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Optimization-seeking Experimentations:
Design of an RL-circuit Via the Vs-optimality
Criterion
Hilla Ginsburg and Irad Ben-Gal∗†

In this paper we explore the Vs-optimality criterion that was proposed in Ginsburg and Ben-Gal (IIE Trans. 2006; 38:445–
461) as a new design-of-experiment (DOE) alphabetic optimality criterion. The Vs-optimality criterion seeks to minimize
the variance of the optimal solution of an empirically fitted model. We show that the Vs-optimality citerion is well related
to known alphabetic DOE criteria. However, it focuses on an ‘optimization-seeking’ experimental approach rather than an
‘information-seeking’ approach, which is often adopted by traditional optimality criteria. We illustrate the differences
between these two approaches by a detailed example of a robust design of an RL-circuit. Copyright © 2009 John Wiley
& Sons, Ltd.
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1. Introduction

What is the difference between designing experiments to gain general knowledge about a system vs designing experiments to
gain knowledge about the optimal solution of a system? Or in other words, what is the difference between an experimentation
strategy that is triggered by an ‘information-seeking’ approach (a ‘scientist’s viewpoint’) to an experimentation strategy that is

triggered by an ‘optimization-seeking’ approach (an ‘engineer’s viewpoint’)? These types of questions are discussed in Reference1 that
proposed an experimentation strategy for robust design of empirically fitted models. A new design-of-experiment (DOE) alphabetic
optimality criterion, termed as Vs-optimal, was implemented there to minimize the variance of the optimal solution of a system. This
optimal solution was defined as the solution that yields the most robust system’s output.

The Vs-optimality criterion is different from other DOE-optimality criteria, such as the D-optimality criterion that seeks to minimize
the variance of the estimated system parameters. We claim that the Vs-optimality criterion is triggered by an ‘optimization-seeking’
approach rather than by an ‘information-seeking’ one. The difference between these approaches has a clear practical effect on the
experimented design. An ‘information-seeking’ approach often leads to spread experimental points that are located towards the
edges of the experimental region, as in D-optimal designs. An ‘optimization-seeking’ approach, however, often leads to concentrated
experimental points in the vicinity of the optimal solution (e.g. in the vicinity of the best operational setting) of the system. Naturally,
at the beginning of the design process, when there is almost no information about a system, the ‘optimization-seeking’ approach
has little meaning, since the vicinity of the optimal setting for the system is unknown. In such a case, there is a need to gather some
information first via experiments and only then, after some knowledge is obtained about the system, move on to the ‘optimization-
seeking’ approach.

Another practical difference between the two approaches is found with respect to the estimation of the different parameters of the
system. The Vs-optimality criterion prioritizes the model’s coefficients and points into the coefficients that mostly affect the variance
of the optimal solution and, thus, should be in the focus in each experimental stage. As seen below, the priority among different
parameters might change along the experimental process, as new information about the investigated system is gathered.

As indicated in the example below, the proposed DOE-optimality criterion enables to combine, within the same experimental
framework, ‘information-seeking’ as well as ‘optimization seeking’ principles. It is shown that when almost nothing is known about
the parameters of the system, the proposed criterion leads to design matrices that are close to those obtained by D-optimal designs.
However, as information is gathered, the same criterion will lead to experimental points that are closer to the area of the optimal
solution of the system. This integration stands in contrast to the conventional canonical approach that implements the following
two-step procedure. First, the experimenter estimates an empirical response model for the unknown system by using the conventional
experimental matrices such as factorial designs. Second, the experimenter minimizes a loss function that is based on the estimated
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model and obtains its optimal solution as if the system is deterministic. The canonical approach is, thus, problematic as long as the
estimated model deviates from the ‘real’ unknown model: if the estimated model is noisy, different ‘optimal’ solutions are obtained
for each set of experiments1, 2.

In this paper we shortly describe the Vs-optimality criterion that was introduced in1 and then we focus on illustrating the related
concepts of ‘optimization-seeking’ designs. By relying on a simple example of a robust design of an RL-circuit, we illustrate how the
optimal solution of the system depends on the unknown parameters. Using a sequential experimentation process, we show how
the optimal solution is being updated as more information is gained about the system parameters. We indicate which of the system
parameters has the highest effect on the optimal solution during different experimentation stages and how this impact changes over
time as new information is gathered. The main contribution of the paper is, thus, in illustrating the ‘optimization-seeking’ approach
by using a simple-enough example that can be described in an intuitive manner.

The paper is organized as follows. Section 2 presents known DOE-optimality criteria that are related to the Vs-optimality criterion.
Section 3 outlines the Vs-optimality criterion for linear models and sketches a numerical procedure for non-linear models. Section 4
illustrates the optimization-seeking principles of the proposed approach by a detailed example of a robust design of an RL-circuit.
Section 5 concludes the paper.

2. Related DOE-optimality criteria

This section presents some DOE alphabetic optimality criteria that are related to the proposed Vs-optimality criterion (see Reference1).
We use the bold font to represent vectors or matrices.

One of the most popular DOE-optimality criteria is D-optimality. This criterion aims to minimize the variance of the estimated
model parameters. Its related objective function is max{det(F′F)} or min{det((F′F)−1)}, where F is the design matrix, det stands
for the determinant and F′F is the non-normalized information matrix of the design. Note that the D-optimality criterion is fully
related to an ‘information-seeking’ approach and does not consider the optimal solution of the system nor assigns different priorities
among the system parameters. The first modification of this criterion toward an ‘optimization-seeking’ approach is known as Ds-
optimality, which is often used for model selection when the interest is in estimating a subset s of the coefficients as precisely as
possible3. Considering the ‘optimization-seeking’ approach, the experimenter can use the Ds-optimality criterion with respect to the
s most influential parameters on the variance of the optimal solutions. Atkinson and Donev4 proposed a simple procedure to obtain
Ds-optimal experiments.

The linear-optimality criterion seeks to minimize a weighted average of the variances of the coefficients’ estimates. Thus, the known
A-optimality criterion is a special case of linear-optimality, assigning equal weights to all the variance estimates. With respect to the
‘optimization-seeking’ approach, one can use the linear-optimality criterion and assign higher weights to system parameters that
contribute more to the variance of the optimal solution.

The objective of the c-optimality criterion is in estimating a linear combination of the model’s coefficients c′h with a minimum
variance (e.g. see Reference4), where h is the column vector of model coefficients and c′ is a row vector of the linear combination
coefficients. Thus, the c-optimality criterion minimizes Var[c′ĥ]∝Var[c′M−1(�)c], where M(�)=F′F / n is the normalized information
matrix of the chosen design, �. If c is taken to obtain f (x0)—the response at a specific design point x0—this criterion is reduced to
minimizing the variance of the prediction of the response at x0. Following this line of thought, the Vs-optimality criterion focuses
on x0 =x∗, which is the optimal solution of the model. If the location of x∗ is known prior to the experiment, one can minimize the
prediction variance by repeatedly performing all the succeeding experiments at x∗. This procedure often results in a singular optimum
design, which is often non-informative4. In the sequential framework of the proposed approach1, the coefficients, and therefore
x∗, are approximated in each experimental stage. Thus, at each stage one can select c to obtain a locally c-optimal design at f (x∗).
More discussions on locally c-optimum experiments can be found in Atkinson et al.5 and Kitsos et al.6. The Vs-optimality criterion is,
thus, closely related to the c-optimality criterion. On one hand the Vs-optimality criterion is less general and focuses on the optimal
solution of the system; yet, on the other hand it extends the c-optimality criterion to cases of non-linear combinations of the model
coefficients1.

3. The Vs-optimality criterion

In this section we show how the Vs-optimality criterion applies to a linear model, as presented in Reference1 in order for the paper
to be self-contained. The end of the section shortly discusses the case of non-linear models that was elaborated in the above work.
In most cases, we denote random variables by capital letters and use the bold font to represent vectors or matrices.

The investigated linear model is given by

Y(x, Z)=�0 +b′x+a′Z+x′CZ+� (1)

where Y is the unknown response; x is a (k×1) vector of the coded significant control factors, i.e. x′ = (x1, x2,. . . , xk); Z is an (m×1)
vector of the significant noise factors, coded such that E[Zi]=0, i=1,. . . , m; �0 is a scalar, b′ is a (1×k) row vector of the control-factor’s
coefficients; a′ is a (1×m) vector of the noise-factor’s coefficients; � is a (k×m) matrix of the control-factor-by-noise-factor interactions
that link the two types of factors and enable to reduce the noise-factors’ effects; and � is a noise term with mean zero and a finite
variance �2

� . Such a linear model can be obtained by traditional experimental designs.
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Given the response model, we now express the first-order optimality condition explicitly and then formulate the Vs-optimality
criterion.

Optimization: The optimization stage of the robust-design problem is performed with respect to the loss function, L(Y)=E(Y −T)2,
which depends on variance of Y and the deviation of its mean with respect to a given target value, T .

E(Y(x, Z))=�0 +b′x, V(Y(x, Z))= (a′+x′C)R(a+C′x)+�2
� (2)

where R is assumed to be a known (m×m) variance–covariance matrix of Z. Accordingly, the expected loss function is given by

L(Y) = E(Y −T)2 =V(Y)+(E(Y)−T)2 =V(Y)+E(Y)2 −2TE(Y)+T2

= a′Ra+a′RC′x+x′CRa+x′CRC′x+(�0 +b′x)2 −2T(�0 +b′x)+T2 (3)

The first-order optimality condition for (3) yields the optimal robust solution:

⇒x∗ = (CRC′+bb′)−1 ·[b(T −�0)−CRa] (4)

Since the coefficients of the response model are empirically estimated, x∗ is a random function, x∗ =g(ĥL), where g( ) is a (k×1)
vector function of the set of the Linear-model’s estimates, �̂L ={�̂0, â, b̂, Ĉ} and, thus, x∗ is a random variable itself. Using a Taylor
series expansion around the coefficients’ estimates, one obtains an approximated robust solution for the system:

x∗ = g(ĥL)≈g(hL)+
[

�(g(hL))

�hL

]
·(ĥL −hL)

= g(hL)+J ·(ĥL −hL) (5)

where J is the (k×p) Jacobian matrix of x∗, which is estimated by �(g(ĥL)) / �hL, and p= (k+1)(m+1) is the number of coefficients in
the model.

The Vs-optimality criterion: At this stage, the proposed DOE criterion can be formulated explicitly. This DOE stage involves two
sub-problems: (i) defining the appropriate design region and (ii) selecting the optimal design matrix that satisfies F∗ =arg min{V(x∗)}
within the selected design region1.

The required design matrix F∗ that minimizes the variance of the optimal solution V(x∗) is of dimensions (n×p), where p is the
number of parameters and n�p is the number of experiments. Taking the variance of the expression in (5) yields the following (k×k)
variance–covariance matrix that we aim at minimizing:

V(x∗)≈
[

�(g(ĥL))

�hL

]
·V(ĥL) ·

[
�(g(ĥL))

�hL

]′
=J ·((F′F)−1�2

� ) ·J′ (6)

This is a fundamental result of the new criterion that can be obtained analytically only for linear response models when (6) exists
in a closed form.

3.1. A suggested procedure for high-order or non-linear models

In a case that the investigated system is not well described by a linear model, the experimenter might use higher-order models.
For such model, Equation (6) does not exist in a closed form, and one should combine numerical methods as well. Following is a
suggested numerical procedure:

First, estimate the model by replicated experiments, then calculate the means and the variances of the coefficients based on
the observations. Use these means and variances to generate new sets of the model’s coefficients via Monte-Carlo sampling. Next,
compute the optimal solution(s) numerically for each generated set of model coefficients, plot the robust solutions, and if necessary,
cluster them to obtain the final optimal solution at the center of each cluster. Finally, compute the variance of each robust solution.
Further information is given in Reference1.

4. An illustrative example: the RL circuit design

This section motivates the usage of the proposed criterion by considering a real engineering problem, when the form of the transfer
function is not necessarily a standard polynomial one. We assume that the transfer function is known a priori; yet, some of its parameters
have to be estimated empirically. We show that the design of the experiments depends heavily on our knowledge regarding the
values of the parameters. In particular, we show that when almost nothing is known about the parameters the best strategy to obtain
an optimal solution for the problem is first to estimate the parameters’ values as accurately as possible, as required by the D-optimality
criterion. However, when there exists a good knowledge about the parameters of the function, it is better to estimate the value of
the response in the vicinity of the optimal robust solution. The above principle is analyzed from a sequential design prospective. The
example is based on a problem presented by Kenett and Zacks7, which deals with a design of an RL electrical circuit.
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First, we introduce the RL system and its robust solution according to Kenett and Zacks7. Next, we motivate the use of the proposed
criterion by considering a simple case of a single unknown parameter. Finally, we extend the discussion to a case study of two
unknown parameters that was partially considered in Reference1.

4.1. The investigated RL circuit

The investigated response, I, in this case study, is the current of an RL circuit whose transfer function is known a priori to be of
the following form:

I(R, L, f, V)= V√
R2 +(2�fL)2

(7)

where I is the output current of the circuit; R and L are the control factors (whose values should be determined to obtain a desired value
of the current I) that represent the resistance and the inductance of the circuit elements, respectively; V and f are the noise factors
that represent, respectively, the voltage amplitude and frequency input into the circuit. We follow Kenett and Zacks7 who considered
these noise factors as independent random variables having the following normal distributions: V ∼N(100, 3) and f ∼N(55, 5 / 3).

Kenett and Zacks7 derive a robust solution (R, L), based on a Taylor series approximation, in order to estimate the current’s expected
value, �I , its variance, VI, and its associated loss function, Loss= (�I −T)2 +VI , with respect to a desired target value T =10[amp].
The control factors’ settings are chosen based on a 32 factorial experiment. In each design combination, 500 values of V and f are
simulated and the resulting current’s mean, variance and loss are estimated. The best robust solution, according to Kenett and Zacks,
is specified to be R=9.5(�) and L=0.02(H) with an associated loss of Loss=0.1[amp]2.

Since the response function is known a priori, it is irrelevant to use conventional DOE tools for response surface methodology
(RSM). Instead, we use DOE to estimate some function’s parameters that are assumed unknown.

4.2. The case of a single unknown parameter

For illustration purpose, let us first consider the case where the coefficient of fL, which equals 2� in the original response (7), is
unknown and has to be estimated by experimentation. Let us also assume that the current value is affected by a random-error term
in the denominator as presented in (8).

I(R, L, f, V)= V√
R2 +a(fL)2 +�

(8)

where a is the unknown parameter that has to be estimated and � is the random-error term that has a zero mean and a finite
variance �2

� .
Estimating the unknown parameter: Recall that in the experimental stage, all the factors, including the noise factors, are assumed to

be controllable. Therefore, in order to easily estimate a, one can apply the following transformation to obtain a simple linear function
in a, V2 / I2 −R2 =af 2L2 +�, or alternatively one can consider the following equation:

Y =af 2L2 +� where Y = V2

I2
−R2 (9)

which can be written for a series of experiments as

Y=a ·x+e (10)

where Y= (Y1, Y2,. . . , Yn)′, x= (x1, x2,. . . , xn)′, xi = f 2
i L2

i , i=1,. . . , n. Thus, in each experiment, the designer selects the values of the factors
V , f , R and L, observes I and estimates the value of a. The design matrix, x, represents the chosen values for f and L during the n
experiments and � represents the vector of random errors. According to a simple linear regression the maximum likelihood estimator
(MLE) for a is equal to

â= (x′x)−1x′Y where r2
â = r2

�∑n
i=1 x2

i

(11)

As the number of experiments, n, increases �â →4�2 and �2
â
→0.

Finding the robust solution: After estimating the unknown parameter, one can use this estimate in order to find the optimal robust
solution, which minimizes the loss function with respect to the given target value T =10[amp] working with a transfer function that
involves an unknown parameter and a random error component, as presented in (8). Note that the loss function is affected not only
by the error but also by the uncertainty of the unknown parameter, as can be seen from a second-order Taylor approximation for the
loss function,

Loss(R, L, T,�â,�â,�V ,�V ,�f ,�f ) = (�I −T)2 +VI =
�2

V�2
f �2

â
L4(�2

f �2
a +�2

â
�2

f )

M3

+�2
V

M
+
[

1

2
·
(

3�V�4
f �2

â
L4

M5/2
−�V�2

f L2

M3/2

)
·�2

â+1

2
·
(

3�V�2
f �4

â
L4

M5/2
−

�V�2
â

L2

M3/2

)
·�2

f + �V

M1/2
−T

]2

(12)

where M=�2
â
�2

f L2 +R2.
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Figure 1. Loss function’s values as a function of the resistance for several coil magnitudes. The optimal solution for the deterministic case, L∗
D =0.023, is represented

by the thick line. This figure is available in colour online at www.interscience.wiley.com/journal/qre

Evaluating the loss at the point of the expected values of the noise factors, �V =100, �f =55, plugging �â =4�2 and the variances

of the noise factors, �V =3, �f = 5
3 , to Equation (12) results in a loss function that depends on the uncertainty of the unknown

parameter �â and on the control factors R and L.
Let us suppose, for example, that from practical reasons, the designer considers to work with resistor of 6(�), i.e. R=6. Had the

value a=4�2 been known a priori and the transfer function presented in (7) had been deterministic, then a straight forward numerical
optimization could yield an optimal value of the inductance L∗

D =0.023(H) (where D denotes ‘deterministic’), as can be seen in Figure 1.
The figure shows the loss function’s values as a function of the resistance for several coil magnitudes. It can be seen that in the
vicinity of R=6 the loss function is minimized at L=0.023, which is represented by the thick line. Note that if such a coil does not
exist, the designer might either choose a close value, e.g. 0.02(H) (although not necessarily optimal) or consider working with
another combination such as (R, L)= (8, 0.018).

4.3. Analyzing the effect of the parameter’s uncertainty

Recall that for the case where the parameter a is unknown, the loss function is affected by its related uncertainty, denoted by �â. The
considered second-order Taylor series approximation in (12) for the loss function in the vicinity of R=6 and the deterministic optimal
inductance solution L∗

D =0.023 is given by

Loss(R=6, L=0.023, T =10,�â =4�2,�V =100,�V =3,�f = 5
3 )

= (77791.6−4946.66 ·�2
â −9.85 ·�4

â) ·L2 −(3607.73−195 ·�2
â −1.22 ·�4

â) ·L+41.96−0.825 ·�2
â −0.017 ·�4

â (13)

Since a is estimated by means of a simple linear regression analysis, its standard deviation following the (n+1)th experiment can
be written as

�â = ��√
k+x2

(14)

where k =∑n
i=1 x2

i represents the summation of the squares of past values xi = f 2
i L2

i , i=1,. . . , n, that were already selected in the
previous n experiments, as represented in Equation (10), and x is the next experimental point that will be used to re-evaluate the
unknown coefficient.

Let us now analyze the loss function in the vicinity of R=6 and L=0.023 as a function of: (i) the initial uncertainty in the parameter
value (��), (ii) the past experiment values (represented by k) and (iii) the value of the next experimental point x. Moreover, since the
noise factors are assumed to be controllable during the experimental stage, we can keep the circuit’s frequency, f , at its mean value,
�f =55, and focus on finding the optimal value of the coil, L. Figure 2 shows the loss function Loss(R, L,�â, T =10,�â =4�2,�V=100,

�V =3,�f = 5
3 ) against various values of L for k =25. The two graphs represent different initial uncertainties in the value of parameter a.

The lower graph is depicted for an initial low uncertainty, �� =1, and the upper graph is depicted for an initial high uncertainty,
�� =30, implying that the loss function grows with ��, as expected.

It can be seen that when �� is low with respect to k, the value of L that minimizes the loss is in the vicinity of the optimal solution
for the deterministic case, L∗

D =0.023, thus, according to the ‘optimization-seeking’ approach. However, if �� is large, the parameter
a should be estimated previous to the optimization, and the optimal value of L is toward the edges of the design region, as often
happened in D-optimal designs, thus, according to the ‘information-seeking’ approach.

Copyright © 2009 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2010, 26 147--155
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Figure 2. Loss function with respect to the values of L and �� for k =25

Figure 3. Loss function with respect to the values of L, k and �� : (i) k =25 and (ii) k =2500

This result can also be seen from the analytical minimization of the loss function in (13) with respect to L:

L∗ =
0.5 ·(3607.73−195�2

â
−1.22�4

â
)

77791.6−4946.66�2
â
−9.85�4

â

(15)

Indeed, substituting �â =0 in (15) yields L∗ =0.0232 while substituting �â =30 yields L∗ =0.0468, which is approximately twice as
large.

Figure 3 illustrates the effect of k (the sum of past experimental square values for L). The left graph shows a contour plot of the
loss function with respect to the values of L and �� for k =25, and the right graph shows a contour plot of the loss function with
respect to the values of L and �� for k =2500. The left graph leads to the same conclusions as obtained from Figure 2, i.e. the robust
solution is located in the vicinity of 0.023 for low �� and toward the edges of the region as �� grows. The right graph shows that
when k is large enough with respect to ��, the best value of L stays fixed in the vicinity of L∗

D =0.023 with a very small effect of ��.
Hence, when enough experimental points were used in order to estimate the unknown coefficient, its standard deviation goes lower
and has a smaller effect on the optimal robust solution.

4.4. The case of two unknown parameters

The response of the current, I, is now considered to have two unknown parameters, a and b, where a is the coefficient of (fL)2 (which
equals to 4�2 in the known response in (7)) and b is the coefficient of R2 (which is equal to 1 in the known response in (7)). As in the
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Figure 4. R∗ and L∗ as functions of �â and �
b̂

two design regions

previous section, � is assumed to have a zero mean and a finite variance �2
� . The response can be now written as

I(R, L, f, V)= V√
bR2 +a(fL)2 +�

(16)

Following (8), one can obtain a simple linear equation:

V2

I2
= (fL)2 +bR2 +�

⇒ Y =a(fL)2 +bR2 +� where Y = V2

I2
(17)

Copyright © 2009 John Wiley & Sons, Ltd. Qual. Reliab. Engng. Int. 2010, 26 147--155
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A second-order Taylor approximation for the loss function with respect to the target value, T=10, can be derived as follows:

LI(R, L, T,�â,�â,�
b̂

,�
b̂

,�V ,�V ,�f ,�f )= (�I −T)2 +VI

=
�2

V�4
f �2

â
�2

â
L4

M3
+

�2
V�2

b̂
R4

4M3
+

�2
V�2

f �4
â
�2

f L4

M3
+ �2

V
M

+
[

1

2
·
(

3�V�4
f �2

â
L4

M5/2
− �V�2

f 32

M3/2

)
·�2

â

+1

2
·

3�V�2
b̂

R4

4M5/2
·�2

b̂
+ 1

2
·
(

3�V�2
f �4

â
L4

M5/2
−

�V�2
â

L2

M3/2

)
·�2

f + �V

M1/2
−T

⎤
⎦

2

(18)

where M=�2
â
�2

f L2 +�
b̂

R2.
Evaluating the loss at the point of the expected values of the noise factors, �V =100,�f =55 and plugging to Equation (18) both

the MLE values, �â =4�2,�
b̂
=1, and the variances of the noise factors, �V =3, �f = 5

3 , result in a similar expression to (12) with

additional terms related to �2
b̂

.

Figure 4 shows a contour plot of the optimal robust solutions {R∗, L∗}=argminR,L{Loss} as a function of �â and �
b̂

. The upper

graphs show the values of R∗ and L∗ for one part of the design region, in which the values of these sample standard deviations are
relatively high. The lower graphs show another part of the design region, in which the values of these sample standard deviations
are relatively low. The left upper graph shows a given solution, R∗

S ≈7.822(�), that is obtained for �â =6.5 and �
b̂
=8.5. Note that a

reduction of one unit of �
b̂

while holding �â fixed resulted in a new optimal solution R∗
S ≈7.77(�). However, a reduction of one unit

in �â while holding �
b̂

fixed does not result in any significant change in the optimal robust solution. This phenomenon is also true for

L∗, as can be seen from the upper right figure. Thus, in general, for relatively large values of the standard deviations, changes in �â
do not result in significant changes of the values R∗ and L∗, while changes in �

b̂
affect significantly the optimal robust solutions. In

other words, in order to reduce the variance of the obtained solutions, V(x∗), one should focus primarily on estimating b as accurately
as possible rather than investing in a better estimation of a. The lower graphs show the opposite situation for relatively low standard
deviations. In order to reduce the variances of R∗ and L∗ one should focus on estimating a as accurately as possible rather than
investing in the estimation of b. In case of intermediate standard deviations’ values, there are no general recommendations, and the
decision how to allocate the next experiments is left to the experimenter. Note that these conclusions cannot be anticipated from
the loss function itself and are the result of the suggested methodology.

5. Conclusions

This paper illustrates the Vs-optimality criterion, which was first introduced in Reference1. The paper illustrates how the Vs-optimality
criterion is related to an ‘optimization seeking’ experimental approach rather than to an ‘information-seeking’ approach. The proposed
criterion is formulated for a case that the investigated system is linear. The principles of the proposed approach are illustrated by a
running example of a robust design of an RL-circuit. One potential research direction is to seek ways to implement the Vs-optimality
criterion within a fully ‘automated’ sequential optimization framework and not necessarily for robust optimization.
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