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 Abstract - We consider the use of a wireless body area 

network for remote patient health monitoring applications. Our 

proposed network consists of a controller and multiple sensors, 

whose signals provide information on the health state of a 

patient. We model this patient-sensor network as a partially 

observable Markov decision process. The sensor outputs are 

used by the controller to update the patient’s health-state belief 

probabilities and select a subset of sensors to be activated at the 

next decision epoch. We propose two operational algorithms 

that allow accurate monitoring of a patient’s health state while 

minimizing operational and misclassification costs: i) a greedy 

algorithm, which applies a one-step look-ahead approach, and 

ii) a dynamic programming-based algorithm which yields the 

optimal policy. We provide a numerical example which 

demonstrates the applicability of the suggested methods and 

provides insights.   

Keywords — Wireless body area networks, optimal control, 

controlled sensing, partially observable Markov decision 

processes (POMDP), dynamic sensor selection, dynamic 

programming 

I. INTRODUCTION 

In this paper, we explore the task of real-time patient 

health status monitoring using a wireless body area network 

(WBAN). Due to the nature of such wireless networks, the 

system must be energy-efficient in order to achieve long term 

user compliance and real-world applicability. Additionally, 

the system’s prediction concerning the patient’s health state 

must be sufficiently accurate.  

We present a control scheme, which aims at minimizing 

the total cost of the system’s energy consumption and the 

penalty associated with misclassification of the patient’s 

health state (we assume the true patient’s health state is 

unknown to the controller). We first model the sensor system 

and controller, as well as the underlying patient health state, 

as a partially observable Markov decision process (POMDP). 

We then discuss two possible sensor selection policies by 

which the controller selects the activated sensors throughout 

the systems operation. We assume a WBAN system with 𝑁 

heterogeneous sensors. At each decision epoch, the controller 

selects a subset of sensors to be activated, observes the 

activated sensors’ outcomes, and updates an internal belief 

state. This belief state, modeled as a probability distribution, 

represents the controller’s confidence that a patient is in a 

certain health state.  When updating the belief state, the 

controller considers the sensor outcomes from the current 

epoch, the previous belief state, and the known true health 

state dynamics. With this updated belief state, the controller 

activates a new subset of sensors, enabling the continuation 

of the closed-loop patient monitoring system. 

Recent technological advances have enabled the 

incorporation of WBANs in real-life health monitoring 

systems. WBANs typically consist of an array of sensors 

designed for real-time monitoring of different physiological 

metrics [1], [2]. Extensive research has been conducted 

concerning the applicability and requirements for successful 

implementation of such systems [3]. Amongst other 

limitations, energy consumption is a main restraining factor 

of WBAN systems [1], [4], specifically when considering 

smartphones as a primary communication channel. Research 

in the field of WBANs has primarily focused on the reduction 

of energy consumption via innovations in sensor design, 

communication protocols, signal processing, and other 

technologies [5]. However, to this day, energy consumption 

remains one of the main limitations of WBAN systems. We 

approach this challenge by proposing an efficient patient 

health monitoring scheme. The approach presented here does 

not rely on conventional WBAN mathematical modeling 

techniques, which are usually based on simplifications 

allowing only homogeneous or identical sensors and “perfect 

sensing information” [1], [6], [7], [8].  

When modeling WBANs, POMDPs have been used to 

describe the transitions of the system’s information states [9]. 

A POMDP model is defined by a set of states, actions, 

conditional transitions between the states, a cost function and 

a set of observations [10]. In this paper, we adopt the POMDP 

approach and extend the model by allowing non-perfect 

sensing information obtained from multiple activated sensors 

at each time step. In addition, misclassification and sensor 

activation costs are taken into account in order to balance the 

associated uncertainties and costs in the system. We then 

discuss and compare two control algorithms: a 

computationally efficient look-ahead greedy algorithm, 

which returns a policy that minimizes the cost in the next time 

step, and a dynamic programming-based algorithm, which 

results in the optimal policy. The optimal policy is 

determined by applying value iteration on a discretization of 

the health state probability space. A numerical examination 

is presented to assess the policies’ performance. 

The model described in this paper is an extension to a 

previous simpler model concerning optimization of WBAN 
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systems based on a single sensor [11]. This study used a 

POMDP similar to the one used in this paper to describe the 

system dynamics. The central contribution of this study is the 

use of multiple sensors, where each activated sensor returns 

an independent output signal.   

II. HEALTH SENSING MODEL 

A. Patient Health States 

First, we discuss the model used to represent the 

underlying health state of a patient. We consider a finite set 

of discrete health states a patient can occupy, denoted as  

ℋ = {ℎ0, ℎ1, … , ℎ𝐽}. The state ℎ0 denotes a terminal state in 

which the monitoring of the individual is no longer relevant 

(e.g. the patient is taken to a hospital, patient mortality, etc.). 

Thus, if an individual reaches the terminal state, he or she 

remains in that state until some intervention occurs.  

The transitions between any two states are given by a 

(stationary) transition matrix 𝑻 that describes the transition 

probability from state ℎ𝑡 ∈ ℋ  at epoch 𝑡 to state ℎ𝑡+1 ∈ ℋ 

at epoch 𝑡 + 1: 

 𝐓 = 𝐓𝑗𝑖 = 𝑃𝑟(ℎ𝑡+1 = ℎ𝑗|ℎ
𝑡 = ℎ𝑖) (1) 

Let us start by defining a basic scenario in which the 

health states are ordered from the least healthy state to the 

healthiest state. Similar to a birth/death Markov chain, 

transitions are defined between the pairs of adjacent states. 

Figure 1 presents a linear series of health states, where 𝜇 and 

𝜆 denote the transition probabilities to a less healthy state and 

a healthier state, respectively. As noted above, ℎ0  is the 

terminal state to which the transition is allowed only from ℎ1. 

Accordingly, the transition to the healthiest state,  ℎ𝐽 , is 

allowed only from ℎ𝐽−1. Assuming the monitoring frequency 

is high enough, such a transition scheme seems to be 

appropriate. 

 

Fig. 1: Birth-death Markov chain describing transitions between health 

states. 

B. Sensors 

The health states described in the previous section are 

unknown to the controller, yet a set of sensors is used to 

produce a belief distribution over the different health states. 

We assume the network contains a set of 𝑁 available sensors. 

At each decision epoch, a subset of sensors is activated to 

carry out measurements. We denote the binary activation 

sensor vector by 𝐬𝒕 = (𝑠1
𝑡 , 𝑠2

𝑡 , … 𝑠𝑁
𝑡 ), where 𝑠𝑛

𝑡 = 1 refers to 

an activated sensor, and 𝑠𝑛
𝑡 = 0 refers to a deactivated sensor, 

at time  𝑡 , where 𝑛 = 1,… ,𝑁 . Note that the time index is 

omitted for ease of notation when addressing general, time-

independent properties henceforward. 

For simplicity, we assume binary sensors, i.e. the output 

from an activated sensor is either 0 or 1. We define 𝐿(𝒔) =
{𝑙1, … , 𝑙𝑁} as the set of all possible output combinations of 

the sensors given a sensor activation vector 𝒔 , i.e. 𝑙𝑛
𝑡 ∈

{0,1, ∅} . For example, assume there are three 

sensors,  𝑠1, 𝑠2, 𝑠3 , and only 𝑠1 and 𝑠2  have been activated, 

implying  𝒔 = (1,1,0) . Then  𝐿(𝒔) =
{(1,1, ∅), (1,0, ∅), (0,1, ∅), (0,0, ∅)} , where ∅  denotes a 

deactivated sensor. 

We further assume that, given the patient health state ℎ𝑗, 

the probability to obtain a positive output “1” (and thus a 

complementary negative output “0”) from sensor 𝑛 is known 

and based on the sensor design and quality. This probability 

is denoted by 𝑝𝑛𝑗: 

 
𝑝𝑛𝑗 = Pr(𝑙𝑛 = 1|ℎ𝑗)      

∀𝑛 = 1,… ,𝑁 ; ∀𝑗 = 0,… , 𝐽 
(2) 

The probability of the negative output “0” is 1 − 𝑝𝑛𝑗 . These 

probabilities can be interpreted as sensor accuracies, and can 

be combined into a sensor accuracy matrix, P. 

C. Belief States 

Since the actual health state at each epoch is unknown to 

the network’s controller, the controller makes decisions using 

a belief distribution over the health states, denoted as a belief 

state 𝒃 = (𝑏0, 𝑏1, … , 𝑏𝐽). The belief state is estimated with 

conditional probabilities given the following information: i) 

the previous belief state; ii) the subset of activated sensors; 

iii) the sensors’ most recent outcome signal (as a sufficient 

statistic); and iv) the true health state transition matrix. The 

belief state We thus represent the following transition 

function between belief states: 

 𝒃𝒕+𝟏 = 𝜏(𝒃𝒕, 𝒔𝒕, 𝒍𝒕, 𝑻) (3) 

where 𝑏𝑗
𝑡+1 is the conditional probability that the patient is in 

health state ℎ𝑗, i.e. 𝑏𝑗
𝑡+1 = Pr(ℎ𝑡 = ℎ𝑗|𝒃

𝒕, 𝒔𝒕, 𝒍𝒕, 𝑻). 

At the initial epoch, the belief state 𝒃𝟎 is assumed to be 

known. Then, the belief state evolves as a result of the 

decisions made with regard to the subset of sensors that are 

activated at each epoch, 𝒔𝒕, the obtained outputs, 𝒍𝒕, and the 

transitions between the health states, 𝑻. In order to determine 

the evolution of the belief state, one has to estimate the 

probability of a positive output from sensor 𝑛 given the belief 

state 𝒃, namely: 

 Pr(𝑙𝑛 = 1|𝒃) = ∑𝑝𝑛𝑗𝑏𝑗       ∀𝑛 = 1,… , 𝑁

𝐽

𝑗=0

 (4) 

By applying Bayes’ theorem, we calculate the belief that the 

patient is in health state ℎ𝑗 based on the output of sensor n:  

 
Pr(ℎ𝑗|𝑙𝑛 = 1, 𝒃) =

𝑝𝑛𝑗𝑏𝑗

Pr(𝑙𝑛 = 1|𝒃)
     

∀𝑛 = 1,… ,𝑁 ;   ∀𝑗 = 0,… , 𝐽 

(5) 

By combining all of the sensor outputs in a similar fashion, 

we get an expression for the controller’s belief that a patient 

is in health state ℎ𝑗: 



 

Pr(ℎ𝑗|𝒍, 𝒃) =
Pr(𝒍|ℎ𝑗) ∙ 𝑏𝑗

Pr(𝒍|𝒃)
     ∀𝑗 = 0,… , 𝐽 (6) 

where Pr(𝒍|ℎ𝑗),  is the probability of receiving a certain 

output vector 𝒍 from an array of activated sensors (𝒍 ∈ 𝐿(𝒔)) 

given the patient is in health state ℎ𝑗.  

Finally, given the previous belief state and the output 

vector of the activated sensors, the new belief 

state  𝒃𝒕+𝟏(𝒃𝒕, 𝒍𝒕)  is obtained by accounting for a possible 

transition of the individual’s health state within the epoch, 

i.e., 

 

𝑏𝑗
𝑡+1(𝒃𝒕, 𝒍𝒕) = [𝜏(𝒃𝒕, 𝒔𝒕, 𝒍𝒕)]𝑗

= ∑ Pr(ℎ𝑗′|𝒍𝒕, 𝒃𝒕) ∙
𝐽

𝑗′=1
𝑻𝑗′𝑗

=
1

Pr(𝒍𝒕|𝒃𝒕)
∑ 𝑏𝑗′

𝑡 ∙ Pr(𝒍𝒕|ℎ𝑗′) ∙
𝐽

𝑗′=1
𝑻𝑗′𝑗  

(7) 

In general, given any belief state 𝒃 , the probability of 

obtaining a specific outcome 𝒍 ∈ 𝐿(𝒔) is: 

 

Pr(𝒍|𝒃) = ∑ 𝑏𝑗 ∙ Pr(𝒍|ℎ𝑗)
𝐽

𝑗=0
 (8) 

D. Power and Misclassification Costs 

We define two different types of cost components. The 

first type is the power cost of the sensors. This cost accounts 

for the energy consumed by activating and running the 

sensors. The power cost of sensor vector 𝒔  is denoted by 

𝐶(𝒔). 

The second type of cost is the misclassification cost, 

which is used to discourage the system from misclassifying 

the patient’s true health state. There are two types of 

misclassifications: false positives and false negatives. In this 

model, we are monitoring patient health states, and would 

ideally like to alert the patient or a doctor when the patient 

health state deteriorates. Because of this, a false positive in 

this model refers to the scenario in which the controller 

believes the patient is less healthy than he or she truly is. 

Correspondingly, a false negative refers to the case in which 

the controller believes the patient is healthier than the ground 

truth. Mathematically, for a true patient health state ℎ𝑗, a false 

positive error refers to any 𝑏𝑘 > 0, ∀𝑘 = 0,… , j − 1. A false 

negative error refers to any 𝑏𝑘 > 0, ∀𝑘 = j + 1,… , J . We 

define two constant cost parameters: i). 𝐶𝐹𝑃 , the cost of a 

false positive error, and ii). 𝐶𝐹𝑁, the cost of a false negative 

error.  

E. Risk / misclassification factor 

A major consideration that should be taken into account 

when defining the activation policy (i.e. selecting which 

sensors should be activated) is the misclassification factor. 

This expresses the probability that the system will wrongly 

estimate the patient’s health state in the next time step.  

To express the misclassification factor in the system’s 

control, we define the misclassification cost 𝜌𝑗(𝒃
𝒕, 𝒍𝒕) for 

each health state ℎ𝑗  as follows: 

 

𝜌𝑗(𝒃
𝒕, 𝒍𝒕)  = 𝐶𝐹𝑃 ∑ 𝑏𝑗′

𝑡+1(𝒃𝒕, 𝒍𝒕)
𝑗−1

𝑗′=0

+ 𝐶𝐹𝑁 ∑ 𝑏𝑗′
𝑡+1(𝒃𝒕, 𝒍𝒕)

𝐽

𝑗′=𝑗+1
 

(9) 

The misclassification cost is composed of the two types 

of errors discussed in the previous section (false positive and 

false negative). For a certain state ℎ𝑗, one can calculate the 

probability that a patient is considered to be in a worse state 

than the true ℎ𝑗 (false positive error) and a better state than 

the true ℎ𝑗  (false negative error). These probabilities are 

multiplied by the cost parameters discussed above  

(𝐶𝐹𝑃, 𝐶𝐹𝑁). It is important to note that, since the belief state 𝒃 

is a probability distribution, it is possible for our system to 

incur both false positive and false negative costs at the same 

time.  Furthermore, the cost function in (9) can be refined so 

that different belief states have different misclassification 

errors. In particular, the cases where different health states 

incur different misclassification costs and different sensors 

incur different misclassification costs can be considered by 

the proposed formulation. 

At every decision epoch, the controller calculates the 

expected misclassification cost over the entire belief state, 

namely:  

 𝜌(𝒃𝒕, 𝒍𝒕)

= ∑ 𝑏𝑗
𝑡+1(𝒃𝒕, 𝒍𝒕)

𝐽

𝑗=0
(𝐶𝐹𝑃 ∑ 𝑏𝑗′

𝑡+1(𝒃𝒕, 𝒍𝒕)
𝑗−1

𝑗′=0

+ 𝐶𝐹𝑁 ∑ 𝑏𝑗′
𝑡+1(𝒃𝒕, 𝒍𝒕)

𝐽

𝑗′=𝑗+1
) 

(10) 

III. SENSOR ACTIVATION CONTROL 

In the previous section, we established a model, specified 

how the controller updates its internal belief state (7), and 

defined two cost functions (𝐶(𝒔) and 𝜌(𝒃, 𝒍)). In this section, 

we explain how the controller decides which sensors to 

activate based on its belief state and these cost functions.  

In this model, we consider the terminal state ℎ0 to be an 

absorbing state. In practice, this may represent a situation 

where the patient arrives at an emergency room and requires 

medical intervention, or any other scenario where the health 

sensing is no longer relevant. As a result, the path that starts 

from a given initial belief state,  𝒃𝟎 , terminates in the 

absorption state, 𝒃 = (1,0, … ,0)  after a finite number of 

decision epochs. We denote the total minimum cost of the 

path that starts at 𝒃𝒕 by the value function, 𝑉(𝒃𝒕).   

A. One-Step Look-Ahead Greedy Policy 

To validate the problem definition and provide a lower 

bound solution, we implement a greedy algorithm. In this 

algorithm, the controller applies a one-step look-ahead 

function at each epoch and makes the decision (of what 

sensors to activate) that minimizes the immediate cost 

incurred. The value function in this greedy regime is given  

by: 



 

𝑉𝐺(𝒃𝒕) = min
𝒔𝒕∈𝑆

{(1 − 𝛼) ∙ 𝐶(𝒔𝒕) + 𝛼

∙ ∑ 𝑃𝑟(𝒍𝒕|𝒃𝒕)
𝒍∈𝐿(𝒔𝒕)

∙ 𝜌(𝒃𝒕, 𝒍𝒕) } 
(11) 

where 𝛼 is a sensitivity analysis parameter, which enables us 

in later stages to analyze the dynamics of the model given 

different weights for the activation and misclassification 

costs. The default value of 𝛼 is 0.5. 

One simple extension to the greedy approach is a 𝑘-step 

greedy approach, in which the controller calculates the best 

decision based on the next 𝑘 decision epochs. 

B. Dynamic Programming Policy 

The optimal policy is determined by means of dynamic 

programming as follows: 

 
𝑉𝑂(𝒃𝒕) = min

𝒔𝒕∈𝑆
{(1 − 𝛼) ∙ 𝐶(𝒔𝒕) + 𝛼

∙ ∑ 𝑃𝑟(𝒍𝒕|𝒃𝑡)
𝒍∈𝐿(𝒔𝒕)

∙ (𝑉𝑂(𝒃𝒕+𝟏(𝒃𝒕, 𝒍𝒕)) + 𝜌(𝒃𝒕, 𝒍𝒕) )} 

(12) 

From this value function, we can extract an optimal policy by 

selecting the 𝒔𝒕 which minimizes the value function for the 

belief state, i.e. argmin
𝒔𝒕∈𝑆

 𝑉𝑂(𝒃𝒕). 

C. Belief State Discretization 

The belief state was defined in the previous section as a 

belief vector of health state probabilities over a continuous 

domain. However, the dynamic programming formulation in 

(12) explores all possible future states, and with a continuous 

belief state, the state space is infinite. In order to develop a 

numerical procedure to approximate the value function 𝑉𝑂, 

we discretize the belief state space. That is, given a belief 

state vector from an infinite set of probability vectors, we 

produce a new belief state vector from a finite set of 

probability vectors. To this end, we make use of the following 

naïve discretization method: 

1. Create a set 𝐵  which contains all valid probability 

vectors for the given level of discretization 

2. Given a non-valid vector  𝒃 , calculate the distance 

between 𝒃 and each valid vector �̅� ∈ 𝐵, according to the 

Manhattan metric: ∑ |𝑏�̅� − 𝑏𝑗|𝑗 .  

3. Return the vector �̅�∗closest to 𝒃 . 

For example, if the level of discretization is 0.25 

and  𝒃 = [0.26 0.24 0.45 0.05] , then the algorithm 

returns �̅�∗  = [0.25 0.25 0.5 0.0] as the closest valid vector. 

After discretizing the state space as described above, we 

calculate 𝑉𝑂(�̅�) for each valid state �̅� ∈ 𝐵 . The algorithm 

below implements the known value iteration method [12]: 

1. Run the discretization algorithm and create the set of 

discretized belief states 𝐵. 

2. Set the initial value of the cost function at zero, 

𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡(�̅�) = 0 , ∀�̅� ∈ 𝐵. 

3. While the stopping criterion is not satisfied (described 

after the algorithm): 

3.1. Save the latest values and policies for each belief 

state as 𝑉𝑜𝑙𝑑, 

3.2. For each belief state �̅�: 

3.2.1.  Calculate the value function 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡(�̅�𝒕) 

using (12), where the term 

𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡 (𝒃𝒕+𝟏(�̅�𝒕, 𝒍𝒕)) is calculated as 

follows: 

3.2.1.1. Perform discretization for 𝒃𝒕+𝟏(�̅�𝒕, 𝒍𝒕) 

3.2.1.2. Extract the value function value for 

�̅�𝒕+𝟏 using 𝑉𝑜𝑙𝑑(�̅�𝒕+𝟏) 

4. Return 𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡, from which the optimal policy can be 

extracted for each discretized belief state �̅�. 

The stopping criteria for the algorithm is met when the 

difference between two subsequent iterations is smaller than 

𝛿, which is defined as:  

𝛿 = 𝑀𝑎𝑥�̅�∈𝐵  |𝑉𝑐𝑢𝑟𝑟𝑒𝑛𝑡(�̅�) − 𝑉𝑜𝑙𝑑(�̅�)| 

IV. NUMERICAL EXAMINATION 

A. Simulation Parameters 

In this section, we provide a small numerical example of 

the model dynamics. We define the model parameters as 

follows: 

 𝐽 = 4 denotes the number of health states, 

 𝑁 = 5 denotes the number of sensors, 

 𝑻 = [

1 0 0 0
. 25 . 7 . 05 0
0 . 2 . 75 . 05
0 0 . 2 . 8

] denotes the stochastic 

transition matrix of the true patient health state, 

 𝑷 =

[
 
 
 
 
. 99 . 02 . 5 . 55
. 6 . 9 . 05 . 5
. 5 . 45 . 95 . 01
. 99 . 01 . 5 . 5
. 6 . 4 . 5 . 5 ]

 
 
 
 

  denotes the sensor 

accuracy matrix, 

 𝐶𝑠 = [10 20 15 5 2]  represents the sensors’ 

activation costs, 

 𝐶𝑚 = [150 750] represents the misclassification costs 

(𝐹𝑃, 𝐹𝑁). 

The cost parameter values described above were selected 

in order to allow insightful analysis, provide intuition, and 

reflect a clear trade-off between the sensor activation and 

health state misclassification costs. In practice, these values 

can be estimated more accurately from real use-cases and by 

domain experts. For example, the misclassification costs may 

represent the cost of the medical care needed in the case of 

misclassifying a patient’s health state.   

To simplify the numerical implementation of the method, 

we assume that the sensors’ outputs are conditionally 

independent from each other given the true health state, i.e.  

 Pr(𝑙𝑛 = 1, 𝑙𝑛′ = 1|ℎ𝑗) = 𝑝𝑛𝑗 ∙ 𝑝𝑛′𝑗 (13) 

Thus, the probability to obtain a certain combination of 

sensor outputs 𝒍 ∈ 𝐿(𝒔) is calculated by multiplying the 

probabilities of receiving each individual sensor output, i.e.: 



 Pr(𝒍|ℎ𝑗) = ∏ 𝑝𝑛𝑗
𝑛|𝑙𝑛=1

∙ ∏ (1 − 𝑝𝑛𝑗)
𝑛|𝑙𝑛=0

 (14) 

Now, one can calculate the health state distribution shown in 

(7) and (8) as follows: 

 

Pr(ℎ𝑗|𝒍, 𝒃) =
Pr(𝒍|ℎ𝑗) ∙ 𝑏𝑗

Pr(𝒍|𝒃)

=
𝑏𝑗 ∙ ∏ 𝑝𝑛𝑗𝑛|𝑙𝑛=1 ∙ ∏ (1 − 𝑝𝑛𝑗)𝑛|𝑙𝑛=0

(∏ ∑ 𝑝𝑛𝑗𝑏𝑗𝑗𝑛|𝑙𝑛=1 ) ∙ (∏ ∑ (1 − 𝑝𝑛𝑗)𝑏𝑗𝑗𝑛|𝑙𝑛=0 )
  

∀𝑗 = 0,… , 𝐽 

(15) 

Such a simplifying assumption allows closed-form 

calculations for the outcome probabilities. In future research 

we plan to relax this assumption and consider possible 

dependencies among the sensors’ outputs. 

B. Results 

 
Fig. 2: (a) the (unknown) health state path over 20 decision epochs as a 

result of the health state dynamics and the most likely state using a greedy 

policy; (b)-(e) the belief state distribution for each state corresponding to 
the evolution of the health states. 

We first simulate the greedy algorithm described in 

Section III.A to derive a greedy policy. It is important to note 

that while the greedy policy is suboptimal, it operates on the 

continuous belief state space, not the discretized space used 

by our dynamic programming algorithm.  The most likely 

state shown in Figure 2(a) is generated by  ℎ𝑀𝐿 =
𝑎𝑟𝑔𝑚𝑎𝑥ℎ(𝑏) . One can observe that the greedy policy 

generally provides accurate predictions of the actual health 

states.   

 
Fig. 3: The number of sensors activated throughout the simulation using the 

greedy policy 

 Figure 3 presents the number of sensors activated 

throughout the simulation. One can observe that the largest 

number of sensors is activated mostly during health state 

transitions, i.e. at periods where the patient’s health is 

relatively unstable. At the end of the simulation, when the 

status evolves to the terminal state, the controller doesn’t 

activate any sensors.  In order to better understand the system 

dynamics, we now demonstrate the trade-off between the 

misclassification cost and activation cost. By varying 

parameter  𝛼 between 0.05 and 0.95, we change the weight of 

the two cost components in (11).  

 

 
Fig. 4: Average activation costs vs. average misclassification costs per 𝛼, 

over 30 i.i.d Monte Carlo simulations for the greedy solution (a) and 

dynamic programming solution (b). The graph was generated using 46 

values of 𝛼 between 0.05 and 0.95 

In Figure 4, one can observe the trade-off between the 

activation costs and the misclassification costs. For higher 

values of 𝛼, the misclassification costs have more influence, 

therefore more sensors are activated to minimize the overall 

misclassification costs. For lower values of 𝛼, the opposite 

occurs: fewer sensors are activated, and the misclassification 

costs increase. We now compare the two policies. Note that, 

generally, dynamic programming using value iteration 

provides an optimal solution; however, because of the state 

space discretization, as described in the previous section, the 

dynamic programming solution in this case might be sub-

optimal. To allow a more nuanced comparison of the 

two algorithms, we modify the sensors’ accuracy matrix such 

that the considered sensors are less accurate, which results in 

more complex and contrasting policies returned by the 

algorithms: 



𝑷 =

[
 
 
 
 
. 8 . 15 . 5 . 55
. 6 . 85 . 15 . 5
. 5 . 45 . 75 . 3
. 8 . 15 . 5 . 5
. 6 . 4 . 5 . 5 ]

 
 
 
 

 

The comparison of the two policies is shown in Figure 5. 

 
Fig. 5: Ratio between the average total cost of the greedy and value 

iteration solution, for each 𝛼. The dotted line marks the ratio value of 1; 

points above this line represent values of 𝛼 for which the greedy solution 
returned a higher cost than the dynamic programming solution. 

 As expected, the average total costs incurred using the 

greedy solution is generally higher than the same costs 

incurred using the value iteration solution. This is due to the 

fact that the greedy policy is a heuristic solution, whereas the 

dynamic programming solution is an optimal solution (as 

discussed previously, the dynamic programming solution is 

an approximation of the optimal solution due to the use of 

discretization, which may explain the outlier values of 𝛼 for 

which the greedy algorithm returned a lower cost).  

V. CONCLUSIONS AND FUTURE WORK 

 In this paper, we have addressed the optimal health 

sensing problem by building a model of a WBAN used for 

health sensing purposes. This model may be used for 

optimizing the trade-off between two different types of costs: 

i) power cost, which accounts for the system’s energy 

consumption when activating a certain subset of sensors, ii) 

misclassification cost, which accounts for the probability of 

error when classifying a patient’s health state. The model is 

based on a POMDP, since the actual health states are 

unknown to the controller. We have proposed two algorithms 

for setting a sensor activation policy. The “greedy” algorithm 

applies a one-step look ahead approach. The second 

algorithm is based on a dynamic programming framework, 

which was solved using value iteration over a discretized 

belief state space.    

 We have presented a numerical examination of the two 

algorithms. For the selected parameters, the greedy algorithm 

provided a relatively accurate sensing policy, successfully 

approximating the patient’s actual health state. In addition, a 

smooth change in the relative weights of the power and 

misclassification costs results in a relatively smooth change 

in the number of sensors used by the returned policies. We 

then compared the two policies, and although the 

discretization process limits the dynamic programming 

algorithm’s optimality, in general the dynamic programming 

policy returned a lower cost than the returned cost of the 

greedy policy. These results indicate that a WBAN patient 

health monitoring system could be beneficial in certain 

application areas. However, when discussing the use of 

remote systems for health monitoring purposes, some domain 

specific issues should be considered. Primarily, the accuracy 

of the controlled monitoring activity is crucial, since 

misclassifying a patient’s health state could have grave 

implications. In addition, there are a large variety of patients 

and health situations, making it difficult for a single WBAN 

systems to perform well across this spectrum. Therefore, a 

promising avenue of future research would be to implement 

more intelligent techniques that could learn the patient’s 

health parameters (e.g. health state transition matrix) online, 

thus dynamically boosting the system’s accuracy while 

reducing the overall energy consumption. 
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