. The performance of our categorization scheme on new cases and the test positivity rate

is reported as magnitude accuracy (MA).

MA

Prediction Task Best Predictors Validation Districts Test Districts
New Cases With Mobility 0.637 0.775

Without Mobility 0.564 0.623

Test Positivity Rate With Mobility 0.630 0.820

Without Mobility 0.588 0.778

https://doi.org/10.1371/journal.pone.0253865.t004

Fig 4. Confusion matrices illustrating the accuracy of the severity categorization of our model’s predictions of (a) new cases and (b)

proportion of COVID-19 tests that are positive. The sample covers November 1 to December 31, 2020 (n = 427). Columns represent the

model-predicted severity for the following week, categorized into the five tiers, where Tier 1 is the least severe and Tier 5 is the most severe, and

rows represent actual values of epidemic severity for the following week.

https://doi.org/10.1371/journal.pone.0253865.g004
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higher test positivity rate at the beginning of the pandemic is indicative of the limited test sup-

ply at that time. No district-date pairs truly fell into Tier 5 during our testing period.

During this period, 58% of district-date pairs in our test districts fell into Tier 1, pictured by

the dark blue squares at the top left corner of Fig 4b. Because of this skew in the data, the pre-

dicted tier understates the actual tier more often than not. Excluding districts that truly fell

into Tier 1 over the next week, 31.8% of districts were classified as one severity tier below their

true tier, which is almost half as many as were classified into their true tier (64.2%, Fig 4b).

Nonetheless, our model has high magnitude accuracy in predicting the test positivity rate in

each district.

Magnitude accuracy when using California’s severity categorization. S5 Fig presents

confusion matrices for our predictions when using California’s categorization scheme for epi-

demic severity. Magnitude accuracy for our categorization scheme is 0.775 for predicting new

cases and 0.820 for predicting the test positivity rate. When using the less balanced California

tiers, magnitude accuracy for these two quantities decreases to 0.648 and 0.765, respectively.

Additionally, an outbreak is categorized as “widespread” more than half of the time when

using the California tiers, whereas our categorization allows for a more detailed distinction

between levels of outbreak spread.

Discussion

In today’s interconnected world, human mobility data in the form of cell phone data can pro-

vide valuable insight into human behavior. We have shown that aggregate and anonymized

cell phone mobility data can be used to improve the prediction of COVID-19 outbreaks, mea-

sured as daily new cases and the test positivity rate. Our best model’s predictors consisted of

1-day lag of past 7-day average new cases or 3-days lag of the test positivity rate, respectively,

along with the Excess Internal Movement Score. Our forecasting approach allows for early

identification of regions that may develop outbreaks in the coming week, potentially allowing

policy measures to be targeted to the regions where they would be the most effective. Addition-

ally, we found that a balanced tiering system for categorizing outbreak severity (based on frac-

tiles of previously observed data) allows for more accurate prediction than an unbalanced

tiering system.

Our analysis has several limitations. We assumed that both the mobility and the health data

were relatively accurate estimates of the true amounts of travel and prevalence of COVID-19

in a region, respectively. If the health data for a given district is skewed due to selection bias in

who receives tests, forecasts for other districts would be affected through the mobility data.

Districts were included in our dataset only when one statistical region within the district

reported at least 15 accumulated cases, tests, and recoveries. Each time a statistical region

started to be documented in the health dataset, our dataset experienced an increase in the

number of cases that may not reflect an actual outbreak. Future work could develop methods

to impute these missing values with constraints based on the total number of reported cases on

a day. Smoother data would aid predictions of actual outbreaks as models would be less likely

to overfit to random noise in the dataset. Our analysis predicts new cases based on information

about known cases and does not take into account cases that were never detected (e.g., asymp-

tomatic cases). Future work could develop methods for adjusting predictions to accurately

account for undetected cases.

Our models predict new cases more accurately than the test positivity rate. This is

because the daily changing sample sizes make it hard to consider the test positivity rate as a

consistent stochastic process or to draw conclusions based on the test positivity rate’s pat-

terns. For example, an increase in the daily test positivity rate does not necessarily indicate a
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worsening situation in a region if the sample size on this date is relatively small, and vice

versa. Further research could investigate the use of predictors that take into account sample

size, if known.

Cell phone mobility data of the type we used may not be available in other settings. Future

work could use Google Community Mobility data, available for most countries online [38].

This dataset provides information about mobility trends across different categories of places,

including retail, grocery, parks, transit, workplaces, and residential areas, measured as changes

from a baseline in January 2020. The Community Mobility data is similar to our Excess Pres-

sure and Internal Movement scores, both of which we found useful in predicting new cases.

Although not as granular as the data we used (for example, the Community Mobility data

divides Israel into six regions), such mobility data could still be useful in predicting COVID-19

spread.

Our work shows that anonymized, aggregated human mobility data can improve the pre-

diction of when and where COVID-19 outbreaks are likely to occur. We merged anonymized

country-level data from different sources (e.g., health data, socioeconomic data, cell phone

mobility data) to develop a simple and accurate method for predicting weekly new COVID-19

cases and the test positivity rate. Accurate prediction of outbreak severity allows for better allo-

cation of resources (e.g., vaccines, medical staff, targeting of lockdown policies) at a district

level. Our method provides a useful tool for government decision makers, particularly in the

post-vaccination era, when focused interventions are needed to contain COVID-19 outbreaks

while mitigating the collateral damage from more global restrictions. The methods we have

developed can also be applied to predict outbreaks of other communicable diseases such as

influenza, measles, and SARS.

Supporting information

S1 Fig. (a) A map showing each of the 16 districts in Israel (b) Seven day rolling average of

new cases per 100,000 people for each of the districts (c) Seven day rolling average of test

positivity rate for each of the districts.

(TIF)

S2 Fig. Heatmaps showing Pearson’s r correlation coefficients between new cases averaged

over the next seven days and health, demographic, and mobility characteristics for the 14

districts for the actual (a) and extended (b) mobility periods. New cases and the Pressure

and Internal Movement Scores are per 100,000 people.

(TIF)

S3 Fig. Heatmaps showing Pearson’s r correlation coefficients between average test posi-

tiv-ity rate in the next seven days and health, demographic, and mobility characteristics

for the fourteen districts over the actual (a) and extended (b) mobility periods. The Pres-

sure and Internal Movement Scores are per 100,000 people.

(TIF)

S4 Fig. Performance of different sets of predictors in predicting (a) new cases and (b) test

positivity rate measured as root mean squared error (RMSE) for November (x-axis) and

December (y-axis). The set of predictors that minimized average RMSE over each month is

shown as a dark blue diamond and is near the bottom left corner of each plot.

(TIF)

S5 Fig. Confusion matrices for the best prediction model over the 7 testing districts

(n = 427) for the California (CA) severity categorization scheme. Tiers are defined by
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(a) new cases and (b) test positivity rate that are positive from November 1 to December 31,

2020.

(TIF)

S1 Appendix. Synthetic mobility data for December 2020.

(PDF)

S2 Appendix. Correlations between model inputs and outputs.

(PDF)

S3 Appendix. Predictions: Other model types.

(PDF)

S1 Table. Tiers used by the State of California to classify COVID-19 outbreak magnitude.

(PNG)

S2 Table. Comparison of the models tested when predicting new cases, by root mean

squared error (RMSE) on validation districts over the evaluation period of November

only.

(PNG)
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