
Improving information spread by
spreading groups

Alon Sela
Department of Industrial Engineering, Ariel University, Ariel, Israel;

Department of Industrial Engineering, Tel Aviv University, Tel Aviv, Israel and
Ariel Cyber Innovation Center (ACIC), Ariel University, Ariel, Israel

Orit Milo
Department of Finance, Hebrew University of Jerusalem, Jerusalem, Israel

Eugene Kagan
Department of Industrial Engineering, Ariel University, Ariel, Israel, and

Irad Ben-Gal
Department of Industrial Engineering, Tel Aviv University, Tel Aviv, Israel

Abstract
Purpose – The purpose of this paper is to propose a novel method to enhance the spread of messages in
social networks by “Spreading Groups.” These sub-structures of highly connected accounts intentionally echo
messages between the members of the subgroup at the early stages of a spread. This echoing further boosts
the spread to regions substantially larger than the initial region. These spreading accounts can be actual
humans or social bots.
Design/methodology/approach – The paper reveals an interesting anomaly in information cascades in
Twitter and proposes the spreading group model that explains this anomaly. The model was tested using an
agent-based simulation, real Twitter data and questionnaires.
Findings – The messages of few anonymous Twitter accounts spread on average more than well-known
global financial media groups, such as The Wall Street Journal or Bloomberg. The spreading groups (also
sometimes called BotNets) model provides an effective mechanism that can explain these findings.
Research limitations/implications – Spreading groups are only one possible mechanism that can explain
the effectiveness of spread of tweets from lesser known accounts. The implication of this work is in showing
how spreading groups can be used as a mechanism to spread messages in social networks. The construction
of spreading groups is rather technical and does not require using opinion leaders. Similar to the case of “Fake
News,” we expect the topic of spreading groups and their aim to manipulate information to receive growing
attention in public discussion.
Practical implications – While harnessing opinion leaders to spread messages is costly, constructing
spreading groups is more technical and replicable. Spreading groups are an efficient method to amplify the
spread of message in social networks.
Social implications –With the blossoming of fake news, one might tend to assess the reliability of news by
the number of users involved in its spread. This heuristic might be easily fooled by spreading groups.
Furthermore, spreading groups consisting of a blend of human and computerized bots might be hard to
detect. They can be used to manipulate financial markets or political campaigns.
Originality/value – The paper demonstrates an anomaly in Twitter that was not studied before. It proposes
a novel approach to spreading messages in social networks. The methods presented in the paper are valuable
for anyone interested in spreading messages or an agenda such as political actors or other agenda
enthusiasts. While social bots have been widely studied, their synchronization to increase the spread is novel.
Keywords Information spread, Viral marketing, Social networks, Spreading groups, Fake news, BotNets
Paper type Research paper

1. Introduction
Modern social network platforms provide a simple and efficient way to spread messages and
increase their influence (Teng et al., 2014) among individuals or communities of users. The
results of such message spread (the terms “messages” and “information” are used Online Information Review
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interchangeably) can vary in scale, from serving the needs of an individual user to having a
widespread influence on political (Harvey, 2013), social and economic phenomena. Examples of
large-scale social influences where social networks played a major role include the “Arab
Spring” (Howard et al., 2011), the “OccupyWall Street”movement (Bennett and Segelberg, 2011)
and the elections in the USA (Allcott and Gentzkow, 2017; Kim and Hastak, 2018). In fact, in
several areas, the role of social networks and their smart use by a small group of users can lead
to an outcome that can be as influential as that of traditional media.

In the financial markets, the role of social networks as an information spreader is critical.
Research has established that the news spread through a social network is often published
before it reaches the traditional media (Leskovec et al., 2009). Trust is also a critical aspect,
affecting the likelihood of a message’s spread (Gorman, 2014). Nevertheless, the blossoming
of fake news (Allcott and Gentzkow, 2017; Newman et al., 2017) might suggest that
sometimes trust can be misleading, and fake rumors can seem to be trustworthy sources.

Our investigation was motivated by the observation that there are individual Twitter
accounts with especially high levels of average retweet rates that are substantially higher than
those of well-known global media companies such as The New York Times or The Wall Street
Journal. We define “well-known users” to be international media outlets who are traditionally
“information broadcasters.” More specifically, we define well-known users as international
media companies with more than 1m followers. We expect such organizations to play a more
significant role in information dissemination compared to a private account or small companies.

To explain these anomalies, we constructed a novel theoretical model that demonstrates
the boosting of a message’s spread by spreading groups. Such spreading groups are
organized sub-structures of interconnected users that intentionally amplify the exposure of a
message that they wish to spread. To accomplish this goal, they utilize a ping-pong-like
interchange of the message within the group’s members in its early spreading stages.
Through this strategy of transmitting a message over and over within the group in the early
stages of its spread, these groups ignite a larger information cascade, and help the message’s
spread to other parts of the social network that are external to the group itself at later stages.

The possible benefits gained from using spreading groups are clear. In contrast to other
message-spreading methods, such as using opinion leaders, the construction of spreading
groups is mainly a technical issue. The formation of spreading groups can be accomplished
with real Twitter accounts or with the accounts of bots (computer programs that imitate a
social network user). Thus, although the initial construction of spreading groups requires
some initial technical skill, its later use to gain influence in a social network is easy.

The paper is organized as follows. Section 2 provides a short history of rumor spread in
stock-related domains and suggests a motivation for the creation of spreading groups.
Section 3 presents the theoretical model and, using simulations, demonstrates how by using
only spreading groups a message can be spread to a larger audience. This section defines
the model’s characteristics and formulates different criteria for the intentional spread of
information. Section 4 describes the methods of Twitter data analysis, which is followed by
the experimental results in Section 5. The Results section begins with the theoretical model
and then details the Twitter data set analysis and its results. Section 6 discusses the
findings, and Section 7 concludes by describing the implications of bot technology in
message spread and its relevance to spreading groups.

2. Background
Studies of stock-related news rumors and their influence on financial markets can be traced
back to the rise of internet message boards and forums. In early 1998, for example, the
correlation between the number of published messages about companies on the Yahoo
Finance Board and their shares’ values was noticed and reported (US Securities and
Exchange Commission, 1998). In their study of the social influence on the stock market,
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DeMarzo et al. (2003) created a model of network activity and traced its influence.
The authors argued that users form their opinions with respect to the opinions of other
users. They are swayed more by the appearance of repeated messages than by the accuracy
of the information presented in these messages. Similarly, Cao et al. (2002) claimed that
financial traders might be less affected by the actual values of companies than by extensive
conversations about the stock. Based on these findings, Antweiler and Frank (2004)
demonstrated that a higher number of message postings predicts negative stock returns,
greater volume, and more volatility. This opinion coincides with previous findings (Harris
and Raviv, 1993) claiming that opposite opinions among posted messages tend to be
followed by increased trading volume. Thus, an increase in the spread of a message,
regardless of its content, might have a real financial impact.

With the development of communication technology, message boards were mostly
replaced by instant messaging platforms and social networks such as Twitter andWhatsApp.
In addition to the ability to accelerate and facilitate communication between users, as well as
the growing amounts of irrelevant information that the users receive (Hirshleifer and Teoh,
2003), these platforms enabled the creation of messaging groups that facilitated information
spread through customized, digitalized sub-networks of a defined type of knowledge.

However, these studies focused on the flow of rumors in financial markets, investigating
the influence of rumors on stock prices, and were not concerned with social networks.

The proposed model of information flow follows the general approach of information
cascades that Kempe et al. (2003) studied. They analyzed the problem of selecting a correct
set of nodes in a graph such that seeding these nodes (i.e. setting these nodes as infected)
would maximize the number of infected nodes at the end of a “viral” spreading process.
They also defined two generic models that captured much of the essence of information
spread through social networks. Their first model is the linear threshold model, and the
second is the independent cascade model. Both models assume an initial set of k seeds that
are selected prior to the spread. Then, a spreading process is performed until no further
activations are possible. The measure assessed for each combination of initial seeds is the
final number of infected nodes. The difference between the two models is an indicator of
the dynamics of the spreading process. In the linear threshold model, a spread occurs only if
the sum of the influences (i.e. the weights) of the infected neighbors is greater than a
threshold θ, meaning when

P
w bv;w4yv, with bv,w defined as the influence weights. On the

other hand, in the independent cascade model an infected node can infect its neighbors only
for a single period after it first becomes infected. The linear threshold model thus captures
the essence of social influence, where the more the adopters of a position or idea within one’s
circle of friends, the more likely one is to adopt that same position or idea. In contrast, the
independent cascade model captures the retention loss of human memory, where old news is
less likely to spread than novel news.

We implemented a variant of these two models on power law graphs. Power law graphs
are commonly used as a first-order approximation for many natural phenomena, including
social networks. These graphs describe processes where new user accounts (nodes) are more
likely to connect to highly connected nodes than less connected ones (Barabasi and Albert,
1999; Bollobas, 2001). This dynamic process describes the human tendency to connect to
more popular, well-connected individuals.

While the network power law structure is an important factor in the spread of information,
the micro properties that are required for a single transmission of information between two
nodes also need to be addressed. Information spread requires the ability to transmit, as well as
the ability to receive and process a new message. The amount of information has grown
exponentially during the last 20 years, and people are exposed to amounts of information that
have never been seen before. Technologies such as search engines help sort and filter this vast
amount of information, but these technologies also have their own biases (Sela et al., 2016).
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Taking into consideration that people’s attention resources are limited, but the processing
requirements are growing exponentially, smaller fractions of information are processed. The
limited attention model (Weng et al., 2012) is based on observations related to people’s limited
capacity for attention, which is usually insufficient to process the entire stream of news that
flows in a social network. New information that arrives while one’s cognitive resources are
occupied (or when people are simply too busy to open their Facebook or Twitter account)
are never read nor processed. Given that the speed and quantities of information flow are
increasing, but people’s cognitive attention capacities remain the same, they are likely to
process a decreasing fraction of the messages.

To deal with this issue, many people tend to follow opinion leaders. The study of
influencers (opinion leaders) has proposed various centrality measures, which were widely
assessed in the early days of network science studies. Numerous centrality measures were
proposed, each quantifying a different aspect of influence. Some of the common centrality
measures are PageRank, the Eigenvector centrality, the Betweenness centrality, the Kats
centrality, and clustering coefficient measures (Newman, 2005). Each of these measures has
its own advantages and represents a different facet of influence that characterizes a defined
node. Several studies have summarized the vast literature on centrality measures (Kempe
et al., 2003; Borgatti, 2005; Aral et al., 2013; Shakarian et al., 2013).

Centrality measures are often used to evaluate and improve seeding policies. Seeds might
be selected separately or together as an entire group. Some studies investigated which sets
of nodes should be seeded simultaneously to increase the information spread. Other works
(Chierichetti et al., 2014a; Michalski et al., 2014) have addressed the question of timing,
focusing on determining not just which nodes to seed. Since retention loss reduces the
probability of infection as time passes, and since users who receive messages repeatedly
tend to get annoyed, there are cases where addressing a central node too early might only
decrease the final spreading rates (Sela et al., 2016). Thus, the question of influence
maximization should address not only what nodes to seed, but also which nodes to seed and
when (Sela et al., 2017; Goldenberg et al., 2018; Sela et al., 2018).

The relationship between the number of exposures to a message and likelihood of
retweets has been studied by Zhou et al. (2015). They found that the more a person is
exposed to a message, the higher the retweet likelihood. These results imply that a
connected sub-component in a social network, which is also connected to many naive users,
will increase the likelihood that the naive users will retweet a message, since they will be
exposed to it more frequently. Thus, there is a clear advantage in creating sub-structures of
connected nodes in a social network that are constructed to spread a defined agenda.

These studies establish the ground for the methodology of complex networks and
information spread. However, they did not focus on social bots; rather, they were concerned
with theoretical modeling and the universal aspects of information spread – regardless if the
spreader is human or a bot.

This work adds a novel layer to the study of influence on social networks. It offers an
applicable technique, by which the spread of a message can be actively increased by
constructing sub-structures of human–bots and using these sub-structures to repeatedly
echo a message. While numerous studies (Davis et al., 2016; Echeverria and Zhou, 2017;
Ferrara, 2017; Freitas et al., 2015) have investigated the existence of bots in social networks,
the synchronized activity of bots by spreading groups has been neglected. Our main
contribution is to demonstrate that the spreading group strategy is highly efficient, and that
it is probably already used by groups of stock traders.

3. The model
The model compares the infection rates achieved by using a spreading group rather than
other approaches to seeding (i.e. selecting initial accounts in a social network and spreading
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a message to these accounts). Its results provide insights into the observations obtained
from real Twitter messages about the NASDAQ-100 stock market and demonstrate
that some rather unknown users reach retweeting rates 10 times higher than those of
well-established financial media groups.

Let D ¼ (V, A) be a directed graph (DAG) with n nodes and e edges that represents the
Twitter (or similar) social network. The set of vertices V ¼ {v1, v2,…, vn} is associated with
the individual users in the network, and the set of edges A ¼ {eij ¼ (vi,vj)|vi,vj∈V} defines
the connectivity between the users, where user j follows user i (thus, information spreads
from user i to j). The network topology is constructed by the preferential attachment process
(Barabasi and Albert, 1999) such that nodes are added to the network one after the other,
and the probability that a new vertex vj∈V connects to a specific existing vertex vi depends
on the relative connectivity between the specific degree ki and the sum of all existing degreesPn

j¼1 kj as defined in the below equation:

p við Þ ¼ kiPn
j¼1 kj

; i ¼ 1; 2; . . .; n: (1)

A spreading group of users is denoted by a sub-graph D′⊆D that is constructed as follows.
Let D′ ¼ (V′, A′), V′�V be a subset of vertices of size #V 0 ¼ nrd e, where r∈(0, 1) is a given
ratio value and n is the number of nodes in the entire network. During the preferential
attachment construction of D, edges between pairs of vertices in V′ are added arbitrarily in
such a manner that the average connectivity of the sub-graph D′ increases independently of
the connectivity of D. More precisely, first (n/2) nodes are created and attached by a
preferential attachment BA constructor (Barabasi and Albert, 1999). Then, nr nodes are
randomly selected. Third, for each node in V′, r additional links are added to connect any of
the nodes in V′ without self-loops, where we usually use r¼ 0.02. Last, the additional (n/2)
nodes are added by a preferential attachment constructor, to grow the network to its full size
of n nodes. As a result, the graph D includes a sub-graph D′ with greater connectivity. Such
a structure corresponds to a network with a distinguishable subset (group) of highly
interconnected users.

3.1 Three spreading strategies
As indicated above, the construction of the graph D follows the preferential attachment
model and creates a distinguishable sub-graph D′ within this graph from which the
spreading group might be selected. Now let us consider the initial message seeding and
information flow in the network. We denote by Vs�V a subset of vertices that are
associated with the users who initiate the spread, meaning the message seeds. We consider
the following three types of settings for the selection of the vertices in Vs with regard to the
selection of nodes in the spreading groups:

(1) The seeded vertices v∈Vs are selected randomly from the set V independently of
whether they are in the spreading group V′ or not.

(2) The seeding vertices v∈Vs are selected randomly from the set V′ of vertices, which is
associated with the nodes in the sub-graph D′, the spreading group.

(3) The set Vs of seeding vertices is specified as a set of vertices with the highest
eigenvector centrality measures (Newman, 2010). In other words, Vs is associated
with the group of users who have the strongest influence in the network.

These three methods of selection are illustrated in Figure 1. The selected seeds are marked
by red nodes, and the spreading groups’ connectivity is marked by an orange sub-graph.
The left-hand image plots the first setting for the selection, where seeds are selected
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randomly from V. The middle image plots the setting where the seeds are selected randomly
from the spreading group V′. In the right-hand image, the seeds are selected by choosing the
nodes with the strongest influence, that is, the highest eigenvector centrality, which are not
necessarily part of Vs.

After the initial seeding by vertices v∈Vs, information is spread according to the
independent cascade model (Kempe et al., 2003) with some minor modifications. As in
Kempe et al.’s (2003) study, the spreading process spreads a message only from a user to
his/her neighbors. The receiving user can then spread the message to his/her neighbors with
a transmission probability p(t). Unlike the independent cascade model, where a node can
transfer a message only in the consecutive period, we used the theory of limited attention
(Weng et al., 2012). Therefore, we assumed that the transmission probability decreases over
time, but is still possible after the first period that follows the node’s infection time. The
initial transmission probability for each node during the first period after receiving the
message is defined as p0 ≡ p(t ¼ 0), and is recursively set in the subsequent time to:

p tþ1ð Þ ¼ p tð Þ
c
; t ¼ 0; 1; 2; 3. . . (2)

In other words, when a user receives a message, the probability of spreading it in the first
step (t ¼ 0) is set to a maximal value p0, and then decreases over time. In each time step, a
random process defines whether any node v will be infected by its neighbor u, where the
probability of such an infection is p(t). When an infection of u succeeds, its time counter is
set to t¼ 0. The process of infection can theoretically continue forever, but we define its
ending if no users in the graph were infected in two consecutive time steps.

While the dynamics of information flow is rather simple, the comparison of different
seeding strategies, particularly the comparison of the seeding results when the spreading
group sub-graph is constructed, is the main contribution of the model above.

4. Method
The methods of study included both a simulation and an analysis of a data set collected from
Twitter. To analyze the results of the simulation obtained using our model, we utilized NetLogo,
an agent-based simulation platform (Wilensky, 1999; Wilensky and Rand, 2015). The
simulations used a Barabasi–Albert graph of n ¼ 10,000 vertices. In these studies, we used the
three different seedingmethods described in Section 3: seeded vertices v∈Vswith nodes selected
randomly from V, seeded vertices v∈Vs with nodes selected randomly from the spreading
group and seed nodes starting with the node with the highest eigenvalue centrality measure
(influence), then the 2nd, 3ed,…, kth high eigenvalue centrality. The model’s parameter space
was modified such that the dense cluster V’ contained 1, 3 or 5 per cent of the nodes from V.

Notes: The spreading group is marked by an orange sub-graph. The three methods of
selection are random seed selection (left), random selection from the spreading group
(center) and selection of most influential nodes (right)

Figure 1.
Illustration of seed
(red nodes) allocation
settings
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Second, the number of initial seeds |Vs| was set to 15, 25, or 35 nodes, respectively. Third, the
transmission probability p0 was set to 1%, 5%, or 10 percent. Last, the retention loss factor c
was set to 1.5, 3 or 4.5. For each unique combination of parameters, the simulations were run for
20 runs, while recording the final number of infected nodes in the graph in each run.

In parallel to the simulation experiments, we analyzed and compared a data set from
Twitter. The raw data included 1,481,444 NASDAQ-100 related tweets that circulated on
Twitter throughout June 2014. A filtering process was applied to select tweets that included
only the “$” sign before the identifying string. Based on Twitter jargon, such a selection
distinguishes between the stock itself (e.g. the $AAPL stock) and other possible objects with
the same name (e.g. the fruit or the company that has the name “Apple”). The Twitter jargon
contains a few common symbols such as the hashtag symbol #, which represents a term,
and the symbol @, which represents a Twitter user’s name. The $ symbol is a unique sign in
Twitter that is used for stock-related tweets. Thus, filtering tweets that included the $ sign
followed by one of the names of any of the 100 stocks in the NASDAQ-100 created a filter for
messages related to stock markets only.

To preserve consistency, we will refer to individual tweets sent by a Twitter user as
“message” or “tweet,” and we will refer to a set of recurrent messages with a similar text
as “cascade.”

The raw data set included 1.48m tweets, all having a NASDAQ-100 hashtag, that were
downloaded by the streaming Twitter API. We first removed all the tweets that were not
complete, i.e. not written in English, or had missing/non-readable text. Following this filtering,
the data set included 1,131,625 tweets. Then, we grouped these tweets by text, and only kept
tweets that appeared more than once. This left the data set with only 27,071 cascades that had
at least one repetition. Together with the tweet text, the occurrence record included a field tag
indicating the time it was published, the name of the publisher, the location where the tweet
was retweeted, and, in cases of retweets, the identifier of the user who initialized the tweet
cascade. Since the streaming Twitter API only permits downloading about 1 percent of the
entire Twitter data, we could not count on understanding the data structure. In addition,
Twitter does not fully reveal the structure of its network. For example, consider the case
where person A follows person B, and person B follows person C. Also suppose that a
message published by C is retweeted by B, and then B is retweeted again by A. This would
appear when downloading the data as a message published by C is retweeted by A, even
though C and A do not have a connection, while the connection of B and A will not be
revealed. This is the reason why one can sometimes see on Twitter messages by people that
one does not follow. If a person that one does follow retweets a message, this message will
appear in one’s timeline with the name of the original publisher[1].

5. Results
5.1 Simulation results
Given the above-mentioned set of parameters, the simulation study included 4,860 runs
(20 runs with each distinct combination of parameters). In each run, the total number of
vertices that were eventually exposed to the message by the end of the trial was recorded.
The average number of infected vertices at the end of each run, over the trials for different
sets of seeding methods, and different number of initial seeds are shown in Figure 2.

Note that if the seeding vertices are selected randomly from the set of vertices, the number
of exposed vertices at the end of the simulation is nearly three times smaller than this number
when the seeding vertices are selected from the spreading group. Such a result accords with
the findings from the evaluation of the Twitter messages presented in the next section,
which provide evidence of the existence of such spreading groups in reality. Since the
connectivity in the spreading group G′ is higher than the connectivity in the network G,
the messages in G′ circulate more widely and, consequently, are better exposed to the users in
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the remaining network. In addition, note that the information flow model we used does not
consider the meaning or the content of the messages (Harris and Raviv, 1993) or the increased
tendency to read a message from different users in the social circle (herd behavior). These
influences may highlight the difference between the structures of the random seeds compared
to the initiation of the message by the two other seeding groups as described above.

To better understand the mechanism behind the spreading groups, one needs to consider
the dynamics of the epidemic spreading model. In epidemic models, such as the SIR model
(Funk et al., 2009; Wu et al., 2004), the epidemic is very sensitive in its initial stage of spread.
Small efforts at immunization might quash the epidemic. In contrast, in later stages, when
the epidemic is already spread into the population, a substantially greater effort would be
required to suppress its spread. A similar dynamic exists in the case of information spread.
In its echoing of a message in its initial stages of spread, the spreading groups act as a shield
that protects and strengthens the spread in its early stages, thus enabling its spread to
larger regions of the network at later stages.

Figure 3 illustrates the factors that strengthen the spreading group’s effect compared to
a random selection of seeds are (i) a larger dense cluster D′ within the graph (left-hand
figure), (ii) higher levels of susceptibility of the message, meaning larger values of P0
(middle figure) and (iii) the slower decay in susceptibility (right-hand figure). Note that point
(ii) and point (iii) emerge from a rather similar effect, one in which higher levels of
susceptibility might result from a higher initial value of P0, as well as a slower decay in
retention loss due to smaller values of the decay factor c.

5.2 Model evaluation using the Twitter data
In this section, we utilize the insights from the model to analyze the spread of the Twitter
messages related to the NASDAQ-100. We consider several possible scenarios by which
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information can spread through a social network. Distinguishing between the scenarios is
not always simple, because, given that the real social network structure in Twitter is hidden,
the real flow of information is difficult to determine.

The first scenario, called the “naive spreader”, corresponds to a case in which an
unknown user posts an interesting new message on Twitter and causes a massive
information cascade. The user has no desire to create this information cascade. No effort is
intentionally invested to increase the spread, but the cascade emerges naturally simply
because of the importance of the news and the user’s desire to spread it.

The second scenario, called the “guru spreader”, is associated with a guru being followed
by his/her followers. In this scenario, an initial message tweeted by a well-known user
(a guru) is spread by several users (followers), who find this message interesting. An
example of such a guru with regard to stock investments is Warren Buffett. In this case, the
spread is due to a very connected individual or a highly recognized individual, and the
spread is due to his/her degree of connectivity.

The third scenario, on which we focus, is the “spreading group”, where a distinguishable
group of users intends to spread a message by repeating it frequently within the group. Such a
strategy might hide or present the initial spreader. Furthermore, in many cases, unlike the
guru, who is a leading figure, this strategy might be used for commercial reasons, such as
spreading promotions. Thus, we expect it to contain messages of less economic value because
their source is not an expert or a guru. Since in this last scenario the spread is the result of an
intentional activity whose goal is solely the spread, it is not a spontaneous act of information
cascade as in the two previous cases. Such a message-flow scenario would result in a spread
that resembles the spread through the most influential users in the network.

Distinguishing between the scenario of a guru followed by a group of followers and that of
a spreading group is not always easy because the Twitter network is hidden from the
crawlers. The retweet mechanism hides the real network links, and one cannot always know
who follows whom. A guru might create a group of followers who form a cluster with a higher
degree of connectivity. The formation of a dense cluster around a financial guru is only a
result of his/her financial acumen. To distinguish between groups that are formed around a
financial guru and those that are only a method to increase the message spread, we conducted
an evaluation of the message’s content that we describe at the end of the result sub-section.

5.3 Twitter data and methods of analysis
Of the 1,131,625 unique tweets that included the NASDAQ-100 stock hashtag, we selected
27,071 (2.4 percent of the data) cascades of messages that repeated more than once. We
divided these message cascades into three subsets: a subset of tweets with more than
700 repetitions (High group), a subset of tweets that repeated between 401 and 699 times
(Mid group) and a subset with tweets repeating between 100 and 400 times (Low group).
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The High group messages contained 79 unique cascades that repeated 2,606 times on average.
In this subset, two messages with extremely high levels of repetitions (57,026 and 27,579) were
omitted and considered outliers. We removed these two messages since they were an order of
magnitude 10 and 5 times higher than the next cascade, but only change 0.03 percent of the
entire data set. The next largest cascades were of 5,729, 4,520, 2,427, 1,923, 1,726, and 1,722
repetitions and were kept in the data set. This procedure left us with 77 cascades with an
average repeating rate of 1,575 repetitions. The group with the lowest number of repeated
messages (Low group) contained 143 unique tweet cascades that repeated 173 times per
message on average. To create two distinct groups, we ignored the middle group and
considered only the High and Low groups. Given that the number of messages in the two
groups was substantially different, we normalized the Low group. To obtain a group of
messages in the Low group that was comparable to that in the High group (the High group
consisted of 77 messages, while the Low group contained 143 messages), in each run 77 tweets
were randomly chosen from the Low group and compared to the High group. As a result, the
analysis was conducted with groups of similar sizes, each of which contained 77 unique tweet
cascades. The process of randomly choosing users was repeated 20 times to ensure that this
random choice did not influence the final results. We compared the messaging activity for
users in both the High and Low groups, including a comparison of the rates of reoccurrence of
similar users and the distributions of the number of tweets in each group.

5.4 Results
The following analysis addresses the reoccurrence of the tweets and distributions of users in
both groups, the High and Low repeating cascades. The main objective of the analysis is to
identify differences in tweeting behaviors with respect to the behavior of users involved in
the spread of High and Low groups. We assessed the users involved in spreading the
messages in these two groups. As indicated above, both groups now contained 77 unique
tweet cascades with an average of 2,606 and 173 repetitions (retweets), respectively.

First, for both groups, we identified all the users involved in spreading the cascades
of Twitter messages in the High and Low groups. We denoted those by V

*

h and V
*

l ,
respectively. Note that since the same messages can be sent by different users and,
alternatively, different messages can be sent by the same users, each of the V

*

h and V
*

l might
include overlapping user identifiers in both sets. The number of tweets involved in the spread
of messages in each group were #V

*

h ¼ 204; 442 and #V
*

l ¼ 16; 919.
Our aim was to inspect the characteristics of users that were involved in spreading high/

low tweet cascades. To accomplish this, we first randomly chose 20 messages from the High
and 20 messages from the Low groups. We then identified all the users that were involved in
the spread of each cascade, and randomly selected from each cascade 10 users that were
involved in its spread. This resulted in 20×10¼ 200 users that were involved in the spread
of messages from V

*

h and 200 users that were involved in the spread of messages from V
*

l .
Then we collected all of the tweets that were sent by each of these 400 users (200 users from
High and 200 from Low) and analyzed the histograms of their tweets, with respect to their
number of repetitions. After removing tweets that had no repetitions, we plotted the
repetition histograms for tweets that were generated from users in the two groups, as
presented in Figure 4. Our goal was to check if the users involved in a single highly
repeating cascade can be differentiated in some aspect from users involved in a lowly
repeating cascade. Surprisingly, the answer was yes. Figure 4(a) illustrates the histograms
of repetition of messages for users in the High group and Figure 4(b) provides the same
information for users in the Low group.

In these figures, the cascade length (x-axis) is plotted vs the number of occurrences of a
cascade of this length in the entire data set (y-axis). Note that the distributions of retweets for
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users in High (Figure 4(a)) vs Low group (Figure 4(b)) are significantly different. Moreover, the
distribution of the Low group follows the power law distribution, as expected for an
information cascade that does not contain any spreading group scenario, unlike the
distribution for the High group, where some users were involved in substantially more tweets.

5.5 Investigating reoccurrence rates of users in High and Low spreading groups
The goal of this section is to describe the procedure used to investigate the early spreaders
of a tweet cascade, and the differences in the spreading patterns between High and Low
spreading groups[2].

According to the spreading groups model, the users that form the spreading group are
more involved in the early stages of the cascade, and their involvement should result in
longer cascades. We thus expect longer cascades to have more users belonging to spreading
groups at the early stages of the cascade. But can we identify the users belonging to the
spreading groups? In our case, we do not know who belongs to the spreading groups and
cannot clearly identify them. What we can do is predict if spreading groups exist, by
inspecting if some users are over-represented in the early stages of the spread for messages
that form longer cascades. Our goal is thus to investigate whether there are differences
between the frequency of appearance for early spreaders of messages in the High vs Low
cascades. Our assumption is that if spreading groups do exist, and they actually promote
the spread, then we need to find more similar users (users from a spreading group) at the
early stages of a longer cascade, i.e. High group, as compared to the Low group.

To inspect the above assumption, we performed the following procedure. First, we
filtered the data set to create two tables of tweets records, one belonging to the High and
the other belonging to the Low repeating cascades. As defined previously in the results
section, these two tables, defined as V

*

h and V
*

l , included the following fields for all
cascades of types High or Low: (1) The tweet’s o textW , (2) The tweet’s ouser idW , and
(3) the tweet’s o timestampW . We defined a threshold value m, and collected for all the
tweets in V

*

h and V
*

l the IDs of the earliestm spreaders for each cascade. We denoted these
vectors of m early spreaders by Vm

h and Vm
l (with h and l denoting the High and Low

groups). Note that similar ID numbers can appear several times in Vm
h and Vm

l , since these
tables include all 77 cascades. Next, we counted how many unique user IDs existed in Vm

h
and Vm

l , and denoted these vectors of IDs as Vm_u
h and Vm_u

l . Last, we compared the rates
of repeating names in both the high and the low vectors by comparing the unique and non-
unique vectors. If spreading groups exist in our data, we expect a higher repetition rate of
users in the High as compared to the Low group at early stages of the cascade. The rates of
reoccurrence of tweets Rm for the High and Low groups were calculated by Equation (3),
where the symbol # denotes the size of the vector; the numerator is thus the number of
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repeated appearances of users over their first appearance, and the denominator is the total
size of names (rows) in the tweet tables. This formula yielded the fraction of repeating
names for both groups:

Rm
l ¼ #Vm

h �#Vm_u
h

#Vm
h

and Rm
h ¼ #Vm

l �#Vm_u
l

#Vm
l

: (3)

To demonstrate the use of this measure, let us consider the following example. Let us
assume two cascades of size ten users, as shown in Table I. The first cascade includes the
user IDs {100, 101,100,101,…, 101} and the second cascade includes user IDs {100, 101, 102,
103, 100, 101,…, 104}. In the first cascade (Case 1) only two users repeatedly spread the
message, while in the second case (Case 2) the message was spread by five users.

In both cases, the total number of messages is #V10 ¼ 10, but in case 1 there are only two
unique IDs (100 and 101). Thus, the measure of the reoccurrence of the tweets is
Rm¼10
case1 ¼ ð10�2=10Þ ¼ 0:8, while for Case 2 Rm¼10

case2 ¼ ð10�5=10Þ ¼ 0:5. For a smaller sample,
m¼ 6, the values would be Rm¼6

case1 ¼ ð6�2=6Þ ¼ 0:667, and Rm¼6
case2 ¼ ð6�5=6Þ ¼ 0:166.

Let us now consider the dependence of rates Rm
h and Rm

l on the number m of the earliest
spreaders, determined from our examination of the real Twitter data set, for the High and
Low groups. This dependence is presented in Figure 5, while the data and code are available
in the GitHub page related to this work.

As the figure shows, for a small value ofm, the number of repeating users in both groups
is also small and coincides with a low probability of the reoccurrence of the messages.
However, as m increases, the difference between the number of repeating users grows.
Indeed, form close to 200 in the group of High messages, this number is nearly twice as high
as the repetitions in the Low group. Furthermore, one would assume that messages with a
high retweet count would include “fewer” repeating names, not “more” as in the results
above, only if no spreading groups exist. This assumption is based on the fact that it is less
likely that a random repeating name would appear when more users are involved in the
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message’s spread. Note, however, that the opposite case is true in the case of real data, as
expected for the spreading groups model. While this trend is clear for the early spreaders, as
we inspect growing values of m, the rate of similar users in the High group would cease
being higher than that in the Low group.

5.6 High-level evaluation of message content vs spread
Since the actual spreading network is hidden in Twitter when using the streaming API
crawling process, it is difficult to distinguish between a guru who has many followers and a
spreading group. When we investigated a sample of tweets, we found some messages that
were spread quite often, containing information that seemed to have little financial value but
was spread in large cascades. We suspected that these highly retweeted messages, which
did not contain much content, were the result of a spreading group activity. This result led
us to investigate the messages’ content as a means of distinguishing between the guru
scenario and the spreading groups scenario.

From the data set, we selected 12 users who had the highest repetition rate. We
investigated these users and found seven users from the High group, which are also
known as global financial medial news broadcasters, such as CNBC, ForbesTech,
FortuneMagazine, and BloombergTV, and investigated the content of their most
retweeted messages. In addition, we identified a second group of five users who, to the
best of our knowledge, are not considered global financial media news broadcasters.
Examples of such users are accounts with names like “Teacuppiglets,” “Philstockworld”
and “2morrowknight.” In both groups, we examined the number of tweets and retweets.
Table II presents the results sorted by the average number of retweets and the total
number of retweets.

The average number of retweets for the three large global financial broadcasters, i.e.
CNBC, The Wall Street Journal, and ForbesTech, was 42, 125, and 30, respectively. In
comparison, the average number of retweets of the messages posted by Philstockworld and
Teacuppiglets was 1,291 and 710, respectively.

A high-level comparison of the text content for the top messages sent by the global
financial media firms, such as BloombergNews, ForbesTech, and YahooFinance, and the
content of the messages sent by the accounts not considered global financial broadcasters
demonstrates that tweets by the former often included fundamental information that could be
relevant to investors. However, tweets by the latter have less valuable content. For example,

User name Total number of tweets Number of retweets Average number of retweets

Well-known users
CNBC 113 4,781 42
WSJ 112 13,949 125
ForbesTech 36 1,096 30
CNBCnow 25 736 29
BloombergNews* 23 575 25
FortuneMagazine 57 1,186 21
YahooFinance 87 1,606 18

Less-known users
Philstockworld 35 45,198 1,291
Teacuppiglets* 44 31,240 710
androsForm 32 3,507 110
ValaAfshar 26 1,174 45
2morrowknight 35 1,073 31

Table II.
The number of tweets

and retweets for
global companies and

private users
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the message, “RT@teacuppiglets: Bought 6,000 shares of $fb here let’s go:)” was spread by
1,051 users, and may (or may not) represent a group of investors following a financial guru.
Other examples are the following: “RT@teapartymobile: “$AAPL about to have a huge day!
Gapping up already! Weeeeeeeeeeeeeeeeeee!!! $MLCG $FB,” which was retweeted by 1,726
users, or the message “RT @teacuppiglets: Our private $FB investors group has almost
reached 1,500 members. There is power in numbers! Free 2 join it is free https […]”which was
retweeted by 1,575 users. These might be considered a spreading group artifact.

5.7 Experiment to evaluate message importance relative to its spread
Our own evaluation of tweet content might be subjective. We thus conducted an
experiment aiming to quantitatively evaluate message content vs its spread. We used 100
responders from the Amazon Mechanical Turk service (MT) to review the content of the
20th most retweeted messages from two selected accounts, with a total of 40 messages. We
selected from each group in Table II above one Twitter account considered to be a global
media broadcaster (i.e. BloombergNews) and another not considered to be a global
media broadcaster (i.e. Teacuppiglets). The account BloombergNews was selected because
it had the lowest average retweeting rates (thus we expect its content to be the least
important). The account Teacuppiglets was selected since its Google search resulted in no
relevant links to connect this account to any financial guru or trading company or global
media broadcaster.

From the 100 MT responders, we ignored 3 responders due to reliability issues, and were
left with 97 responders. Each responder was asked to evaluate 10 questions on the
importance of 10 tweets that were published either by BloombergNews or by Teacuppiglets,
in terms of his/her own belief of the financial importance of tweet content to a stock market
investor. The importance was evaluated on a scale of 1 to 5, with 5 being highly important.

We used 4 different versions of questionnaires[3], with questions shuffled between the four
versions to eliminate possible bias due to the position of the question in the questionnaire
itself. In each tweet message, the name of the spreader was hidden to prevent any possible
bias (negative or positive) due to known media financial broadcasters. The final evaluation of
message content is presented in Figure 6, and is the summation histogram of 970 evaluations
of 40 different tweets, as performed by 97 users on a 1 to 5 scale.
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The results obtained also support the assumption that the high degree of spreading (an
average of 710 retweets for the unknown source, Teacuppiglets, vs 25 for BloombergNews)
does not necessarily relate to the importance of message content, since the messages from
Teacuppiglets did not contain content that was more valuable.

6. Discussion
Researchers have documented the use of social bots that mimic human behavior in social
networks. Their effect and influence on political, social, and economic aspects has reached
such a degree that DARPA, the American Defense Advanced Research Projects Agency,
held a 4-week competition with a $4m prize to identify “influence bots” in Twitter
(Subrahmanian et al., 2016; Davis et al., 2016). The winning team achieved an accuracy rate
of 97.5 percent.

While DARPA’s competition winners seem to differentiate very well between social bots and
real humans, this is not the case for some naive users nor for the social network sites themselves.
For example, Freitas et al. (2015) constructed 120 social bots and followed their social
development over time. All of these bots had a Twitter profile, were following other users, and
generated a random stream of tweets. These bots soon started to be followed by naive users.
Moreover, only 31 percent of the bots were detected by Twitter spam services within a period of
one month, at the time that the article was published. More interestingly, three of these bots
achieved levels of popularity and influence similar to those of the top data scientists at Facebook,
even surpassing the principal research members of IBM, as measured by the Klout score (Anger
and Kittl, 2011). These results demonstrate the growing influence of social bots and the
complexity of their activities, as well as the awareness required for their developing strategies.

Estimations for the percentage of social network accounts that are actually bots (and
therefore not human) vary between 9 and 15 percent of the total number of active accounts
(Varol et al., 2017). Furthermore, spreading group activity has been shown to be effective not
only in stock market-related topics, but also in politics and election power struggles
(Echeverria and Zhou, 2017; Ferrara, 2017).

One interesting finding regarding the estimated operating costs and maintenance of
spreading groups is that no less than 350,000 bots are synchronized to randomly tweet
messages from the Star Wars movie series (Bastos and Mercea, 2019). While these “Star
Wars” bots do not necessarily have to be spreading groups, they do represent the ability to
automatically create social bots, suggesting very low operating costs for large numbers of
bots. Otherwise, it would be hard to imagine that someone manually opens 350,000 Twitter
accounts and runs 350,000 bots simply to tweet random Star Wars quotes.

While detecting a single social bot seems to be a task for organizations like DARPA or
Facebook, the next level of complexity in bot evolution will include the use of bot spreading
groups. These bot networks are intermixed with human users, either naive or non-naive,
which makes their identification harder.

Our work demonstrates by simulations the effectiveness of a strategic construction of
sub-networks of users to promote the spread of information. With the development of AI
technologies such as deep neural networks in text-related tasks (Freitas et al., 2015), as well
as the increasing availability of Generative Adversary Networks (Kong et al., 2019), smarter
construction of spreading groups might be used to enhance, increase and manipulate the
exposure of selected messages on social networks.

While the spreading group model demonstrates a clear advantage of bots operating in
synchronized groups, one limitation of our work is that it may be questionable if an account
that seems to be a part of a spreading group is a bot or a real human being. This detection
difficulty was used to weaken the spreading groups theory, where politicians in the 2019
Israeli elections used a false detection of a bot, which was actually found to be a real person,
to claim bots do not exist at all, nor operate in the election (Mail online, 2019; Harkov, 2019).

Spreading
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While currently the detection of spreading groups is based on their activity at early
spreading stages, future bots can change their spreading strategy to avoid this method of
detection. This might be another limitation.

7. Conclusion
Social networks are an important aspect of modern information spread. Their influence on the
social, economic and political aspects of our lives is evident. While a common practice used by
commercial organizations to increase their influence and popularity focuses on promoting a
message through influencers (e.g. celebrities or opinion leaders), the engagement of these
celebrities to promote commercial products (or social agendas) is usually costly and dependent
on their personal preferences. This work presents the advantages of a more technical (but
probably less ethical) method of achieving the same goal by increasing the influence of a
promoted message in a social network using spreading groups.

While the creation of bots and spreading groups is clearly unethical, since it includes a
deceptive creation of a fake personality, as long as the legal systems permit this unethical
act, this method would probably continue. Initial action toward legal enforcement to prevent
fake accounts (and bots) has been made (e.g. by the French president), through restriction on
social networks companies during elections (Su, 2018). Nevertheless, these restrictions are
only in their early stages.

These spreading groups consist of a dense subset of users in the network, which ignite the
spread of a particular message through a ping-pong-like exchange of that message in its initial
spreading phase. Through this method, they create an information cascade by passing the
message between the members of the group in its early stages, thereby exceeding the natural
threshold of the viral process. Thus, the message spreads into larger portions of the network
with greater ease.

More and more evidence accumulates for the existence of spreading groups. In some
cases, they are referred as BotNets (Hackathon, 2019); nevertheless, BotNets and spreading
groups are only synonyms for a similar phenomenon. Although the less sophisticated
spreading groups are easy to detect because of their lack of meaningful content, it is only a
matter of time until their detection by content will be much harder. Other methods for
detecting spreading groups might include more sophisticated cyber methods: e.g., through
the IP of their initial account, through the time of account creation, or through the methods
proposed in this article.

In the age of social networks, where social connections are a valuable asset, this work has
three main implications: first, the awareness, by which we hope to alert the reader to the
manipulations that can be (and are) performed by the spreading groups mechanism in order
to increase the spread of a message or an agenda; second, the practical aspect, whereby one
might want to use the spreading group mechanism, as long as it does not violate any legal
restriction, to better spread one’s messages; third, the detection, wherein this work only
reveals the top of the spreading group iceberg, and we expect much work can be done
regarding this in the near future, both by the academic and by the industrial sectors.

Notes

1. https://help.twitter.com/en/using-twitter/retweet-faqs

2. The code and data analysis of this part can be found in the Github account of this work, https://
github.com/alonsela2015/OIR-Article

3. Questionnaires of Amazon Mechanical Turk experiment can be found on: http://goo.gl/forms/
bKcfl7wELx in http://goo.gl/forms/kJwIMmr3PE in http://goo.gl/forms/roiUtT4LpE and in http://
goo.gl/forms/zrzMrHBriy
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