
European Journal of Operational Research 299 (2022) 945–959

Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier.com/locate/ejor

Stochastics and Statistics

The stochastic test collection problem: Models, exact and heuristic

solution approaches

Yifat Douek-Pinkovich, Irad Ben-Gal, Tal Raviv

∗

Department of Industrial Engineering, Tel-Aviv University, Ramat-Aviv, Tel Aviv-Yafo 69978, Israel

a r t i c l e i n f o

Article history:

Received 3 October 2020

Accepted 28 December 2021

Available online 2 January 2022

Keywords:

Combinatorial optimization

The test collection problem

Integer linear programming

Metaheuristics

a b s t r a c t

The classic test collection problem (TCP) selects a minimal set of binary tests needed to classify the state

of a system correctly. The TCP has applications in various domains, such as the design of monitoring sys-

tems in engineering, communication, and healthcare. In this paper, we define the stochastic test collection

problem (STCP) that generalizes the TCP. While the TCP assumes that the tests’ results can be determin-

istically mapped into classes, in the STCP, the results are mapped to probability distributions over the

classes. Moreover, each test and each type of classification error is associated with some cost. A solution

of the STCP is a subset of tests and a mapping of their results to classes. The objective is to minimize the

weighted sum of the tests’ costs and the expected cost of the classification errors. We present an integer

linear programming formulation of the problem and solve it using a commercial solver. To solve larger

instances, we apply three metaheuristics for the STCP, namely, Tabu Search (TS), Cross-Entropy (CE), and

Binary Gravitational Search Algorithm (BGSA). These methods are tested on publicly available datasets

and shown to deliver nearly optimal solutions in a fraction of the time required for the exact solution.

© 2022 Elsevier B.V. All rights reserved.

1

k

t

(

t

m

e

s

u

i

n

b

t

g

n

c

t

m

t

R

(

S

i

t

c

a

(

w

q

c

g

f

fi

o

l

o

w

o

s

t

h

0

. Introduction

The well-studied minimum test collection problem (TCP) is

nown in the literature as the minimum test set problem or

he minimum test cover problem. Halldórsson, Halldórsson & Ravi

2001) described the minimum TCP as follows: Given a set of en-

ities (e.g., individuals) and a set of binary attributes (tests) that

ay or may not occur in each entity, the incidence vector of each

ntity represents a reading. The goal is to find the minimal sub-

et of attributes (a test collection) such that each entity can be

niquely identified from the information on which of the attributes

n the test collection it contains. In this way, the reading’s coordi-

ates that represent tests included in test collection form a unique

inary vector referred to as signature for distinguishing it from all

he other entities. For example, in the domain of botanic taxonomy,

iven a set of mushroom varieties (entities) and a collection of bi-

ary mushroom attributes (such as bad odor, spore-print in red

olor, whether it is found in a large group, etc.) such that each at-

ribute can characterize some mushroom varieties. To identify the

ushroom type efficiently, one looks for a minimum subset of at-

ributes that is enough to distinguish between all the varieties.
∗ Corresponding author.

E-mail addresses: bengal@tauex.tau.ac.il (I. Ben-Gal), talraviv@tauex.tau.ac.il (T.

aviv).

b

s

a

T

i

a

ttps://doi.org/10.1016/j.ejor.2021.12.043

377-2217/© 2022 Elsevier B.V. All rights reserved.
This paper presents the stochastic test collection problem

STCP), which complements and generalizes the minimum TCP. The

TCP is defined as follows: we are given a set of tests with categor-

cal outputs and all possible combinations of the results of these

ests for a population of tested entities (e.g., patients). Each such

ombination of the tests’ results is called a reading and is associ-

ted with a probability distribution over a given finite set of classes

e.g., diagnoses) and with the probability of obtaining this reading

hen sampling an entity from the population (i.e., the relative fre-

uency of the reading). A subset of some selected tests is called

onfiguration. The outcomes of the tests in a configuration of a

iven reading are jointly called a signature. Note that several dif-

erent readings may have the same signature for a particular con-

guration and hence can be indistinguishable. In a situation where

ne needs to determine the state of a system based on a particu-

ar signature, classification errors may occur. A classification error

f type A,B is said to happen when a signature is classified as B,

hile it is actually originated from a subject of class A. The input

f the STCP includes an error cost matrix that specifies a cost as-

ociate with each type of error. A solution of the STCP consists of

wo components: (1) a configuration; (2) a mapping of each possi-

le signature into a class. The objective is to minimize a weighted

um of the cost of the tests that comprise the configuration as well

s the expected classification error cost implied by the mapping.

he tests’ costs are weighted since they may represent a one-time

nitial investment, while the errors may occur each time the tests

re applied. For example, the cost associated with the installation

https://doi.org/10.1016/j.ejor.2021.12.043
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ejor.2021.12.043&domain=pdf
mailto:bengal@tauex.tau.ac.il
mailto:talraviv@tauex.tau.ac.il
https://doi.org/10.1016/j.ejor.2021.12.043

Y. Douek-Pinkovich, I. Ben-Gal and T. Raviv European Journal of Operational Research 299 (2022) 945–959

o

a

f

p

p

e

i

s

o

t

e

t

s

l

a

e

r

b

t

J

(

p

c

T

i

t

v

A

e

m

t

p

s

i

a

f

c

t

l

r

t

t

t

F

P

e

w

l

o

t

a

l

w

w

c

i

g

b

t

g

b

g

t

s

a

a

a

t

t

G

r

T

i

j

m

c

e

m

m

s

w

d

i

d

s

d

i

o

c

2

c

p

c

r

o

fi

a

t

c

b

p

S

G

o

T

l

t

a

t

s

b

i

t

t

c

s

l

t

f the sensors in a water network should be amortized in terms of

 single usage, which is equivalent to performing one test.

The trade-off between the two components of the objective

unction follows as executing more tests (or more accurate and ex-

ensive ones, e.g., performing additional blood tests to improve the

atient’s diagnosis) is likely to reduce the chances of classification

rrors and thus their expected cost but will increase the total test-

ng cost.

The challenge is that the class can rarely be inferred from the

ignature of a single test. Instead, it is inferred from a combination

f the results obtained from several ones. A formal definition of

he problem with mathematical notation is presented in Section 2 .

The TCP can be seen as a special case of the STCP in which (a)

ach reading is associated deterministically with a unique class; (b)

he costs of all the tests are equal and set to one; and (c) the clas-

ification error costs are set to prohibitively large numbers (e.g.,

arger than the number of tests).

In the STCP, instead of a one-to-one relation between readings

nd classes, it allows a probabilistic many-to-many relation. It thus

nables various readings-to-class mappings, as often happens in

eality. In such a case, a deterministic diagnosis is often impossi-

le, hence the need to introduce the classification error cost into

he objective function.

The TCP decision version was shown to be NP-hard by Garey &

ohnson (1979) . Halldórsson et al. (2001) and De Bontridder et al.

2003) established the APX-Hardness of the minimum TCP. They

rovided constant ratio approximation algorithms for some special

ases with a small number of positive attributes in each reading.

herefore, the intractability of the STCP follows.

Many authors have studied various applications of the TCP and

ts extensions. Such applications include sensor placement in struc-

ures and networks, e.g., in Douek-Pinkovich, Ben-Gal and Ra-

iv (2020) , Kammer (1991) , Sela Perelman, Abbas, Koutsoukos &

min (2016) ; robotics, e.g., in Hovland & McCarragher (1997) ; en-

rgy consumption strategies, e.g., in Slijepcevic & Potkonjak (2001) ;

edical diagnosis, e.g., in Wendt & Potkonjak (2011) ; protein iden-

ification Halldórsson et al. (2001) and De Bontridder et al. (2003) ;

rocess monitoring, e.g., in Bacher & Ben-Gal (2017) , among others.

The STCP can naturally enrich most of the applications de-

cribed above since the stochastic relation between the tests’ read-

ngs and the state of the system is an inherent characteristic of

lmost any realistic testing system. The stochasticity stems both

rom the noise in the tests and from the fact that it is typically too

ostly to perform enough tests to eliminate all possible uncertain-

ies. With modern sensing systems, a large quantity of data is col-

ected, and it can be used to estimate the probability distributions

equired as input for the STCP model. In other situations, these dis-

ributions can be calculated based on the physical characteristics of

he tested system.

The STCP also extends another model, known as the generalized

est collection problem (GTCP) that was introduced by Bertolazzi,

elici, Festa, Fiscon & Weitschek (2016) and studied by Douek-

inkovich et al. (2020) . In the GTCP, the tests’ outputs are cat-

gorical rather than binary, different readings may be associated

ith a single class, and each test is associated with a cost. A so-

ution of the GTCP is a collection of tests and a correct mapping

f the signatures to the classes. The objective is to find a collec-

ion with minimal costs. As in the TCP, classification errors are not

llowed. Douek-Pinkovich et al. (2020) apply their model and so-

ution method to sensors’ placement problem in urban water net-

orks, introduced by Sela Perelman et al. (2016)). In water net-

orks, sensors that detect pressure waves caused by pipe bursts

an be placed on each node in the network. A burst in each edge

s associated with signals in several sensors located close to it. The

oal is to select a minimal subset of nodes where sensors should

e placed to detect each fault in the system.
946
The main difference between the GTCP and the STCP is that in

he former, each reading is deterministically associated with a sin-

le class, while in the latter, a reading is associated with a proba-

ility distribution over the classes. Consequently, in the GTCP, the

oal is to select a set of tests that enable classifying the subject de-

erministically. In the STCP setting, the classification is inherently

ubject to errors that should be minimized.

The GTCP can be seen as a generalization of the TCP. Using the

bove-mentioned mushrooms example for the illustration purpose,

 mushroom variety (characterized by its reading) can be classified

s toxic or nontoxic. Instead of identifying the specific mushroom

ype, one may wish to select a minimum-cost set of attributes

hat can determine the mushroom’s toxicity. The STCP enriches the

TCP in the sense that it can handle uncertainty. Naturally, mush-

oom attributes are subject to noise due to measurement errors.

hus, a mushroom variety can be classified with some probabil-

ty as toxic and with another probability as edible. Hence, the ob-

ective function must now include the error cost of identifying a

ushroom as toxic while it is not such and vice versa. In such a

ase, it is likely that the error of classifying a toxic mushroom as

dible will be set to have a very high cost, while the opposite error

ay be considered less costly.

In many realistic applications, the STCP can be considered as a

ore realistic model since: i) the readings observed in real-world

cenarios may not necessarily identify the class of the subjects

ith certainty; ii) the readings are often affected by some (ran-

om) noise; iii) sometimes it is preferred to save testing costs by

ncluding a cheap set of tests that is not sufficient by itself for a

eterministic classification. For example, in the water network sen-

or placement problem, bursts in the same location may result in

ifferent readings. In fact, the intensity of the burst, and sediments

n pipes, affect the signals and contribute to the uncertainty. An-

ther example for the STCP relevance is related to the known wine

lassification problem (e.g., Cortez, Cerdeira, Almeida, Matos & Reis,

009), where the wine class is defined by its quality score and

haracterized by a numerical scale in the range of 3–9. This exam-

le represents well the trade-off between the testing costs and the

lassification error. Different scores can be reflected by the same

eadings, therefore mapping the results to probability distributions

ver the classes is much more feasible than a deterministic classi-

cation (even with all the considered variables).

Table 1 summarizes the differences between the STCP, the GTCP,

nd the TCP. The first column of the table summarizes the input

ypes and the objective function. In the second, third, and fourth

olumns, the properties of the three problems are detailed.

This paper presents an effective, exact algorithm for the STCP

ased on an integer linear program (ILP) formulation. It also ap-

lies three metaheuristic methods to solve larger instances of the

TCP. Namely, Tabu Search (TS), Cross-Entropy (CE), and Binary

ravitational Search Algorithm (BGSA). Finally, it shows the merits

f our generalization by comparing it to the solution of equivalent

CP instances.

Finally, let us note that the known Feature Selection (FS) prob-

em is also related to the STCP in the sense that in both problems,

he goal is to select a subset of characteristics of an entity that en-

bles its proper classification. However, the two problems differ in

heir objectives and settings. In the STCP, one looks for a minimal

et of characteristics that enable to distinguish among entities that

elong to different classes with a sufficient probability measure. It

s further assumed that all the relevant entities, with their charac-

eristics, are available as input to the problem. Since one considers

he trade-off between the cost of the information obtained for the

lassification and the expected cost of misclassification, a minimal

et of characteristics without a need for redundancy should be se-

ected. On the other hand, in feature selection problems, the goal is

o select a subset of characteristics that minimizes the probability

Y. Douek-Pinkovich, I. Ben-Gal and T. Raviv European Journal of Operational Research 299 (2022) 945–959

Table 1

The TCP, GTCP, and STCP.

TCP GTCP STCP

Input types:

Test’s results binary Categorical categorical

Reading to class relation one to one many to one many to many

Test’s cost identical Any any

Classification errors are

allowed

No Yes, with a cost

Objective function: Minimize the cost (or number) of the

selected tests

Minimize the cost of the selected tests

and the expected error cost

o

t

b

s

a

v

s

p

t

p

c

p

f

o

t

e

l

&

t

S

o

2

t

t

n

t

i

r

c

i

t

p

B

F

n

t

t

m

t

a

t

n

c

Q

b

p

b

T

u

s

t

E

l

o

l

T

E

N

r

a

c

s

m

f misclassification over a test set that is not available during the

raining phase. Thus, over-fitting and under-fitting effects should

e considered. Accordingly, in feature selection, one may look for

olutions with redundancy since future test datasets are unknown

t the training stage.

The contributions of this paper are in formulating the stochastic

ariant of the TCP and in presenting effective heuristic methods to

olve it.

The rest of the paper is organized as follows. In Section 2 , we

resent some formal notation and a mathematical formulation of

he problem. In Section 3 , we demonstrate the properties of the

roblem using a small illustrative example. Sensitivity analysis is

arried out to demonstrate some counterintuitive properties of the

roblem and its optimal solutions. In Section 4 , we present an ILP

ormulation of the STCP. In Section 5 , we present heuristic meth-

ds to solve the STCP based on the TS, CE, and BGSA metaheuris-

ics. In Section 6 , the proposed heuristics are tested against the

xact solution obtained from our ILP formulation based on pub-

icly known data from the UCI Machine Learning Repository (Dua

 Graff, 2019). Also, a dataset with probabilistic labels is applied

o show the advantages of the STCP. A comparison between the

TCP and the TCP is also presented. Some concluding remarks are

ffered in Section 7 .

. Notation and problem definition

To present our mathematical formulation of the STCP, we use

he following notation, where bold letters denote vectors and ma-

rices:

N, The set of candidate tests available in a given system; the

umber of tests is denoted by n = | N| , S ∈ N is a subset of selected

ests called a configuration.

c i , The cost of test i for any i ∈ N .

V i , The set of outputs or results that can be obtained from test

 .

R , The set of valid readings, R ⊆ V 1 × V 2 × · · · × V n ; for each

eading ˜ r ∈ R , we denote the result of the i th test as ˜ r i .

K , The set of possible classes; K = { 1 , . . . , k } .
λkl , The misclassification error of type (k, l) , k, l ∈ K, i.e., the

ost of classifying an object as class l when its true class is k .

p(̃ r) , The a-priory probability of obtaining the reading ˜ r ∈ R .

p(k | ̃ r) , The conditional probability of class k ∈ K given the read-

ng ˜ r ∈ R.

β , The relative weight of the testing cost in the objective func-

ion.

Let us denote the prior probability of each class by p(k) . This

robability is related to the above parameter as follows.

p (k) =

∑

˜ r ∈ R
p(k | ̃ r) p (̃ r) (1)

Let the conditional probability of each reading given a class by

p(̃ r | k) . This probability is determined by the above parameters by
947
ayes’ rule,

p(̃ r | k) =

p(k | ̃ r) p (̃ r)

p (k)
(2)

or each configuration S ⊂ N, define R (S) as the set of all its sig-

atures. I.e., partial readings can be obtained from the results of

he selected tests. When the configuration is known, we denote

he signature of ˜ r by r. The signature r ∈ R (S) is a vector of di-

ension | S| . For convenience, the elements r i of the signature vec-

ors are indexed by the original indices of the tests in N. For ex-

mple, if N = {1,…,5} and r ∈ R ({ 1 , 2 , 5 }) , then r = (r 1 , r 2 , r 5) . In

his example, r 5 is the third element of the signature r. We de-

ote the set of all the possible readings from which signature r

an be obtained when the configuration is S as Q(S, r) . That is,

(S, r) = { ̃ r ∈ R : ̃ r i = r i ∀ i ∈ S } .
Next, for each configuration S ⊂ N and r ∈ R (S) , it is possi-

le to calculate the following three probability components: the

robability of a signature given class k, p S (r| k) ; the prior proba-

ility p S (r) of signature r ∈ R (S) ; and the a-posteriori probability

p S (k | r) that the class is k ∈ K given that the signature is r ∈ R (S) .

hese probabilities can be calculated using Eqs. (3) –(5). For config-

ration S, the conditional probability of class k when observing a

ignature r, p S (k | r) , is calculated with Eq. (5) using Bayes’ rule.

p S (r| k) =

∑

˜ r ∈ Q (S, r)

p(̃ r | k) (3)

p S (r) =

∑

˜ r ∈ Q (S, r)

p (̃ r) =

∑

k∈ K
p (k) · p S (r| k) (4)

p S (k| r) =

p S (r| k) · p (k)

p S (r)
(5)

Consider a given configuration S ⊂ N. The expected classifica-

ion error cost for signature r of S if it is mapped to class l is:

 S (r| l) =

∑

k∈ K
λkl · p S (k| r) (6)

et l ∗S : R(S) → K be a function that maps each possible signature

f S to a class that minimizes the expected classification error cost.

∗
S (r) = arg min

l∈ K
{ E S (r| l) } (7)

he minimum expected classification error cost for signature r is:

∗
S (r) = min

l∈ K
{ E S (r| l) } (8)

ote that (7) coincides with the "minimum Bayes risk decision

ule" as given, for example, in Duda, Hart & Stork (2012) .

The STCP can now be formulated mathematically. Namely, given

n instance of the problem [N, R, K, p(̃ r) , p(k| ̃ r) , λ, c] , select a

onfiguration S, such that the weighted sum of the expected clas-

ification error and test costs are minimized,

in

S⊆N

{ ∑

r∈ R (S)
p S (r) E

∗
S (r) + β

∑

i ∈ S
c i

}

(9)

Y. Douek-Pinkovich, I. Ben-Gal and T. Raviv European Journal of Operational Research 299 (2022) 945–959

Table 2

Valid readings ̃ r ∈ R and the probabilities p(̃ r) , p (̃ r | k) , and p(k | ̃ r) .
Test Readings, R p(̃ r) p(̃ r | k) p(k | ̃ r)
Test 1 Test 2 Test 3 N P N P

0 0 0 0.067 0.035 0.105 0.289 0.711

0 0 1 0.119 0.015 0.245 0.070 0.930

0 1 0 0.105 0.105 0.105 0.550 0.450

0 1 1 0.135 0.045 0.245 0.183 0.817

1 0 0 0.097 0.140 0.045 0.792 0.208

1 0 1 0.080 0.060 0.105 0.411 0.589

1 1 0 0.251 0.420 0.045 0.919 0.081

1 1 1 0.146 0.180 0.105 0.677 0.323

c

u

o

t

t

m

N

d

c

3

a

t

a

V

s

e

S

a

b

T

n

t

f

f

b

a

s

t

i

E

c

e

i

m

o

o

e

Fig. 1. An optimal configuration as a function of the false positive and false nega-

tive costs.

fi

t

S

c

c

c

c

u

r

2

s

c

t

i

t

f

u

l

n

f

s

p

s

d

t

p

s

z

p

I

t

t

e

a

s

n

c

t

s

The weight coefficient is used to adjust the scale of the error

ost and the testing cost. Higher values of β lead to testing config-

rations that are more prone to classification errors. The designer

f the testing system can use β to explore the efficiency frontier of

he costs of classification errors and costs of tests. Note that mul-

iplying β by a constant is equivalent to dividing the error cost

atrix, λ, by that constant or to multiply the testing costs, c i by it.

ote that given the set of tests S, the set of signatures is uniquely

efined by R(S) , while the optimal mapping of each signature to a

lass is given by (7).

. Motivating example

Let us demonstrate the problem using the following small ex-

mple. Consider a medical testing system comprising three poten-

ial tests aimed at detecting a viral disease. Each test produces

 binary result, i.e., the result of medical test i may be either

 i = 0 , or 1 . The input, in this case, in terms of the notation pre-

ented in Section 2 , is:

N , { 1 , 2 , 3 }
c i , [2 , 0 . 5 , 0 . 5]

β , 1

V i , {0,1} for i = 1 , 2 , 3 ; i.e., the result of each binary test can be

ither 0 or 1.

R , V 1 × V 2 × V 3 , all possible combinations of the tests’ results.

ee also the first group of columns in Table 2 .

K , { N , P } ; N for Negative and P for Positive

λkl , [
0 50

50 0
] ; i.e., both false-positive and false-negative costs

re equal to 50.

p(̃ r) , See the second group of columns in Table 2 .

p(k | ̃ r) , See the third group of columns in Table 2 .

In this small example, the solution can be readily calculated

y an exhaustive search overall 2 3 = 8 possible test configurations.

he value of each subset S is calculated by enumerating all the sig-

atures in R (S) . An example of such calculations for the configura-

ion S = { 1 , 2 } is described in Table 3 . First, all signatures obtained

rom the subset S are shown in the first group of columns. Next,

or each signature r ∈ R(S) and each diagnosis k ∈ K , the proba-

ilities p S (r | k) , p S (r) , and p S (k | r) are calculated using (3)–(5) and

re shown in the second, third, and fourth group of columns, re-

pectively. Now, the expected error cost of diagnosing l when the

rue diagnosis is k can be seen in the fifth group of columns and

s calculated when l is decided; i.e., it is E S (r | l) , as given in (6).

q. (7) shows the diagnosis that minimizes the expected classifi-

ation error cost for the signature r (sixth group of columns). Its

xpected classification error cost is given by (6) and can be seen

n the seventh group of columns. The results of multiplying the

inimum expected classification error cost by the probability of

btaining each signature r ∈ R(S) can be seen in the eighth group

f columns. The sum of this column is 12.25, which denotes the

xpected classification error cost for the subset as given by the
948
rst addend of (9). The second addend of (9) indicates the cost of

he tests, which is 2.5. Thus, the expected total cost of the subset

 = { 1 , 2 } is 14.75.

In Table 4 , for each possible configuration (given in the first

olumn), we present the expected classification error cost (second

olumn), the testing cost (third column), and the expected total

ost, which is the error cost plus the testing cost (in the fourth

olumn). One can observe that the configuration {1,2,3}, i.e., when

sing all the tests, is the one that minimizes the cost function (9),

esulting in a value of 14.01.

Interestingly, the second-best configuration is {1}. Adding tests

 or 3, i.e., using the configurations {1,2} or {1,3}, results in the

ame classification error cost as {1} but incurs a higher testing

ost; this demonstrates the complex structure of the problem and

hat a simple greedy or local search heuristic is unlikely to solve

t.

Numerical analysis of the optimal decision, as a function of

he classification error costs (false positive, λNegat i v e,Posit i v e , and

alse negative, λPosit i v e,Negat i v e) is presented in Fig. 1 . In this fig-

re, the colors denote the optimal configuration. The vertical black

ine illustrates the optimal configuration changes when the false-

egative error cost ranges from 0 to 100, and the value of the

alse-positive error cost is fixed at 35. As seen, the optimal deci-

ion can be very sensitive to changes in this parameter. The ex-

ected classification error when performing all the tests is always

maller than performing other combinations. However, the optimal

ecision considers the trade-off between the expected classifica-

ion error and the cost of the tests.

Another analysis is performed to test how changes in the

rior probabilities p (k) affect the optimal decision. The results are

hown in Fig. 2 . The parameter p(negati v e) changes along the hori-

ontal axis; note that p(positi v e) = 1 − p(negati v e) . The rest of the

arameters are fixed to their values, as in the original example.

t is clear that when p(negati v e) = 1 or p(negati v e) = 0 , i.e., when

he diagnosis is always negative or always positive, the solution is

rivial: tests are not required. The number of tests increases as the

ntropy of the classes increases.

Note that this problem could be solved by optimality using

n exhaustive search, which is valid when the number of tests is

mall. However, since the number of configurations grows expo-

entially with the number of tests, the problem quickly becomes

omputationally intractable in the number of tests. In the next

wo sections, we present more effective methods to solve large in-

tances of the problem.

Y. Douek-Pinkovich, I. Ben-Gal and T. Raviv European Journal of Operational Research 299 (2022) 945–959

Table 3

Calculating the expected total cost for S = { 1 , 2 } .
R(S) p S (r | k) p S (r) p S (k | r) E S (r | l) l ∗S (r) E ∗S (r) p S (r)E ∗S (r) 1.38

Test 1 Test 2 N P N P l = N l = P

0 0 0.05 0.35 0.19 0.15 0.85 42.57 7.43 P 7.43

0 1 0.15 0.35 0.24 0.34 0.66 32.81 17.19 P 17.19 4.13

1 0 0.2 0.15 0.18 0.62 0.38 19.01 30.99 N 19.01 3.38

1 1 0.6 0.15 0.40 0.83 0.17 8.49 41.51 N 8.49 3.38 ∑

r ∈ R (S) p S (r) E ∗S (r) 12.25 ∑

i ∈ S c i 2.5

Expected total cost: 14.75

Table 4

The expected classification error cost, testing cost, and expected total cost of each

configuration.

Configuration The expected

classification error cost

Testing cost Total cost

{1,2,3} 11.01 3 14.01

{1,2} 12.25 2.5 14.75

{1,3} 12.25 2.5 14.75

{2,3} 15.00 1 16.00

{1} 12.25 2 14.25

{2} 18.13 0.5 18.63

{3} 15.00 0.5 15.50

{} 22.50 0 22.50

Fig. 2. The optimal subset of tests (configuration) as a function of the probability

of diagnoses. For example, for P(Negative) = 0.3 the optimal configuration is { 1 , 3 } .

4

m

t

s

v

i

r

c

i

c

m

s∑
∑
x
y

t

e

c

a

t

m

p

n

o

o

n

I

i

t

s

s

(

e

t

t

w

{
t

m

e

t

s

a

5

S

a

a

S

t

t

d

t

(

t

. Integer linear programming formulation and solution

ethod

This section presents the proposed ILP formulation to address

he STCP and the lazy constraints generation mechanism that

olves it. Following the notation above, we define two decision

ariables. For each test i ∈ N, let x i be equal to "1 ′′ when the test

s included in the solution and equal to "0 ′′ otherwise. For each

eading ˜ r ∈ R , we define a binary decision variable y ˜ r k that indi-

ates whether the reading is classified as k ∈ K.

Following Eq. (6) , the expected error cost of each reading ˜ r if

t is classified as l ∈ K is E(̃ r | l) =

∑

k ∈ K λkl · p(k | ̃ r) . Now, the STCP

an be formulated as an ILP:

in

∑

i ∈ N
c i x i +

∑

˜ r ∈ R, l∈ K
p (̃ r) · E (̃ r | l) · y ˜ r l (10)
949
ubject to

i : ̃ r i 	 = ̃ q i
x i ≥ y ˜ r k − y ˜ q k , ∀ (̃ r , ̃ q) ∈ R × R, k ∈ K (11)

k ∈ K y ˜ r k = 1 , ∀ ̃ r ∈ R (12)

 i ∈ { 0 , 1 } , ∀ i ∈ N

 ˜ r k ∈ { 0 , 1 } , ∀ ̃

 r ∈ R, k ∈ K

(13)

The objective function (10) minimizes the expected classifica-

ion error and testing costs. The set of constraints (11) ensures that

very pair of identical readings will have the same class. The set of

onstraints (12) ensures that each reading will be classified with

 specific class. While the model requires binary values for both

ypes of decision variables, once the value of x i s is fixed, the re-

aining coefficient matrix is unimodular, and thus (13) can be re-

laced by the nonnegativity constraint of y ˜ r k .

We first note that the dimension of the ILP (10)-(12), i.e., the

umber of decision variables y ˜ r k and x i , is equal to the number

f readings multiplied by the number of classes plus the number

f candidate tests. The number of constraints is quadratic in the

umber of readings and linear in the number of classes, O (| R | 2 | K|) .
n a typical application, we expect thousands of readings, which

mplies millions of constraints, whereas the number of candidate

ests is typically much smaller. Accordingly, we use the lazy con-

traints scheme to solve the STCP. That is, we solve a relaxed ver-

ion of the problem with only a small subset of the constraints

11), and repeatedly add violated instances of the constraint when-

ver an integer (super optimal) solution is obtained. The set of ini-

ial instances of constraint (11) consists of those that are related

o the (̃ r , ̃ q) reading pairs that have the smallest number of tests

ith different outputs, i.e., the pairs with a minimum cardinality of

 i : ̃ r i 	 = ˜ q i } . In our numerical experiment, we included in the mas-

er problem only instances of (11) where the cardinality was no

ore than 10% of the total number of tests (rounded to the near-

st integer). Note that these constraint instances are likely to be

he tightest since the sum on the left-hand side is likely to be the

mallest. The rest of the constraints are added to the model only

fter a tentative integer solution that violates them is found.

. Metaheuristics solution methods to the STCP

This section presents three different methods to address the

TCP based on the known Tabu Search (TS), Cross-Entropy (CE),

nd Binary Gravitational Search Algorithm (BGSA) metaheuristics,

ll of them are considered to be of great potential to solve the

TCP. The TS is a deterministic method that exploits the struc-

ure of the STCP, where potential solutions are generated based on

he current solution (Glover, 1989). In contrast, the CE is a ran-

om population-based method, where the solution at each itera-

ion is tuned according to the best solutions at the last iteration

 Rubinstein, 1997). Finally, the BGSA is a relatively new stochas-

ic search algorithm where the interaction among the solutions is

Y. Douek-Pinkovich, I. Ben-Gal and T. Raviv European Journal of Operational Research 299 (2022) 945–959

m

S

o

i

t

p

a

i

e

b

i

s

5

c

O

t

l

e

c

t

r

y

e

t

l

e

o

(

p

3

A

R

s

c

e

a

|

s

f

a

S

d

i

c

h

b

w

a

F

5

t

r

l

t

i

i

m

(

i

t

o

x

p

t

s

ρ

n

ρ
ρ

t

a

d

q

w

I

i

f

W

g

K

α
0

t

n

s

t

a

t

t

s

F

5

r

a

a

s

m

A

d

m

u

m

c

i

f

a

odeled by physical gravitation law (Rashedi, Nezamabadi-Pour &

aryazdi, 2009). We study and analyze all three methods as none

f them was found to predominate the others over all the scenar-

os, yet the TS was shown to be more effective in most cases. Note

hat the STCP is often applied within an offline long-term design

roblem, and thus the decision-maker may wish to use all avail-

ble heuristics and select the best solution obtained so far.

Finally, in terms of notation, recall that a solution to a problem

s defined by the selected configuration, whereas the mapping of

ach signature to a class is defined by (7). We denote a solution

y the characteristic vector x of this set, in which x i = 1 if test i

s included in the configuration and 0 otherwise. The value of a

olution, calculated as in (9), is denoted by g(x) .

.1. The TS method

The TS method extends the basic local search techniques to fa-

ilitate the exploration of the solution space beyond local optima.

nce a local optimum is reached, the method allows one to move

o a new solution even if it is inferior. The TS method uses a Tabu

ist (TL) to disallow moves that cancel previous moves during sev-

ral subsequent iterations in order to escape a neighborhood of lo-

ally optimal solutions.

The TS algorithm involves three main steps: (a) generate an ini-

ial solution and initialize the TL to be empty; (b) explore the cur-

ent solution’s neighborhood defined by a set of candidate moves,

et excluding moves listed in the TL; and (c) move to the best-

xplored solution and add a new entry to TL to avoid any move

hat can direct the search back to the previous solution. If the TL is

onger than a predefined length, the algorithm removes its oldest

ntries. Steps (b) and (c) are repeated up to a predefined number

f iterations or until some other stopping criterion is satisfied.

In our implementation, the initial solution is the empty set

x = 0). Given a current solution x , its value is evaluated for all

ossible readings as explained and demonstrated in Sections 2 and

 . The neighborhood of x , N(x) is defined by three types of moves:

DD - add one test that is not included in the current solution;

EMOVE - remove one test from the current solution; and SWAP -

wap a test from the current solution with a test that was not in-

luded in the solution. The set of neighboring solutions induced by

ach type of the moves mentioned above are denoted by A (x) , R (x)

nd S(x) , respectively, thus , N(x) = A (x) ∪ R (x) ∪ S(x) . Note that

 A (x) + R (x) | = n and | S(x) | ≤ 1
4 n

2 . Each entry in the Tabu list con-

ists of one or two tests that should not be added or removed

rom the solution as long as the entry remains in the list. The ADD

nd REMOVE operations add entries with a single test, while the

WAP operation adds an entry with a pair of tests. One is forbid-

en for removal and the other for appending. If a candidate move

nvolves a test in the Tabu list, then its respective solution is ex-

luded from the neighborhood. We denote this reduced neighbor-

ood by N

′ (x) . In our implementation, we use a stopping criterion

ased on the total number of iterations to allow a fair comparison

ith the other methods. However, other criteria used in the liter-

ture may apply. The main algorithm is outlined as pseudocode in

ig. 3 .

.2. The CE method

The CE algorithm execute iterative steps, whereby each itera-

ion can be broken down into three main phases: (a) generate a

andom population of solutions using a specified probabilistic se-

ection rule; (b) evaluate the value of each of the generated solu-

ions, and (c) update the probabilistic selection rule for the next

teration based on the best solutions (termed as the elite set) and

terate until some stopping criterion is satisfied.
950
At each iteration, we generate w solutions using a

ulti-Bernoulli distribution with ’success probabilities’ p =

 p 1 , . . . , p n) , i.e., x = (x 1 , . . . , x n) such that x i ∼ Ber(p i) . We

nitialize the probabilities with p i = 0 . 5 , for all i , and update all

hese probabilities at step (c) of each iteration. In a given iteration

f the CE, we use x
(j)
i

to denote the i th test in solution j, while

(j) ∈ { 0 , 1 } n is a binary vector that represents solution j. The

robabilities p i are updated at the end of each iteration based on

he best ρw solutions (the elite set) and subject to exponential

moothing with a weight parameter α ∈ [0 , 1] . The parameter

∈ (0 , 1) defines the relative size of the elite set, while w is the

umber of solutions that are generated at each iteration. w and

are selected such that wρ is an integer. Previous studies used

= 0 . 1 , i.e., the top ten percent of the solutions are taken as

he elite set. The indices of the solutions in the elite set of iter-

tion t are denoted by E t . The parameters of the multi-Bernoulli

istribution are updated as follows:

 t,i =

∑

j∈ ε t I
{

x (
j)

i
=1

}
ρw

, i = 1 , . . . n (14)

here I {·} denotes an indicator function defined as follows:

 { condition } =

{
1 , condition holds
0 , otherwise

That is, q t,i is the proportion of the solutions that include test i

n the elite set of iteration t . The following exponential smoothing

ormula is then used to update p t :

p t,i = αq t,i + (1 − α) p t−1 ,i , i = 1 , . . . n (15)

e use exponential smoothing to prevent the premature conver-

ence of p t,i to 0 or 1. It has been empirically shown, e.g., by Alon,

roese, Raviv & Rubinstein, 2005 , that a value of α between 0 . 7 ≤
≤ 0 . 9 often obtains the best results. In this study, we use α =

 . 8 .

Several types of stopping criteria have been used in the litera-

ure, such as i) stop when the worst solution in the elite set does

ot change for a predefined number of consecutive iterations; ii)

top when all the elements of p t are close enough to 0 or 1, and

hus no new solutions are likely to be generated; iii) stop after

 predefined number of iterations or computation time. Combina-

ions of the above may also apply. In our implementation, we use

he third stopping criterion to enable a fair comparison with other

tudied heuristics given a similar computational effort.

The pseudocode that describes our CE algorithm is presented in

ig. 4 .

.3. The binary gravitational search algorithm (BGSA) method

The Binary Gravitational Search Algorithm (BGSA) is a relatively

ecent metaheuristic inspired by the Newtonian law of gravitation

nd motion. Solutions are represented by vectors and considered

s objects (also called agents), and their position in a multidimen-

ional space is determined by the coordinates of these vectors. The

ass of each solution is determined by its objective function value.

t each iteration, the positions and velocities of the objects are up-

ated based on their current positions, masses and velocities. The

ass of each object is then updated based on the population’s val-

es of solutions. The process is repeated until all the objects are

erged into one or more heavy objects or when another stopping

riterion is met.

For the implementation of the BGSA for the STCP, consider an

nitial set of w solutions, each represented by a vector x (j) ∈ { 0 , 1 } n
or j = 1 , 2 , . . . , w ; we refer to each coordinate of these vectors x

(j)
i

s the position of jth solution in the i th dimension. These values

Y. Douek-Pinkovich, I. Ben-Gal and T. Raviv European Journal of Operational Research 299 (2022) 945–959

Fig. 3. Pseudocode of the TS algorithm.

Fig. 4. Pseudocode of the CE algorithm.

a

n

u

b

w

B

e

q

N

M

A

d

F

w

p

s

ε

i

c

m

ρ

re updated from iteration to iteration, and we use x (j) (t) to de-

ote the position of the solution at iteration t of the algorithm. Let

s further define

est (t) = min

j∈ { 1 , ... ,w }
g
(
x

(j) (t)
)
.

orst (t) = max
j∈ { 1 , ... ,w }

g
(
x

(j) (t)
)
.

ased on these values, one can calculate a normalized measure of

ach solution j:

 j (t) =

g
(
x

(j) (t)
)

− worst (t)

best (t) − worst (t)
.

ext, the mass of each solution j is updated as follows:

 j (t) =

q j (t) ∑ w

j ′ =1 q j ′ (t)
. (16)
951
t a specific time t , the force acting on agent j 1 from agent j 2 is

efined as follows:

(j 1 , j 2)
i (t) = G 0

(
1 − t

T

)
M j 1 (t) · M j 2 (t) ∑ n

i ′ =1

∣∣∣x (j 1) i ′ (t) − x (
j 2)

i ′

∣∣∣ + ε

(
x (

j 2)
i (t) − x (

j 1)
i

)
,

here G 0 is a gravitational constant, T is the total number of

lanned iterations for the algorithm, and ε is a small positive con-

tant. Using some preliminary experiments, we set G 0 = 0 . 01 T and

 = 2 . 2 × 10 −16 .

Next, we find an elite set E t comprising the best solutions at

teration t and generate random numbers p j (t) ∼ U[0 , 1] for each

j ∈ E t . The cardinality of the E t is set to ρt w where ρt linearly de-

reases from iteration to iteration according to the following for-

ula:

t = 1 − t
(1 − ρT) ,
T

Y. Douek-Pinkovich, I. Ben-Gal and T. Raviv European Journal of Operational Research 299 (2022) 945–959

Fig. 5. Pseudocode of the BGSA algorithm.

w

w

F

I

o

a

c

a

i

v

w

M

l

(

B

o

a

x

5

g

l

a

i

t

r

c

b

t

e

a

r

b

n

f

t

b

s

6

t

g

p

p

t

6

p

here ρT is a parameter of the algorithm, while in our experiment,

e used ρT = 0 . 02 . Next, we define the force that acts on solution

j in dimension i at iteration t by:

(j)
i (t) =

∑

j ′ ∈ E t \ { j }
p j ′ F

(j, j ′)
i (t) .

n such a way, at the initial stage, all solutions apply forces on each

ther, and as the iterations progress, only the few best solutions

ffect all the others. Now, according to the law of motion, the ac-

eleration of a solution j at iteration t in dimension i is given by:

(j)
i (t) =

F (
j)

i (t)

M j (t)
. (17)

The velocity of an agent is considered as a random fraction of

ts current velocity added to its acceleration:

(j)
i (t) = π j (t) · v (j)

i (t − 1) + a (
j)

i (t − 1) , (18)

here v (j)
i

(0) is initialized to zero and π j (t) is drawn from U[0 , 1] .

oreover, to increase the chance of convergence, the velocity is

imited by some parameter v max . That is, | v (j)
i

| < v max . We followed

 Rashedi, Nezamabadi-Pour & Saryazdi, 2010) and set v max = 6 .

ased on the velocity in each dimension, i , we flip the position

f each agent, j, between 0 and 1 with probability | tanh (v (j)
i

(t)) |
nd leave it as x

(j)
i

(t) otherwise.

(j)
i (t + 1) =

{

1 − x (
j)

i (t) , with probabilit y

∣∣∣tanh

(
v (j)

i (t)

)∣∣∣
x (

j)
i (t) , otherwise

(19)

The BGSA algorithm is outlined as pseudocode in Fig. 5 .
952
.4. Memoization

Recall that calculating the value, g(x) , for each solution with a

iven configuration requires evaluating the signatures of all the re-

ated readings, which is a computationally demanding task. Indeed,

lmost all the running time of the three heuristics described above

s spent on computing these value evaluations. In some situations,

he same solutions may be required multiple times in the same

un of the algorithm. To avoid repeated calculations, we store each

alculated solution’s value in a hash table that is indexed by the

inary representation of the solution. When the algorithms require

he value of x , they first check if it already exists in the table. If it

xists, the value is retrieved; otherwise, the solution is evaluated,

nd its value is stored in the table. This mechanism significantly

educes the running time of all three heuristics and is especially

eneficial in the last iterations of the two randomized heuristics,

amely, the CE and BGSA. In our experiments, we created a dif-

erent memoization hash table for each algorithm to benchmark

hem fairly. However, in practice, the same hash table can be used

y different algorithms in parallel or sequentially to obtain the best

olution.

. Experimental results

In the first part of this section (SubSection 6.1), we tested

he proposed integer programming formulation of the problem to-

ether with the lazy constraints generation mechanism and com-

ared it to the three heuristic methods for the STCP. In the second

art (SubSection 6.2), we added a dataset with probabilistic labels

o analyze the advantages of the STCP. In the third part (SubSection

.3), we show the merits of our generalization of the STCP by com-

aring it to the TCP.

Y. Douek-Pinkovich, I. Ben-Gal and T. Raviv European Journal of Operational Research 299 (2022) 945–959

Table 5

Characteristics of the five datasets used in the experiments.

Dataset Tests Test value type Discretization Readings Classes

Wine 12 Continuous Quintiles 6463 7

Thyroid 21 Continuous Quintiles 3103 5

Mushrooms 21 Discrete – 8124 2

Cortex nuclear 68 Continuous Quartiles 1077 8

Molecular biology 60 Discrete – 3190 3

6

c

s

P

a

w

a

r

(

o

i

b

t

c

e

t

fi

a

w

A

a

s

d

(

u

d

a

v

a

f

d

c

m

b

q

m

t

T

g

t

t

p

W

d

u

t

r

m

t

b

c

s

t

1

n

s

o

m

n

c

f

r

N

i

n

u

p

r

z

i

w

t

i

t

1

t

t

c

i

o

e

e

r

s

j

t

s

w

b

t

a

T

n

b

o

a

.1. A comparison between the exact and heuristics methods

In this section, our integer programming formulation with lazy

onstraints are tested and compared with the three heuristic re-

ults. We coded the lazy constraint generation mechanism in

ython 3. The linear programming relaxations were solved using

n IBM CPLEX 12.10 commercial solver. All three heuristic methods

ere implemented in MATLAB 2018b. The testing environment was

n i9–9900 K Linux machine with 64 GB RAM.

For the evaluation of the algorithms presented above, we used

epresentative datasets from the UCI Machine Learning Repository

 Dua & Graff, 2019) with up to 8124 readings and 68 tests. In some

f the datasets, we removed tests and readings to eliminate miss-

ng values. Moreover, tests with numerical values were discretized

y dividing their values into quintiles or quartiles (depending on

he number of readings).

Using this data, we estimated the prior probabilities of the

lasses and the readings as well as the conditional probability of

ach class given a reading. Our algorithms were executed based on

hese estimated probabilities.

We used three tests cost vectors for each dataset: one with a

xed (unit) cost per test and two with randomly generated values

s described below. Lastly, three classification error cost matrices

ere generated for each combination of dataset and cost vector.

ll cleaned and processed input data of our experiment are avail-

ble online at Douek-Pinkovich’s drive (2020). In total, the use case

tudy contained 45 problem instances based on five different UCI

atasets.

In Table 5 , we show the number of tests, type of test values

continuous or discrete), discretization level (in the case of contin-

ous test values), number of readings, and number of classes in the

atasets. The information in the table refers to the cleaned data

fter removing some tests and readings to eliminate the missing

alues.

The Wine Dataset from UCI contains two tables related to red

nd white wine samples, as described in Cortez et al. (2009) . We

ollowed Kaggle (Parmar, 2018) and used a merged version of this

ataset where the type of wine was added as a new feature. The

lass in this dataset is the wine quality score represented by a nu-

erical value in the range 3–9. The classification error matrix is

ased on the distance between the classified quality and the true

uality (a Toeplitz matrix with values range 0–6). The (i, j) ele-

ent of the Toeplitz matrix represents the absolute difference be-

ween the two classes. An error cost matrix proportional to the

oeplitz matrix reflects that missing the ordinal class by a greater

ap is costlier than minor misses. Specifically, we created one ma-

rix that is 20 times the Toeplitz matrix and one that is 30 times

hat matrix.

In the Thyroid dataset, there are five classes: four related to

athological conditions and one (negative) related to a healthy one.

e created two matrices that assign a high cost to a false negative

iagnosis, a low one to a false-positive diagnosis, and medium val-

es to the misdiagnosis of a pathological condition.

In the Mushrooms Dataset, each reading should be classified as

oxic or nontoxic. The classification matrices were constructed to

eflect the fact that a false negative error (classifying a poisonous
953
ushroom as an edible one) is much more expensive or dangerous

han a false positive error.

In the Cortex Nuclear Dataset, the classes are described by three

inary features that define the eight classes. We constructed error

ost matrices based on the Hamming distance of this binary de-

cription of the class, i.e., the distance can be zero, one, two, or

hree. The matrices were created by multiplying these distances by

00 and by 200.

The Molecular Biology Dataset contains DNA sequences of 60

ucleotides (each nucleotide is a test, in our terminology). Each

equence belongs in one of three classes (exon-intron, intron-exon,

r neither). For this dataset, we used three fixed classification error

atrices with three different values (low, medium, high).

Our experiment is full factorial. That is, we tested all combi-

ations of the three test cost vectors and three classification error

ost matrices – nine runs for each of the five datasets. Fractional

actorial designs for larger experiments are left for future research.

For each dataset, we created one fixed test cost vector and two

andom cost vectors that were drawn from a Normal distribution

(1 , 0 . 1) and a Uniform one U(0 , 2) . The Thyroid Dataset from UCI

ncluded one test cost vector that we used in our experiment after

ormalizing it to make its mean equal one. In this instance, we

sed it instead of the cost vector with normally distributed values.

For each dataset, we created three error cost matrices based on

articular dataset characteristics, while the testing cost scale pa-

ameter, β , was fixed to be one. All these error cost matrices have

eros in their diagonal and values off the diagonal, as described

n Table 6 . The values of the error cost matrix in the experiments

ere chosen by a trial-and-error process, in order to find parame-

er values that do not lead to trivial solutions, such as those includ-

ng all or none of the tests. Note that the values of the error ma-

rix in Error cost 2 were obtained by multiplying Error cost matrix

 by a constant, which is equivalent to dividing the value of β by

he same constant. This setup allows examining the trade-off be-

ween the total testing and error costs, as discussed below. An ex-

eption to this is the error cost matrices of the Mushroom dataset,

n which our goal was to compare cases with various magnitude

f difference between the costs of false positive and false negative

rrors.

In a realistic setting, the true ratio between the testing and the

rror costs is frequently unknown to the designer. Therefore, we

ecommend solving the problem for multiple values of β and con-

truct an efficacy frontier between the two components of the ob-

ectives function. The designers can then pick a testing configura-

ion from the efficacy frontier that fits their needs.

We conducted some preliminary experiments to decide upon

ome of the parameters of the algorithm. We found that the CE

orks well with iterations of 20 n solutions and typically converges

efore the 50th iteration. We found that the best number of solu-

ions per iteration in BGSA is not affected by the number of tests

nd that the algorithm works well with 100 solutions per iteration.

o make a fair comparison between the CE and BGSA, we set the

umber of iterations in BGSA to 10 n so that we kept the total num-

er of evaluated solutions to approximately 10 0 0n in both meth-

ds. In both cases, many solutions were sampled more than once

nd were retrieved from the hash table without being reevaluated.

Y. Douek-Pinkovich, I. Ben-Gal and T. Raviv European Journal of Operational Research 299 (2022) 945–959

Table 6

Description of the classification error cost matrices.

Dataset Error cost matrix 1 Error cost matrix 2 Error cost matrix 3

Wine 20 × Toeplitz matrix {0,..,6} 30 × Toplitz matrix {0,..,6} 50 at each off-diagonal element

Thyroid 1500 to false negative

600 to false positive

1200 other errors

3000 to false negative

1200 to false positive

2400 other errors

1500 at each off-diagonal element

Mushrooms ∗ 300 to false positive

500 to false negative

100 to false positive

400 to false negative

50 to false positive

700 to false negative

Cortex Nuclear 100 × hamming distance 200 × hamming distance 300 at each off-diagonal element

Molecular Biology ∗∗ 30 at each off-diagonal element 60 at each off-diagonal element 120 at each off-diagonal element

∗ In the Mushrooms Dataset, Error cost matrix 3 is not fixed.
∗∗ In the Molecular Biology Dataset, all error cost matrices are fixed.

S

i

0

t

l

o

d

t

o

S

c

F

t

a

3

c

T

a

o

a

a

t

f

d

s

s

n

a

f

s

T

h

t

e

m

m

s

l

s

t

t

m

h

o

1

o

s

p

c

r

t

t

w

s

t

t

l

a

d

N

c

c

i

m

c

c

o

o

t

r

s

a

t

s

p

r

a

b

t

m

t

t

a

v

t

n

6

o

r

e

ince the TS is a much faster heuristic, we run it with a limit of 90

terations but repeat each run three times with Tabu list lengths of

, 2, and 4, while keeping the hash table from iteration to itera-

ion. Note that setting the Tabu length to 0 is equivalent to a naïve

ocal search. The reported solution values for the TS are the best

ut of the three. We note that no single alternative list length pre-

ominates the others. The solution times reported for the TS are

he sums of the three runs with the different Tabu lengths. All the

ther tuning parameters of the heuristic methods are specified in

ection 5 .

We applied the three heuristic methods for each of the 5 × 3 × 3

ombinations of datasets, error cost matrices, and test cost vectors.

or all instances, we also computed the exact optimal solution by

he lazy constraints’ generation mechanism. For this method, we

llocated up to 24 h to each instance, and we were able to solve

9 out of the 45 benchmark problems. The six instances that we

ould not solve were all based on the Molecular Biology dataset.

able 7 presents all results for the smaller datasets (Wine, Thyroid,

nd Mushrooms).

For each run, the solution value is presented first, and optimal

nes (obtained from the lazy constraints generation mechanism)

re in boldface. Next, the two components of the solution values

re listed – the expected error cost and the tests cost. In addition,

he iteration number when the best solution is first found (only

rom the heuristic methods) and the solution times in seconds are

isplayed. It can be seen that we succeed in achieving the exact

olution using our lazy constraints mechanism in all of these in-

tances.

In Table 8 , the same results are reported for the larger datasets,

amely, Molecular Biology and Cortex Nuclear. Here, we could not

chieve the exact solution using the lazy constraints mechanism

or all these instances. Thus, we added a column for the lazy con-

traints (denoted as LC) solution that was achieved within 24 h.

he solution values in bold are the best found using the three

euristic methods or the lazy constraints generation method.

It is apparent from Tables 7 and 8 that none of the three solu-

ion methods consistently provide a better solution than the oth-

rs. All instances of the three smaller datasets were solved to opti-

ality using both CE and BGSA and the TS while missing the opti-

al solutions occurred in only one case out of the 27. Thus, to save

pace in the table, a separated column for the lazy constraints’ so-

ution values was not added. In the six instances that could not be

olved to optimality within the 24-hour time limit, the best solu-

ion found was similar to the one obtained by the heuristics, but

he lower bound provided by the solver was very weak (with opti-

ality gaps of 44–59%). These results support the strength of these

euristic solution methods.

In the larger datasets, the TS provided the best solutions (or the

ptimal ones, when it obtained by our exact method) in 14 out of

8 instances and missed the best solution within a small margin

f up to 1.5%. In these datasets, the CE and BGSA found the best

olutions in 8 and 7 cases, respectively.
t

954
In terms of solution times, the heuristic methods are up to ap-

roximately 100 times faster than the implementation of the lazy

onstraint’s solution algorithm.

We further observed that the best solutions in almost all the

uns of the three heuristic methods were found in an early itera-

ion (relative to the number of allowed iterations), which implies

hat with the other tuning parameters used, our stopping criteria

ere correct. However, it may be the case that other criteria could

ave computation time without sacrificing quality. Lastly, it seems

hat in most of the cases, the TS outperforms the two other heuris-

ics in terms of computation time. However, since the STCP is a

ong-run design problem, a good practice would be to apply both

ll three heuristics and lazy constraints generation mechanism.

The trade-off between the total testing and error costs is

emonstrated in Tables 7 and 8 , for the obtained optimal solutions.

ote that Error cost matrix 2 is a constant multiplication of Error

ost matrix 1 (except for the Mushrooms dataset). Such a multipli-

ation is equivalent to the division of β by the same factor. That

s, Error cost matrix 1 represents higher β values than Error cost

atrix 2. As expected, increasing the error cost (or equivalently de-

reasing the testing costs) would result in an optimal solution that

onsist of additional tests.

In Table 9 , we present some aggregated statistics that measure

ur memorized mechanism’s success for the three heuristic meth-

ds. In the first row, we present the average number of solutions

hat are evaluated for each of the nine instances. In the second

ow, we present the average number of times when the required

olution could be obtained from the hash table (memoized hits),

nd thus, there was no need to reevaluate it. The ratio between

he number of memoized hits and the total number of scanned

olutions (actually evaluated and retrieved from the memoize) is

resented in the third row, entitled "Frac. hits rate." In the fourth

ow, we give the ratio between the number of evaluated solutions

nd the number of all the possible ones.

It can be seen that for all the three algorithms, the hash ta-

le is beneficial, especially in instances with a small number of

ests. When the number of tests grows, the hash table is effective

ostly for the TS algorithm that searches in previous good solu-

ions but not so much for the BGSA and CE. We note that for all

hree methods, the fraction of evaluated solutions approaches zero

s the number of tests grows. Given that all three algorithms spend

ery most of their computation time in the evaluation of solutions,

his implies that their solution time is much shorter than the time

eeded for complete enumeration.

.2. Probabilistic dataset

In Section 6.1 , the proposed solution was applied to instances

f the STCP problem that are degenerated in the sense that each

eading is mapped deterministically to a single class. As indicated

arlier, the STCP model is relevant for such cases and differs from

he GTCP model since it is capable of considering the trade-off

Y. Douek-Pinkovich, I. Ben-Gal and T. Raviv European Journal of Operational Research 299 (2022) 945–959

Table 7

Result summary for wine, thyroid, and mushrooms datasets.

Test cost vector Error cost

matrix

Parameters Wine Thyroid Mushrooms

TS BGSA CE TS BGSA CE TS BGSA CE

fixed 1 Solution value 11.602 11.602 11.602 17.058 17.058 17.058 4 4 4

Expected error cost 4.602 4.602 4.602 7.058 7.058 7.058 0

0 0

Tests cost 7 7 7 10 10 10 4 4 4

of iterations until best solution 10/90 2/120 3/50 12/90 106/210 10/50 6/90 66/210 11/50

Solution time (sec .) 19.2 108.2 64.4 32.3 191.9 103.0 22.7 188.1 56.1

fixed 2 Solution value 13.765 13.765 13.765 23.762 23.762 23.762 3.591 3.591 3.591

Expected error cost 5.765 5.765 5.765 12.762 12.762 12.762 0.591 0.591 0.591

Tests cost 8 8 8 11 11 11 3 3 3

of iterations until best solution 10/90 4/120 4/50 13/90 124/210 10/50 4/90 132/210 10/50

Solution time (sec .) 36.7 107.4 62.3 38.5 183.8 96.9 17.3 180.2 54.3

fixed 3 Solution value 15.388 15.388 15.388 23.568 23.568 23.568 3.295 3.295 3.295

Expected error cost 7.388 7.388 7.388 12.568 12.568 12.568 0.295 0.295 0.295

Tests cost 8 8 8 11 11 11 3 3 3

of iterations until best solution 10/90 11/120 4/50 13/90 115/210 10/50 4/90 98/210 9/50

Solution time (sec .) 32.7 108.7 61.4 26.4 192.6 89.7 15.2 175.1 58.0

Normal ∗ 1 Solution value 11.691 11.691 11.691 40.122 39.609 39.609 4.014 4.014 4.014

Expected error cost 4.601 4.601 4.601 40.122 37.609 37.609 0.217 0.217 0.217

Tests cost 7.090 7.090 7.090 0 2 2 3.797 3.797 3.797

of iterations until best solution 8/90 4/120 4/50 1/90 102/210 9/50 5/90 110/210 13/50

Solution time (sec .) 25.8 105.4 60.3 2.4 60.9 22.4 23.0 178.3 78.0

Normal ∗ 2 Solution value 13.881 13.881 13.881 60.991 60.991 60.991 3.895 3.895 3.895

Expected error cost 5.765 5.765 5.765 27.071 27.071 27.071 0.098 0.098 0.098

Tests cost 8.116 8.116 8.116 33.920 33.920 33.920 3.797 3.797 3.797

of iterations until best solution 9/90 1/120 4/50 13/90 129/210 13/50 5/90 119/210 13/50

Solution time (sec .) 28.9 106.7 59.4 20.6 129.4 70.0 11.0 168.6 68.0

Normal ∗ 3 Solution value 15.504 15.504 15.504 40.122 40.122 40.122 3.846 3.846 3.846

Expected error cost 7.388 7.388 7.388 40.122 40.122 40.122 0.049 0.049 0.049

Tests cost 8.116 8.116 8.116 0 0 0 3.797 3.797 3.797

of iterations until best solution 10/90 8/120 5/50 1/90 72/210 12/50 6/90 113/210 11/50

Solution time (sec .) 17.9 110.4 62.5 3.0 55.0 21.7 10.9 174.3 68.3

Uniform 1 Solution value 12.369 12.369 12.369 15.790 15.790 15.790 2.235 2.235 2.235

Expected error cost 5.471 5.471 5.471 8.121 8.121 8.121 0.492 0.492 0.492

Tests cost 6.898 6.898 6.898 7.669 7.669 7.669 1.743 1.743 1.743

of iterations until best solution 8/90 1/120 4/50 12/90 131/210 11/50 6/90 128/210 10/50

Solution time (sec .) 33.2 94.4 55.9 36.4 177.5 95.0 11.2 198.6 65.1

Uniform 2 Solution value 15.004 15.004 15.004 22.159 22.159 22.159 2.137 2.137 2.137

Expected error cost 7.288 7.288 7.288 21.743 21.743 21.743 0.394 0.394 0.394

Tests cost 7.716 7.716 7.716 0.416 0.416 0.416 1.743 1.743 1.743

of iterations until best solution 9/90 10/120 5/50 13/90 119/210 12/50 6/90 105/210 9/50

Solution time (sec .) 22.7 103.7 60.0 33.5 184.5 93.0 7.2 174.6 64.5

Uniform 3 Solution value 16.974 16.974 16.974 22.183 22.183 22.183 2.038 2.038 2.038

Expected error cost 7.426 7.426 7.426 21.767 21.767 21.767 0.295 0.295 0.295

Tests cost 9.548 9.548 9.548 0.416 0.416 0.416 1.743 1.743 1.743

of iterations until best solution 11/90 8/120 4/50 13/90 128/210 7/50 9/90 143/210 12/50

Solution time (sec .) 28.5 100.7 60.2 20.8 187.3 95.8 13.4 170.0 60.3

∗Except in the Thyroid dataset, where the cost vector was taken from UCI.

b

v

i

t

d

b

i

w

L

b

a

S

l

(

(

n

r

e

a

’

2

c

l

o

e

s

t

fi

e

b

fi

w

c

P

l

p

t

iteration number in which the best solution is first found and the
etween the classification accuracy and the testing cost. Another

irtue of the STCP model is that it is capable of dealing with noisy

nput, i.e., when each reading indicates a distribution vector over

he classes. In this section, we apply the TS on the noisy MNIST

ataset of handwritten digits that obtains probabilistic input la-

els of the digits for each reading. This dataset was first presented

n Gruber, Ben-Gal & Steinberg (2021) . It is an adaptation of the

ell-known deterministic version of MNIST that was introduced at

eCun, Cortes & Burges (2010) . Moreover, the MNIST dataset has

een used to analyze and reduce the images classification error in

 noisy environment (e.g., Cheng, Tahir, Eric & Li, 2020 , Huang, Xu,

chuurmans & Szepesvári, 2015) and we further discuss this point

ater in this section.

The MNIST dataset contains 10,0 0 0 black and white images

readings). Each image consists of 28 × 28 pixels, i.e., 784 pixels

that represent tests in this context). The value of each pixel is a

umber from 0 to 255 that represents its greyscale. Each reading is

epresented by ten probabilistic labels (the number of digits). For

xample, an image may be classified as the digit ’7 ′ with a prob-

bility of 0.8, the digit ’1 ′ with a probability of 0.15, and the digit

4 ′ with a probability of 0.05.
955
Since the range of the possible pixel outputs is very large with

56 different possible levels, we consider these outputs and dis-

retized them to quantiles representing two, four, and eight color

evels. Fig. 6 shows for illustration purpose the four-color levels of

ne of the images from the dataset.

Since the MNIST dataset is larger than the datasets that were

xamined in Section 6.1 , we applied only the TS heuristic that was

hown to be the fastest (and efficient) heuristic. We used a single

est cost vector with a fixed (unit) cost per pixel and four classi-

cation error cost matrices with 90 0, 180 0, 360 0, and infinity in

ach of the off-diagonal elements. Since the solution is determined

y the ratio between the error cost and the testing cost, using in-

nity error cost is equivalent to setting the testing cost as zero,

hich implies using all the pixels to identify the digits. The pro-

essed input data for our experiment is available online at Douek-

inkovich’s drive (2020) .

Table 10 presents all results for the three-color discretization

evels of the noisy MNIST dataset. For each solution, the error

robability is presented first. Next, the number of tests (pixels)

hat minimizes the expected cost. In addition, the table shows the

Y. Douek-Pinkovich, I. Ben-Gal and T. Raviv European Journal of Operational Research 299 (2022) 945–959

Table 8

Result summary for cortex nuclear and molecular biology datasets.

Test cost vector Error cost

matrix

Parameters Cortex nuclear Molecular biology

TS BGSA CE LC TS BGSA CE LC

fixed 1 Solution value 7.371 7.650 8.093 7.371 7.103 7.969 7.828

Expected error cost 0.371 0.650 0.093 0.371 3.103 0.969 0.828

Tests cost 7 7 8 7 4 7 7

of iterations until best solution 9/90 642/680 45/50 — 5/90 569/600 49/50

Solution time (sec .) 261.6 357.8 315.3 57,109 405.6 1561.0 1342.0 > day

fixed 2 Solution value 7.743 8.371 8.371 7.743 8.282 8.395 8.357

Expected error cost 0.743 0.371 0.371 0.743 0.282 0.395 0.357

Tests cost 7 8 8 7 8 8 8

of iterations until best solution 9/90 674/680 33/50 — 23/90 521/600 46/50

Solution time (sec .) 264.7 357.7 320.7 56,509 1230.0 1571.0 1417.5 > day

fixed 3 Solution value 8 8.836 8.279 7.836 8.564 8.978 8.865

Expected error cost 0 0.836 0.279 0.836 0.564 0.978 0.865

Tests cost 8 8 8 7 8 8 8

of iterations until best solution 10/90 650/680 42/50 — 23/90 565/600 20/50

Solution time (sec .) 269.3 357.4 322.8 59,740 1230.7 1562.6 1456.3 > day

Normal 1 Solution value 6.852 7.353 6.747 6.747 6.760 6.760 6.760

Expected error cost 0.464 0.372 0.464 0.464 0.903 0.903 0.903

Tests cost 6.388 6.981 6.283 6.283 5.857 5.857 5.857

of iterations until best solution 10/90 645/680 42/50 — 29/90 558/600 41/50

Solution time (sec .) 169.1 354.2 312.5 10,866 528.8 1539.6 1192.8 > day

Normal 2 Solution value 7.056 7.293 7.458 7.056 7.189 7.189 7.189

Expected error cost 0.185 0.186 0.371 0.185 0.470 0.470 0.470

Tests cost 6.871 7.107 7.087 6.871 6.719 6.719 6.719

of iterations until best solution 40/90 659/680 50/50 — 32/90 581/600 36/50

Solution time (sec .) 194.4 354.4 322.2 12,288 702.7 1564.3 1374.6 > day

Normal 3 Solution value 7.087 7.771 7.274 7.087 7.675 7.660 7.652

Expected error cost 0 0 0 0 0.790 0.941 0.753

Tests cost 7.087 7.771 7.274 7.087 6.885 6.719 6.899

of iterations until best solution 86/90 645/680 49/50 — 43/90 570/600 40/50

Solution time (sec .) 292.3 350.4 320.5 7151 980.4 1541.2 1396.3 > day

Uniform 1 Solution value 2.224 2.224 2.224 2.224 1.758 1.758 1.758 1.758

Expected error cost 0.186 0.186 0.186 0.186 0.301 0.301 0.301 0.301

Tests cost 2.038 2.038 2.038 2.038 1.457 1.457 1.457 1.457

of iterations until best solution 30/90 615/680 37/50 — 13/90 526/600 31/50 —

Solution time (sec .) 169.3 341.6 277.2 178 214.1 1467.9 1082.7 921

Uniform 2 Solution value 2.307 2.295 2.307 2.295 1.969 1.969 1.969 1.969

Expected error cost 2.094 0 2.094 0 0.151 0.151 0.151 0.151

Tests cost 0.213 2.295 0.213 2.295 1.818 1.818 1.818 1.818

of iterations until best solution 21/90 609/680 39/50 — 15/90 534/600 29/50 —

Solution time (sec .) 258.8 342.0 292.0 161 623.0 1465.9 1099.6 804

Uniform 3 Solution value 2.295 2.307 2.307 2.295 2.119 2.119 2.119 2.119

Expected error cost 0 2.094 2.094 0 0.301 0.301 0.301 0.301

Tests cost 2.295 0.213 0.213 2.295 1.818 1.818 1.818 1.818

of iterations until best solution 50/90 620/680 30/50 — 16/90 533/600 33/50 —

Solution time (sec .) 303.4 340.0 290.6 76 690.0 1468.0 1126.5 1252

Table 9

Statistics of the memorization mechanism.

Solution

method

Measure Wine Thyroid Mushrooms Cortex nuclear Molecular biology

Tests 12 21 21 68 60

TS # of evaluations # of

memoized hits Frac.

hits rate Frac evaluated

558 4055 0.88 0.14 1685 16,664 0.91

0.0008

2329 15,208 0.87

0.0011

50,047 68,128

0.58 1 . 7 × 10 −16

29,062 62,248 0.68

2 . 5 × 10 −14

BGSA # of evaluations # of

memoized hits Frac.

hits rate Frac evaluated

2376 9624 0.80

0.58

13,101 7899 0.38

0.0062

13,989 7011 0.33

0.0067

64,136 3864

0.06 2 . 2 × 10 −16

56,346 3654

0.06 4 . 9 × 10 −14

CE # of evaluations # of

memoized hits Frac.

hits rate Frac.

evaluated

1342 10,658 0.89

0.33

5858 15,142 0.72

0.0028

6007 14,993 0.71

0.0029

63,769 4231

0.06 2 . 2 × 10 −16

52,298 7702

0.13 4 . 5 × 10 −14

s

M

fi

t

o

t

T

a

l

o

t

o

m

c

a

d

olution times in seconds. It can be seen that although the noisy

NIST dataset is significantly large, the proposed method can still

nd solutions in a reasonable time for a design problem that needs

o be solved once in a lifetime of the system.

Table 10 shows that the TS significantly reduces the number

f pixels (tests) needed. For each color level, the error probabili-

ies decrease slightly when the input cost of the errors increases.

he smallest error probability is obtained with infinity error cost

nd naturally requires using all the 784 tests. This is clearly the
956
ower bound on the obtainable error probability. However, one can

bserve that it is only slightly smaller than the error probability

hat can be obtained when using a significantly smaller number

f tests. Expectedly, as the grayscale levels of the images decrease,

ore pixels are required to identify the digits since the images be-

ome more distorted.

As Gruber et al. (2021) kindly made their data available to us, in

n additional experiment, we reduced the noise over their MNIST

ataset, by using distribution over the classes that are closer to the

Y. Douek-Pinkovich, I. Ben-Gal and T. Raviv European Journal of Operational Research 299 (2022) 945–959

Fig. 6. Four-color levels of a noisy image from the MNIST dataset.

Table 10

Result summary for the noisy MNIST dataset.

Error cost matrix Parameters TS

2 color-levels 4 color-levels 8 color-levels

900 Error probability 0.1751 0.1742 0.1736

Number of tests 19 11 10

of iterations until the best solution 90/90 40/90 17/90

Solution time (sec .) 80,136 157,300 80,171

1800 Error probability 0.1738 0.1735 0.1736

Number of tests 21 12 10

of iterations until the best solution 59/90 17/90 17/90

Solution time (sec .) 105,260 168,490 83,068

66/90 Error probability 0.1735 0.1735 0.1737

Number of tests 22 12 10

of iterations until the best solution 79/90 17/90 66/90

Solution time (sec .) 110,860 189,400 149,840

∞ Error probability (Lower Bound) 0.1734 0.1734 0.1734

u

e

a

T

f

b

t

i

v

t

t

i

m

t

i

b

s

c

t

o

fi

t

l

d

w

t

a

6

b

G

ndistorted ones. In this case, the lower bound on the obtainable

rror probability is less than 0.1, and the TS error probability (with

n error cost matrix of 900 on the two-color levels data) is 0.118.

hus, this experiment shows that relying on 20 pixels is enough

or a reduced error probability settings, that is close to the lower

ound.

As indicated above, note that reducing the images’ classifica-

ion error in a noisy environment by properly analyzing a lim-

ted number of pixels can be related to the growing field of ad-

ersarial learning. In particular, it was found that despite the fact

hat Deep Neural Networks (DNN) are significantly good classifiers,

hese models are not typically robust (Szegedy et al., 2013). That

s, by introducing a small perturbation to the model input, the

odel classification could change significantly. It has been shown

hat an accurate DNN model can be fooled into misclassifying typ-

cal data points by introducing a human-indistinguishable pertur-

ation of the original inputs. Therefore, securing a correct clas-
957
ification by protecting a limited number of pixels (tests in our

ase) can be a relevant application to the proposed STCP in fu-

ure research. Such a direction could also include the analysis

f fewer inputs on Generative Adversarial Network (GAN) in the

eld of computer vision for image synthesis. Related research in

his direction includes, for example, Cheng et al. (2020) that ana-

yzed different variants of GAN for image generation on the MNIST

ataset and evaluated results based on classification accuracy, as

ell as Huang et al. (2015) that proposed a learning method

hat attempts to minimize misclassification errors against the

dversary.

.3. A comparison between the STCP and the TCP

This subsection addresses one of the merits of the STCP model

y comparing its configurations to the ones obtained from the

TCP model. Recall that the GTCP does not allow classification er-

Y. Douek-Pinkovich, I. Ben-Gal and T. Raviv European Journal of Operational Research 299 (2022) 945–959

Table 11

A comparison between the STCP with three levels of error costs and the TCP.

Dataset summary GTCP testing

cost(number of tests)

Error costs matrices (positive elements) STCP solution testing cost (error

probability)

Name Tests Readings Classes �low �med �high �low �med �high

Monk 1 6 432 2 3 3 6 9 0 (0.5000) 1 (0.2500) 3 (0)

Monk 2 6 432 2 6 9 18 27 0 (0.3288) 0 (0.3288) 6 (0)

Monk 3 6 432 2 3 5 25 45 1 (0.1940) 2 (0.0276) 3 (0)

Zoo 16 101 7 5 20 80 120 3 (0.0495) 4 (0.0099) 5 (0)

Tic-tac-toe 9 958 2 8 20 120 240 0 (0.3465) 7 (0.0042) 8 (0)

Chess 36 3196 2 29 3000 6000 9000 24 (0.0009) 25 (0.0006) 29 (0)

Mushrooms 21 8124 2 4 150 300 450 2 (0.0059) 2 (0.0059) 4 (0)

Letter recognition 16 20,000 26 11 300 900 18,000 8 (0.0017) ∗ 9 (0.0004) ∗ 11 (0)

∗The reported solutions are the best found within the 24 h time limit.

r

fi

e

e

b

a

d

i

s

o

t

s

b

p

T

o

c

d

p

D

l

f

o

c

m

t

t

v

t

m

n

i

b

t

u

N

t

l

t

t

a

s

l

p

o

e

p

t

i

e

l

f

t

r

n

t

o

d

s

o

n

a

7

a

v

o

t

v

t

I

c

s

p

s

s

h

p

f

p

t

p

t

t

i

l

a

s

i

t

ors and thus, focuses on problem instances that can (with a suf-

cient number of tests) be classified deterministically. Therefore,

ach reading is mapped to a unique class with probability 1. Yet,

ven for such instances, it may be desired to allow a small proba-

ility of errors because often it is cheaper to absorb the error cost

nd save on the testing costs.

For a comparison between the two models, we adapted the

atasets used in Douek-Pinkovich et al. (2020) that are available

n the UCI repository. We set the cost of each sensor (test) to 1,

o the value of the solution of the GTCP is the minimal number

f sensors that are sufficient to map the readings deterministically

o their classes. For the input of the STCP, we used the same sen-

or costs. In addition, we created three error cost matrices denoted

y �low , �med , �high . The elements of these matrices have fixed

ositive values except the diagonal, where the elements are zeros.

he fixed values of the positive elements are selected based on the

ther parameters of the instances.

For each dataset, we estimated the prior probabilities of the

lasses and the readings based on their frequency in the input

ata. We solved the STCP using the exact method presented in this

aper and the GTCP instances using an exact method presented in

ouek-Pinkovich et al. (2020) . The experiment consists of 21 prob-

em instances based on seven different UCI datasets with three dif-

erent error cost matrices each. We limited the running time of

ur algorithm to 24 h for each instance. If the algorithm did not

onverge within this period, we report the best-found solution and

ark the instance with an asterisk (∗).

Let us note that in the experimental setting presented above,

he solutions of the GTCP are always feasible for the STCP and have

he same objective function value. Therefore, the optimal solution

alues of the GTCP can be considered as upper bounds to the op-

imal solution of the STCP.

In Table 11 , we present the result of this experiment. A sum-

ary of the datasets is presented in the four first columns. In the

ext column, we present the solution value of the GTCP, which is,

n this case, the number of selected tests. Columns 4–6 of the ta-

le show the fixed positive values in �low , �med , �high . In the last

hree columns, we present the testing cost and error probability

nder each of the three error cost matrices of the STCP model.

ote that the error probability in our setting can be obtained as

he ratio between the expected classification error cost of the so-

ution and the value of the positive elements in the error cost ma-

rices.

As expected, when the values of the fixed positive elements of

he error cost matrix are high enough, the solutions of the STCP

nd GTCP coincide because the optimal solution is to avoid clas-

ification errors completely. This outcome can be achieved by se-

ecting the same set of tests as in the GTCP. In fact, we selected the

ositive fixed values of �high to be high enough to assure such an

utcome. For lower error costs, it is more profitable to absorb some

rrors with small probabilities and to save on the tests. When the
t

958
ositive fixed values of � are low enough, it is optimal to use no

ests at all. In this case, there is only one (empty) signature that

s mapped to the class with the highest prior probability, and the

rror costs for all other classes are incurred. One can view the so-

utions for different error cost matrices as points on the efficiency

rontier of a bi-objective problem where the goal is to minimize

he testing cost and the expected error cost. Note that in the letter

ecognition instances with �low and �med , optimal solutions could

ot be achieved within the 24-hour time limit, and thus we report

here on the best-found solutions.

The results presented in Table 11 demonstrate the advantage

f using the STCP model even when the reading can be mapped

eterministically to classes. The model allows the planner to con-

ider and address the trade-off between testing cost and the risk

f errors rather than always choosing the expensive (and not

ecessarily feasible) alternative of avoiding classification errors at

ll costs.

. Conclusions

This paper introduces a practical problem whereby decisions

bout the test configuration must be made at the design phase of

arious systems and processes. The goal is to minimize the sum

f the expected error cost associated with classification errors and

he testing cost. The STCP is a generalization of the deterministic

ariant of the minimum TCP as well as the GTCP; both are known

o be intractable.

We present an exact solution method for the STCP based on an

LP with a large number of constraints that can be added as lazy

onstraints. The applicability of the solution is demonstrated using

ome instances adapted from the UCI repository. While this paper

resents the first successful exact solution method for STCP, it is

till not capable of consistently solving large instances with rea-

onable computational resources. Therefore, we also present three

euristic methods. Our numerical experiments show that the three

roposed heuristic solution methods are all effective. Specifically,

or a given budget of computational effort, the TS method ap-

ears to be superior to the CE and BGSA. However, since none of

hese methods consistently predominates the others, when com-

utational resources are available, all the three methods as well as

he lazy constraints should be applied if possible. We believe that

his situation is common since the STCP model can be typically

mplemented within an offline long-term design problem.

The STCP is related to the well-studied feature selection prob-

em, and it may be the case that similar solution methods can be

pplied to it. However, solutions to the feature selection problem

hould be evaluated jointly using a classification method to exam-

ne their predictive power and control their sensitivity to overfit-

ing and underfitting effects, which is a different objective than

hat of the STCP and left for future research.

Y. Douek-Pinkovich, I. Ben-Gal and T. Raviv European Journal of Operational Research 299 (2022) 945–959

A

s

p

R

A

B

B

C

C

D

D

D

D

D

G

G
G

H

H

H

K

L

P

R

R

R

S

S

S

W

cknowledgment

The first author of this paper was partially supported by a

cholarship from the Shlomo-Shmeltzer Institute. The research was

artially supported by the Koret’s Digital Living 2030 Grant.

eferences

lon, G. , Kroese, D. P. , Raviv, T. , & Rubinstein, R. Y. (2005). Application of the
cross-entropy method to the buffer allocation problem in a simulation-based

environment. Annals of Operations Research, 134 (1), 137–151 .
acher, M. , & Ben-Gal, I. (2017). Ensemble-Bayesian SPC: Multi-mode process mon-

itoring for novelty detection. IISE Transactions, 49 (11), 1014–1030 .

ertolazzi, P. , Felici, G. , Festa, P. , Fiscon, G. , & Weitschek, E. (2016). Integer program-
ming models for feature selection: New extensions and a randomized solution

algorithm. European Journal of Operational Research, 250 (2), 389–399 .
heng, K. , Tahir, R. , Eric, L. K. , & Li, M. (2020). An analysis of generative adversarial

networks and variants for image synthesis on MNIST dataset. Multimedia Tools
and Applications, 79 (19), 13725–13752 .

ortez, P. , Cerdeira, A. , Almeida, F. , Matos, T. , & Reis, J. (2009). Modeling wine prefer-

ences by data mining from physicochemical properties, Decision support systems
(47, pp. 547–553). Elsevier .

e Bontridder, K. M. , Halldórsson, B. V. , Halldórsson, M. M. , Hurkens, C. A. ,
Lenstra, J. K. , Ravi, R. , et al. (2003). Approximation algorithms for the test cover

problem. Mathematical Programming, 98 (1–3), 477–491 .
ouek-Pinkovich, Y., Ben-Gal, I., & Raviv, T. (2020). The generalized test collection

problem, top . Springer. https://doi.org/10.1007/s11750- 020- 00554- 1 .

ouek-Pinkovich’s drive. (2020). STCP: Cleaned and processed input data . STCP: Input
data from Yifat’s drive .

ua, D., & Graff, C. (2019). UCI machine learning repository [http://archive.ics.uci.
edu/ml]. Irvine, CA: University of California, School of Information and Com-

puter Science.
uda, R. O. , Hart, P. E. , & Stork, D. G. (2012). Pattern classification . John Wiley & Sons .
959
arey, Michael R., and David S. Johnson (1979). Computers and intractability. Vol.
174. San Francisco: freeman.

lover, F. (1989). Tabu search-part I. ORSA Journal on Computing, 1 (3), 190–206 .
ruber, N. , Ben-Gal, I. , & Steinberg, D. M. (2021). Supervised active learning algorithm

for sequential informative sampling . Unpublished manuscript .
alldórsson, B. V. , Halldórsson, M. M. , & Ravi, R. (2001). On the approximability of

the minimum test collection problem. In Proceedings of the European symposium

on algorithms (pp. 158–169). Springer .

ovland, Geir E., and Brenan J. McCarragher (1997). Dynamic sensor selection for

robotic systems. Proceedings of International Conference on Robotics and Au-
tomation. Vol. 1. IEEE

uang, R., Xu, B., Schuurmans, D., & Szepesvári, C. (2015). Learning with a strong
adversary. arXiv preprint arXiv:1511.03034 .

ammer, D. C. (1991). Sensor placement for on-orbit modal identification and corre-
lation of large space structures. Journal of Guidance, Control, and Dynamics, 14 (2),

251–259 .

eCun, Y., Cortes, C., & Burges, C. (2010). Mnist handwritten digit database, Retrieved
January 15, 2022 from http://yann.lecun.com/exdb/mnist

armar, R. (2018). Wine Quality, Retrieved January 15, 2022 from https://www.
kaggle.com/rajyellow46/wine-quality .

ashedi, E. , Nezamabadi-Pour, H. , & Saryazdi, S. (2009). GSA: A gravitational search
algorithm. Information Sciences, 179 (13), 2232–2248 .

ashedi, E. , Nezamabadi-Pour, H. , & Saryazdi, S. (2010). BGSA: Binary gravitational

search algorithm. Natural Computing, 9 (3), 727–745 .
ubinstein, R. Y. (1997). Optimization of computer simulation models with rare

events. European Journal of Operational Research, 99 (1), 89–112 .
ela Perelman, L. S. , Abbas, W. , Koutsoukos, X. , & Amin, S. (2016). Sensor placement

for fault location identification in water networks: A minimum test cover ap-
proach. Automatica, 72 , 166–176 .

lijepcevic, Sasha, and Miodrag Potkonjak (2001). Power efficient organization of

wireless sensor networks. ICC 2001. IEEE International Conference on Commu-
nications. Vol. 2.

zegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I. et al. (2013)
Intriguing properties of neural networks. arXiv preprint 1312.6199 .

endt, James B., and Miodrag Potkonjak (2011). Medical diagnostic-based sensor
selection. in the proceedings of SENSORS, 2011 IEEE.

http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0001
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0001
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0001
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0001
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0001
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0001
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0002
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0002
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0002
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0002
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0003
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0003
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0003
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0003
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0003
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0003
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0003
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0005
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0005
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0005
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0005
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0005
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0005
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0006
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0006
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0006
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0006
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0006
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0006
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0006
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0008
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0008
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0008
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0008
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0008
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0008
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0008
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0008
https://doi.org/10.1007/s11750-020-00554-1
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0010
http://archive.ics.uci.edu/ml
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0013
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0013
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0013
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0013
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0013
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0016
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0016
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0017
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0017
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0017
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0017
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0017
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0018
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0018
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0018
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0018
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0018
http://arxiv.org/abs/arXiv:1511.03034
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0021
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0021
http://yann.lecun.com/exdb/mnist
https://www.kaggle.com/rajyellow46/wine-quality
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0026
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0027
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0027
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0027
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0027
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0027
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0028
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0028
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0030
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0030
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0030
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0030
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0030
http://refhub.elsevier.com/S0377-2217(21)01099-7/sbref0030
http://arxiv.org/abs/arXiv:1312.6199

	The stochastic test collection problem: Models, exact and heuristic solution approaches
	1 Introduction
	2 Notation and problem definition
	3 Motivating example
	4 Integer linear programming formulation and solution method
	5 Metaheuristics solution methods to the STCP
	5.1 The TS method
	5.2 The CE method
	5.3 The binary gravitational search algorithm (BGSA) method
	5.4 Memoization

	6 Experimental results
	6.1 A comparison between the exact and heuristics methods
	6.2 Probabilistic dataset
	6.3 A comparison between the STCP and the TCP

	7 Conclusions
	Acknowledgment
	References

