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This article suggests a new Statistical Process Control (SPC) approach for data-rich environments. The proposed approach is based on
the theory of fractal geometry. In particular, a monitoring scheme is developed that is based on fractal representation of the monitored
data at each stage to account for online changes in monitored processes. The proposed fractal-SPC enables a dynamic inspection of
non-linear and state-dependent processes with a discrete and finite state space. It is aimed for use with both univariate and multivariate
data. The SPC is accomplished by applying an iterated function system to represent a process as a fractal and exploiting the fractal
dimension as an important monitoring attribute. It is shown that data patterns can be transformed into representing fractals in a
manner that preserves their reference (in control) correlations and dependencies. The fractal statistics can then be used for anomaly
detection, pattern analysis, and root cause analysis. Numerical examples and comparisons to conventional SPC methods are given.
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1. Introduction

In recent years, developments in storage capacity, sensor
usage, and information technology have created a grow-
ing need for new monitoring techniques that can cope
with complex and data-rich environments. Predictive an-
alytics, business intelligence, business activity monitoring,
and complex event processing are few examples of new
business methodologies that require the monitoring of a
large amount of data in their implementation (Ren et al.,
2006; Wasserkrug et al., 2008). In order to apply these busi-
ness methodologies properly, one needs to rely on monitor-
ing techniques that, following the taxonomy in Ben-Gal
et al. (2003), can be classified as model-generic (nonpara-
metric) tools for processing dependent data with minimum
a priori assumptions. Model-generic methods, as opposed
to traditional model-specific methods, do not rely on a
priori assumptions about the monitored variable, such as
an underlying analytical distribution (e.g., Shewhart charts
for independent data) or a closed-form expression (e.g.,
ARIMA or CUSUM for more complex dependent data).

Considerable effort has been devoted to developing
methods for monitoring processes with dependent (auto-
correlated) data. Most of these model-specific methods
for autocorrelated data were based on time series models

∗Corresponding author

(e.g., Box and Jenkins, 1976; Alwan and Roberts, 1988;
Harris and Ross, 1991; Montgomery and Mastrangelo,
1991; Runger and Willemain, 1995; Runger et al., 1995;
Apley and Shi, 1999; Lu and Reynolds, 1999a, 1999b). The
majority of them rely on the implicit, yet generally unguar-
anteed, assumption that time series can closely model the
monitored processes. Ben-Gal and Singer (2004) showed
that conventional Statistical Process Control (SPC) meth-
ods, including those that were designed to handle auto-
correlated data, usually represent a linear dependence be-
tween observations; i.e., referring to dependencies between
observations that can be modeled by an ARIMA type of
model. Accordingly, these conventional methods are not
suited to monitoring state-dependent non-linear processes.
Thus, referring to processes where the probability distri-
bution of the next value is strongly conditional on pre-
viously observed values and can change significantly de-
pending on the conditioning values. Markov processes are
good examples of such state-dependent processes. The au-
thors particularly refer to industrial environments, where
the process parameters are adjusted by feedback control
policies based on past observations. English et al. (2001)
and Singer and Ben-Gal (2007) further emphasized that
feedback policies, as well as more complicated control
theory techniques, often create non-linear dynamics of
the controlled observations. They provided examples such
as the recipe settings of some wafers in semiconductor
processes, which are adjusted by using measurements of
previously produced wafers, color adjustments between
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fabric batches (Shore, 1992), and management tamper-
ing with non-manufacturing environments (Broadman and
Broadman, 1990).

Many of the above-mentioned state-dependent pro-
cesses, certainly the Markovian processes, take values from
a finite and discrete set of attributes. The need to develop
control charts for discrete processes with a finite state
space has been recognized in the literature, and various
methods have been proposed to address it. Shore (2000)
provided examples of control charts for attributes, such
as the use of arcsin transformation for binomial data; the
use of the Q-chart for binomial and Poisson parameters
(Quesenberry, 1991a, 1991b); and the use of the g-chart and
the h-chart based on the geometric distribution (Kaminski
et al., 1992). According to Shore (1998), due to the inef-
fectiveness of distribution-identification procedures, these
types of methods are seldom used. Moreover, these are not
model-generic methods, since each distribution requires
a special treatment. Shore (2000) suggested a method
based on fitting a distribution that preserves the first three
moments of the chosen attribute statistic. Still, his ap-
proach requires an a priori fitting of the process underlying
distribution.

A list of differences between the characteristics of tra-
ditional SPC and the ones required in a modern data-rich
environment were compiled from the presented literature
survey.

1. Traditional SPC is often based on model-specific as-
sumptions, whereas modern environments that involve
many types of data sources often require a model-generic
approach.

2. Traditional SPC methods are not designed to cope with
state-dependent and non-linear dynamics of the obser-
vations that may result from feedback policies, as well
as from complicated control implementations. Modern
SPC, on the other hand, often require monitoring com-
plex (non-linear) patterns of univariate or multivariate
data.

3. Traditional SPC tools are tuned to detect anomalies/
outliers in a process, yet many of them do not allow the
identification of assignable causes that may impact the
process in terms of detecting patterns and relationships
among the system attributes.

4. Traditional control charts were designed to be executed
on a paper sheet (even if nowadays it is presented on a
computer screen), whereas modern monitoring requires
more advanced monitoring features such as zoom-in,
coloring codes, and visual inspection of complex struc-
tures (e.g., via fractals in our case). These advanced fea-
tures can be used for root cause analysis tasks.

Recent research has tried to address some of these gaps.
Notable contributions have been made by Alwan et al.
(1998), Castagliola and Tsung (2005), Cheng and Thaga
(2005), Perry and Pignatiello (2006), Ren et al. (2006), and
Kim et al. (2007). Mason et al. (1995) and Runger et al.

(1996), for example, proposed methods for assignable cause
identification that can be linked with Hotelling’s T2 con-
trol chart. Ben-Gal et al. (2003) proposed a Context-based
SPC (CSPC), as a model-generic framework that can deal
with autocorrelated non-linear state-dependent processes.
The CSPC implements a variable-order Markov model to
represent the monitored process, without relying on a pri-
ori knowledge about the process parameters and without
assuming a closed-form time series model.

In this article we follow that line of work and propose the
fractal-SPC method. The fractal-SPC is a model-generic
tool for monitoring (non-linear) dependent and indepen-
dent discrete processes with a finite state space. It is aimed
at monitoring both univariate and multivariate data, par-
ticularly in data-rich environments. Moreover, the method
is designed to detect abnormal patterns of varying lengths.
An example for such applications could be the analysis of
vehicle warranty claims data history (as applied to General
Motors’ data provided by their research labs located in
Bangalore, India) or identification of faulty operation
sequences in an assemble-to-order environment (Ruschin-
Rimini et al., 2012). Note that although the suggested
method considers discrete processes, it can be applied to
processes consisting of continuous numeric data that are
reduced to a sufficiently discrete set of interesting ranges
(Rokach et al., 2008), as we show by several numerical
examples.

There are several intuitive reasons why we use fractals
for SPC applications. Fractals are naturally tuned to rep-
resent a large number of data patterns with complex de-
pendence structures. They are known for their ability to
visually represent complex large data sets. Their construc-
tion does not require a priori assumptions regarding the
dependencies within the patterns or the data distribution.
And, as seen in the next sections, various data patterns
can be mapped by the suggested iterated function system
to representing fractals, regardless of their distribution or
dependency structure. In order to dynamically and auto-
matically monitor the representing fractals, we use fractal
dimension statistics. We claim, and later demonstrate, that
fractal dimension statistics can be successfully applied to
the inspection and analysis of data-rich environments. We
then compare the performance of the fractal-SPC method
with that of traditional SPC methods as well as to special-
purpose methods such as the CSPC method and multi-
attribute control charts (Woodall, 1997; Jolayemi, 1999)
and demonstrate its advantages in several examples.

The rest of the article is organized as follows: Section 2
introduces the theoretical background of Iterated Function
System (IFS) and fractal dimensions. Section 3 presents the
proposed algorithmic framework and illustrates it by an
example. Section 4 presents an experimental study, demon-
strating cases in which the suggested SPC overcomes limita-
tions of both traditional and special-purpose SPC methods
in detecting process anomalies. Section 5 gives some con-
clusions and suggests future research directions.
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2. Theoretical background

2.1. IFS

The IFS concept was originally developed as a method to
construct fractals, as discussed in detail in Barnsley (1988)
and reviewed in Ruschin-Rimini et al. (2012). IFS is used
as an iterative contractive mapping technique that repre-
sents either a univariate or multivariate process as vectors
in �2, as shown in the Appendix. In particular, an IFS
consists of a complete metric space (X, d) and a finite set
of contraction mappings wi : X → X, with respective con-
tractivity factors si , with index i = 1, 2, . . . , m, which is
associated with each category (possible value of a random
variable) in our case. A mapping wi (x) is called contractive
in (X,d), if d(wi (y), wi (z)) ≤ si × d(y, z) ∀y, z ∈ X for some
contractivity factor 0 < si < 1, where y = (y1, y2, . . . , yD)
and z = (z1, z2, . . . , zD) are vectors in �D. This type of
transformation of a sequence is also known as the chaos
game representation (Barnsley, 1988). It produces a self-
similar fractal-formed graph and has two main properties.

1. It provides a unique representation of a sequence and
can be seen as the fingerprint of a sequence. Every point
on the graph that is obtained by IFS uniquely represents
all of the sequence history up to this data point; hence, an
IFS representation comprises all information regarding
all subsequences existing in a sequence.

2. The source of the sequence can be fully inversed from
the graph; hence, there is no loss of information when
needed for further analyses.

There exist several applications of IFS such as image
compression (Barnsley and Hurd, 1993), texture synthesis
(Chen and Chen, 2003), and genome sequence analysis.

The role of IFS in the context of SPC is to transform
either a univariate or a multivariate process into a two-
dimensional fractal. Since we consider processes with mul-
tiple categories, we suggest the use of an IFS of a circle
transformation, based on the IFS developed by Weiss and
Goeb (2008; see also Weiss (2008)). This unique IFS trans-
formation, which is detailed in the next section, provides the
flexibility of analyzing processes consisting of any number
of discrete categories, while keeping representation in �2

in order to enable visual analysis of the monitored process
via a computer screen. Note that the procedure of trans-
forming univariate or multivariate processes into a visual
two-dimensional fractal via IFS is a simple iterative proce-
dure with linear complexity. The proposed visual analysis
procedure includes visual detection of process in-control
and out-of-control patterns, which can lead to the identifi-
cation of assignable causes.

As an example, Fig. 1(a) illustrates the results of imple-
menting an IFS of circle transformation on either a uni-
variate process with nine possible categories 0, 1, . . . , 8
(m = 9) or a multivariate process of any dimension, each
variable consisting of up to nine values. The interpretation

Fig. 1. The result of transforming a monitored process consist-
ing of nine possible categories via IFS of circle transformation:
(a) addresses of points for first resolution; (b) addresses of points
after zooming into circle address 1; and (c) addresses of points
after zooming into circle address 01 (color figure provided online).

of the fractal graph is based on the concept of addresses
of points on a fractal (Barnsley, 1988) and is used for the
purpose of analyzing the monitored process. It is based on
an important attribute of fractals known as self-similarity.
Figures 1(b) and 1(c) illustrate the self-similarity attribute
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of a fractal by zooming into the fractal in different areas
that are tagged by their address.

The figures show the addresses of points on this specific
circle-formed fractal, representing a certain monitored
process, as previously defined. The following interpretation
of the figure is based on Weiss (2008) and Weiss and Goeb
(2008). Each circle in Fig. 1(a) is associated with one
category (realization) out of the nine possible categories
in the monitored process. Zooming into circle of address 1
(marked by a black square in Fig. 1(a)) leads to Fig. 1(b).
Every circle in Fig. 1(b) represents one of the following
two-length subsequences: 01, 11, 21, 31, 41, 51, 61, 71, and
81. Then, zooming into circle address 01 results in Fig.
1(c). Every circle in Fig. 1(c) represents one of the following
three-length subsequences: 001, 101, 201, 301, 401, 501,
601, 701, 801, etc. The density of points in each circle in-
dicates the frequency level of its represented sub-sequence.
In order to visually identify the density level of data points
in the circles, we later on provide a color code function (see
Section 3.4 and Figs. 6 to 9). Such a color code enables a
visual distinction between rare and frequent sub-sequences
(see also Ruschin-Rimini at al. (2012)). Nevertheless, even
without the proposed color code, one can visually identify
some missing patterns. For example, one can see that
zooming into circle address 701 results in empty circles, rep-
resenting sub-sequences that do not exist in the monitored
process such as 5701, 6701, 7701, and 8710. As illustrated,
the fractal graph holds information regarding the under-
lying distributions and patterns of the monitored process.
Hence, a change point in the monitored process would
impact the fractal graph and therefore would be detected
by fractal measures, as we show in the following sections.

To summarize, since the addresses of points on the fractal
can represent process sub-sequences and patterns, they can
enable the detection of frequent, rare, and missing patterns
of various lengths in both in-control and out-of-control
processes. This ability turns the root cause analysis task
into a visual zoom-in and zoom-out routine; it supports
the task of assignable cause identification and provides the
user insights and intuition about the monitored process.

2.2. The fractal dimension

The fractal dimension is a statistical quantity that mea-
sures the number of dimensions “filled” by a fractal. There
are several theoretical definitions of the fractal dimension.
We rely on some of the most commonly used definitions,
namely, the box counting dimension, the information di-
mension, and the correlation dimension, and use them as
statistics for the proposed fractal-SPC. We demonstrate
that a combination of all three fractal dimension types can
provide a monitoring scheme that integrates them into a
single anomaly-detection and decision-making module. It
is important to note that the functionality of fractal di-
mension computation is offered by many standard soft-
ware packages (e.g., BENOIT for MATLAB and Wolfarm

Mathematica), most of them address the three types of
fractal dimension chosen to monitor the statistics of the
suggested fractal-SPC. Such software tools significantly in-
creases the applicability of the suggested method.

Definitions of the fractal dimension types are now
presented.

The box counting dimension: For a set of N points con-
structing a fractal, each of dimension D, one divides the
space into grid cells of side size r (hyper-cubes of dimen-
sion D). N(r) denotes the number of cells occupied by the
points constructing the fractal. The box counting fractal
dimension is then calculated as follows:

Dbc = − lim
r→0

log N(r )
log r

. (1)

In order to relate the properties of the box counting dimen-
sion to the suggested fractal-SPC, we refer the interested
reader to the studies of the Asymptotic Equipartition Prop-
erty (AEP) and the properties of the typical set, as discussed
in Cover and Thomas (1991). As explained in Cover and
Thomas (1991), the EAP property is a direct consequence
of the weak law of large numbers in information theory. The
AEP states that −1/n log p(X1, X2, . . . , Xn) is close to the
entropy H, whereX1, X2, . . . , Xn are independent and iden-
tically distributed random variables, and p(X1, X2, . . . , Xn)
is the probability of the sequenceX1, X2, . . . , Xn. This ob-
servation enables the division of the set of all sequences into
two sets: the typical set, where the sample entropy is close
to the true entropy, and the non-typical set, which contains
the other sequences.

We suggest that the box counting dimension measures
the number of elements in the typical set determined by the
original (in-control) process. Any change in this property
is detected by the box counting dimension statistic.

Dimension of information: For a set of N points construct-
ing a fractal, each of dimension D, one divides the space
into grid cells of side size r (hyper-cubes of dimension D).
pi (r ) is the frequency with which points fall into the ith cell.
The information dimension is obtained as follows:

Dinf = lim
r→0

∑
i pi (r ) log pi (r )

log r
. (2)

In the context of the suggested fractal-SPC method, the
dimension of information detects a change in the entropy
measure for all sub-sequences within the original process,
as will be detailed in Sections 3.2 and 3.4.

Dimension of correlation: For a set of N points construct-
ing a fractal, the dimension of correlation is defined as fol-
lows (Grassberger, 1983; Grassberger and Procaccia, 1983):

Dcor = − lim
ε→0

log C(ε)
log ε

, (3)

C(ε) = lim
N→∞

N−2 × {number of pairs (xi , xj ),

i 
= j = 1, . . . , N; where |xi − xj | < ε},
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where (xi , xj ) denotes any existing pair of points construct-
ing the fractal.

In the context of the suggested fractal-SPC method, the
correlation dimension measures the probability for the oc-
currence of correlated sub-sequences in the process.

3. Suggested algorithmic framework:
the fractal-SPC approach

We suggest the following framework in order to establish
a fractal-based SPC. The proposed method assumes that
the process measures have nominal or discrete values and
consists of four stages; see Fig. 2.

1. Fractal mapping: An IFS scheme with circle transfor-
mation is applied to historical in-control data to obtain
a fractal representation of the reference process. The
fractal graph represents the reoccurring patterns in the
process. Its interpretation is based on the concept of
addresses of points on fractals, as discussed in Section
3.4.

2. Selection of a fractal-based statistic: Various types of
fractal dimensions can be used as monitoring statistics
of the process. We mainly focus on the information di-
mension out of the three described previously. Control
limits are derived from fractal dimension measures ei-
ther numerically or theoretically.

3. Online process monitoring: In the monitoring stage, each
process sample is transformed into points in the fractal
graph. Fractal dimension statistics are recalculated for
the sampled data. Process deviation is indicated by out-
of-control signals.

4. Visual root cause analysis: Combined analyses of the
fractal graph as well as the various fractal dimen-
sion statistics are used for the purpose of identifying
assignable causes that may impact the process.

The following subsections describe each of the above
phases. A running example is given in Section 3.5 for illus-
tration purposes.

3.1. Fractal mapping

We utilize an IFS with circle transformation, similar to the
IFS proposed by Weiss and Goeb (2008; see also Weiss
(2008)). This unique IFS transformation provides the flex-

ibility to analyze processes consisting of any number of
discrete categories while keeping the representation in �2

to enable visual analysis on a computer screen. Color codes
can be used to create better interpretations by the user.

As explained in Weiss (2008) and Weiss and Goeb
(2008), the following is a description of the suggested
IFS transformation for a process consisting of m discrete
categories:

wi

([
x1
x2

])
=

[
α 0
0 α

] [
x1
x2

]
+

[
βi
δi

]
for i = 1, 2, . . . , m,

where

βi = cos
(

i × 2π

m

)
for i = 1, 2, . . . , m,

δi = sin
(

i × 2π

m

)
for i = 1, 2, . . . , m.

(4)

In order to ensure that the fractal is totally disconnected
(Barnsley, 1988)—i.e., to guarantee that every point on the
fractal graph has a unique address—it is required that α

satisfies the following inequality:
α

1 − α
< sin

(π

m

)
, (5)

as proved in Ruschin Rimini et al. (2010).
The following steps are used to apply an IFS with circle

transformation to a sequence of length N consisting of m
discrete categories, as explained in Weiss (2008) and Weiss
and Goeb (2008; based on the chaos algorithm of Barnsley
(1988)).

1. Associate and fix each category (a possible variable re-
alization) with one of the contractive mappings wi (x),
i ∈ {1, 2, . . . , m}.

2. Accordingly, represent a sequence of length N consist-
ing of m category types by a sequence of N correspond-
ing contractive mappings {wi(n+1)(xn) : i ∈ {1, 2, . . . , m}
and n = 1,2, . . . ,N}. wi(n+1)(xn) indicates that variable
xn is mapped by the contractive mapping defined by
variable xn+1. For simplicity we omit one subscript and
denote the mapping by wi(xn). To start the process, the
initial point x(0) is selected arbitrarily as a point in �2.

3. Recursively apply each of the N contractive mappings
wi (x0), wi (x1), . . . , wi (xN−1) in their sequence order; i.e.,
apply contractive mapping wi (x0) to obtain point x(1),
then apply contractive mapping wi (x1) to obtain x(2), etc.

4. Root 
Cause 

Analysis

1. Fractal 
Mapping

2. Fractal-
Based Statistic

3. Online 
Monitoring

Fig. 2. The process overview.
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In general, x(n) = wi (x(n−1)) for n = 1, 2, 3, . . . , N and
i ∈ {1, 2, 3, . . . , m}. The mapping results in a sequence
of N points in �2 {x(n) : n = 1, 2, 3, . . . , N}. A running
illustrative example for this procedure is given in the
Appendix.

The presented procedure produces a circle-formed fractal
graph that enables visual representation and analysis of any
sequence with finite category (symbol) types. The number
of process category types determines m. For example, if
the original sequence of m category types is uniformly ran-
dom and long enough, this IFS transformation results in a
graph of self-similar fractals consisting of m equally filled
and disconnected circles, and each circle at each resolution
also consists of m circles. If the sequence is not uniformly
random, the graph will reveal its underlying correlations
by varying densities of points in different zones. We apply
the IFS of circle transformation both to in-control process
data and later to sampled data during the monitoring stage.
An explanation of the minimum required initial sequence
length N is given is Section 3.2.

For the purpose of illustration, a running example is
introduced in Section 3.5.

3.2. Selection of fractal-based statistic

Fractals can be characterized by their fractal dimension
statistic. As previously mentioned, there are many theoret-
ical definitions of the fractal dimension.

Once an in-control process is mapped into a fractal, we
suggest utilizing the various types of fractal dimensions
as monitoring statistics. In particular, we chose to concen-
trate on three of the most commonly used fractal dimension
types: the box counting dimension, the dimension of infor-
mation, and the dimension of correlation.

The fractal dimensions of the transformed in-control
process can be implemented as indicated next.

3.2.1. Fractal dimension types implementations
Implementation of the box counting dimension (Dbc): In or-
der to implement the box counting dimension computation
by the suggested method of circle transformation, we refer
to Equation (1). We suggest selecting r as the radius of a
circle. Moreover, one knows the exact locations and radii of
the circles created by the circle transformation algorithm:
the circle-formed fractal, which represents a transformed
sequence of m categories, consists of m circles of radius α

on the first resolution, m2 circles of radius α2 on the second
resolution, etc. Generally, it consists of mk circles of radius
αk on resolution k. Thus, we count the number of circles in
resolution k that are occupied by one point at least, out of
a total of mk existing circles. We denote the number of oc-
cupied circles byN(αk). We then calculate the box counting
dimension based on Equation (1) with r = αk.

According to the proposed mapping method, every cir-
cle of radius αk represents a specific k-length sub-sequence

of the original process. Consequently, changes in the value
of the box counting dimension take place each time that a
new circle is occupied; i.e., when an unknown k-length sub-
sequence appears in the process. It is reasonable that Dbc
would be particularly appealing for detecting outliers such
as extreme-value anomalies and minimizing their related
errors (of both types). On the other hand, the Dbc calcula-
tion is invariant to the number of data points in each circle.
Thus, it is not sensitive to changes in the distribution of
data points; hence, it may suffer from Type 2 errors in such
cases.

Implementation of the dimension of information (Dinf):
Following the selection of r as the radius of a kth resolution
circle, let us denote the frequency with which data points
fall into the ith circle of radius αk by pi (αk). Recall that there
are a total of mk circles of radius αk at resolution k. Thus,
pi (αk) represents the frequency of a specific sub-sequence
of length k indexed by i within the original process. The
information dimension is obtained as follows (derived from
Equation (2)):

Dinf = lim
αk→0

∑mk

i=1 pi (αk) log pi (αk)
log αk

. (6)

Note that the numerator
∑mk

i=1 pi (αk) log pi (αk) reflects
Shannon’s entropy measure for all k-length sub-sequences
in the monitored process. Since the information dimen-
sion changes when shifts in the entropy of k-length sub-
sequences occur in a process, it is reasonable that Dinf is
sensitive to distribution-related errors of both types. A de-
tailed analytical study of the box counting dimension in the
context of the fractal-SPC can be found in Ruschin-Rimini
et al. (2011a).

Implementation of the dimension of correlation (Dcor):
Equation (3) is used to compute the correlation dimension.
We select ε as the radius of a circle at resolution k, ε = αk.
The correlation dimension Dcor measures a weighted fre-
quency that two points chosen at random are located within
a radius distance of each other; i.e., it increases with the cor-
relation of k-length sub-sequences. Consequently, Dcor can
be used to find correlation-related anomalies in the data. A
detailed analytical study of the correlation dimension in the
context of the fractal-SPC can be found in Ruschin-Rimini
et al. (2011a).

In this work we use Dinf as our main monitoring statistic;
however, we exploit both Dbc and Dcor for the purpose
of root cause analysis, when an out-of-control signal is
triggered (see the example in Section 3.5). Such signals
rely on a priori control limits for the fractal dimension
statistics that can be obtained numerically by using the in-
control data. In the next section, we provide an analytical
study of the dimension of information in the context of the
suggested fractal-SPC in order to establish its analytical
control limits.



Fractal geometry applied to statistical process control 379

3.2.2. Distribution and control limits of the information
dimension monitoring statistic: an analytical study

In order to determine the distribution of the proposed mon-
itoring statistic, as well as to obtain an estimation of the
control limits, we refer to the studies of the natural esti-
mator of Shannon’s entropy, denoted by Ĥ (see Miller and
Madow (1954) and Basarin (1959)). The statistical problem
addressed is of testing and using an entropy-based model
when the only data available are from comparatively small
samples. Luce (1955, pp. 45–46) phrases the problem as
follows:

Let us suppose that a distribution pi governs the selections
of the n category types
1, 2, . . ., n and suppose that a sample of N indepen-
dent observations of selections yields Ni cases of alter-
native i. The true entropy is H = −∑n

i=1 pi log pi while
Ĥ = −∑n

i=1 (Ni/N) log(Ni/N) is the estimator of the en-
tropy obtained by replacing each pi by its maximum likeli-
hood estimatorNi/N.

Miller and Madow (1954) have shown that if the pi values
are not all equal, the normalized term

√
N(H − Ĥ), hence-

forth denoted as H̃, has a normal limiting distribution with
mean zero, E(H̃) = 0, and variance defined by:

σ 2(H̃) =
n∑

i=1

pi [log pi + H]2 (7)

The authors have also shown that if pi = 1/n for ev-
ery i, then (2N/ log �)(H − Ĥ) follows a chi-square limit-
ing distribution with (n − 1) degrees of freedom. For the
proposed fractal-SPC, the number of degrees of freedom
is given by (mk − 1), where m denotes the number of cat-
egory types and k represents the resolution of the circles
or, alternatively, the lengths of the selected sub-sequences.
In frequent cases, (mk − 1) equals a large enough number.
Consequently, the monitoring statistic can be assumed to
be normally distributed even in the case of a uniform dis-
tribution when pi = 1/mk, as the chi-square distribution
converges to a normal distribution when the number of
degrees of freedom is large.

Miller and Madow (1954) also addressed the case of
utilizing small samples. According to their studies, if small
samples are used to estimate the entropy, there is a bias that
can be corrected by the following equation:

H = E(Ĥ) + (log �)

[
n − 1
2N

− 1
12N2

+ 1
12N2

n∑
i=1

1
p(i )

]

+ 0
(

1
N3

)
, (8)

where E(Ĥ) is the expected value of H and 0(1/N3) denotes
the order of the complexity.

As the dimension of the information is approximately
normally and independently distributed for a long enough
sequence, conventional SPC charts can be directly applied

to it for a specified Type I error rate. The following proce-
dure is used to derive the control limits.

1. Compute the information dimension of the fractal
produced by mapping the in-control process data.
The estimated fractal dimension is expressed by D̂1 =
Ĥ(αk)/log αk.

2. For small samples, use Equation (8) to correct the bias
of the estimated entropy.

3. Apply Equation (6) to find the variance of H̃(αk). Mul-
tiply the result by 1/N(log α2k) so as to derive the fractal
dimension statistic variance, denoted by σ 2(D̂1) (since
D̂1 = Ĥ(αk)/log αk and H̃(αk) = √

N(H(αk) − Ĥ(αk)).
4. Specify the required Type I error rate. Since both σ 2(D̂1)

and E(D̂1) were computed in previous steps, control
limits can be easily determined and conventional SPC
charts can be directly applied by E(D̂1) ± Zα/2 × σ (D̂1).

We suggest that the control limits estimator σ 2(D̂1) has the
following boundaries.

An upper bound: The maximum value of σ 2(H̃)max is
obtained when the underlying process has one deterministic
pattern; i.e., the probability of the occurrence of one type
of k-length sub-sequences is one, whereas the probability
of the occurrences of the rest of the k-length sub-sequences
is zero. In such a case the entropy of the underlying process
H equals zero and one obtains:

σ 2(D̂1) = 1
N(log α2k)

n∑
i=1

pi (log pi + H)2. (9)

The variance σ 2(D̂1) is maximized in the case of a max-
imum difference between the process’s true entropy and
the estimated entropy. According to the maximum entropy
principle, this is achieved in the case that the estimated en-
tropy is of a uniform distribution. In this case, it follows
from Equation (9) that:

σ 2(D̂1)max = log m2k

N(log α2k)
(since H= 0).

A lower bound: The minimal value of σ 2(H̃)max is ob-
tained when the underlying process has a uniform distribu-
tion; i.e., P(i) = 1/n for all i. In this case, according to Har-
ris (1975), σ 2(H̃)min = ∑n

i=1 pi [log pi + H]2 = 0. We can
derive from Equation (9) that in this case σ 2(D̂1)min = 0.

In order to determine the sequence length N—i.e., the
number of data points required to construct the in-control
fractal graph—we refer to the basic sampling rule suggested
by Cochran (1952). This principle requires that at least 80%
of the sampling bins (corresponding in this case to the occu-
pied circles at a predetermined fractal resolution k) contain
at least four data points. Experiments in which control lim-
its are established both numerically and analytically are
given in Sections 3.5 and 4.2.
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3.3. Online process monitoring

During Phase I, the fractal graph for in-control data is
generated. Moreover, the monitoring statistics, in the form
of three types of fractal dimension, are computed for in-
control data, as well as their analytical control limits, as
explained in the previous section and in Ruschin-Rimini
et al. (2011a). During Phase II, the monitoring stage, each
monitored sample is transformed online into the fractal
graph that was generated in Phase I. The fractal dimen-
sions are recalculated whenever a new process sample is
added. Process deviations are indicated by out-of-control
signals, according to the fractal dimension measures and
the control limits established in Phase I. The running ex-
ample in Section 3.5 introduces histograms of the fractal
dimension statistic, before and after a change point, as well
as a fractal dimension control chart, with its control limits
computed both numerically and analytically

3.4. Visual root cause analysis

As explained in Ruschin-Rimini et al. (2012) and Ruschin-
Rimini and Maimon (2010), the circle-formed fractal graph
can be visually interpreted by utilizing the address of points
on a fractal when adding a color code function that colors
data points of circles containing a relatively high density
of points. A circle of high density is defined by a certain
percentage threshold. The location of every point on the
fractal graph remains constant during the whole sequence
information stage and by that differs from traditional SPC
charts. This enables us to translate areas on the fractal
graph, such as empty areas, areas of relatively low den-
sity, and areas of relatively high density, into missing sub-
sequences, rare sub-sequences, and frequent sub-sequences,
respectively.

The IFS of circle transformation results in a graph of
a self-similar fractal consisting of m disconnected circles,
where each circle at each resolution is also comprised of
m smaller circles. Since we associate every category with
a certain contractive mapping, the address of every circle
represents a category type (a process symbol). More specif-
ically, category i, which is associated with mappingwi (x), is
the address of the circle centered at[

βi
δi

]
(see Section 3.1 and Equation (4)). The address length, and
thus the length of the monitored sub-sequences, is deter-
mined by the graph resolution. The addresses of the first,
second, and third resolutions for the example described in
the following section are displayed in Figs. 6 to 8. The pro-
cess samples consist of m = 9 categories. Defining the ad-
dresses of points on the fractal graph enables us to suggest
the following algorithm for visual detection of in-control
and out-of-control process patterns.

Pattern detection algorithm

1. Set k = 1 as the resolution-level parameter.
2. Detect a circle of relatively high density on the kth res-

olution of the fractal graph; i.e., one of the m circles
that contains a high percentage of points. A circle of
relatively high density is defined by a certain threshold
(see remark below) and can be visually detected since it
consists of data points that are colored according to the
predefined color code (see Figs. 6 to 9).

3. Drill into the relevant circle and set k = k + 1.
4. Repeat Steps 2 and 3 until the relevant circle contains

points that are almost uniformly distributed between
approximately m circles; i.e., with no circle of relatively
high density. This is where the sequence pattern ends.

5. Compute the address of the relevant circle location in
order to recover the process pattern.

6. Repeat steps 1 to 5 for a different circle of relatively high
density in order to reveal another process pattern.

7. End after exploring all circles of relatively high density;
i.e., after all process patterns have been revealed.

In order to improve the process of visual pattern detection,
we use color codes to mark data points in circles of relatively
high density. For illustration, see the running example in
the following section. Nevertheless, it is important to note
that as the number of categories in the process increases,
interpretation of the graph becomes more challenging. Im-
provement of the visual representation can be of benefit
in such cases and can be leveraged by new graphical tech-
niques, such as focus and context techniques (Keim, 2002)
or three-dimensional manipulations that could facilitate
the users’ interpretation.

Moreover, note that the threshold in Step 2 is not defined
rigorously and might depend on the required sensitivity
level for the triggered alerts, on the available in-control data,
and on the types of possible process deviations. As a simple
rule of thumb we note that if historical in-control data are
available, the user can plot numerical histograms of circle
densities at various k resolutions and set the correspond-
ing thresholds by their relative (say the 90th) percentiles. In
cases where there is no available information on the under-
lying in-control process, the user can rely on the maximum
entropy rule. He (she) can assume that the probability of
each category (variable realization) out of m possible cat-
egories is 1/m; thus, the expected entropy for each type
of k-length sub-sequence is k log m. Accordingly, a rough
starting point for a default threshold value is (k/2) log m.
However, since deviation types cannot be predetermined,
it is proposed that this threshold value will be subject to
changes and part of the visual root cause analysis proce-
dure. A thorough study of the required threshold value, as a
function of the in-control data type and the type of process
deviation, should be further researched.
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3.5. Illustrative example: pattern reoccurring

In this example we simulate a gradually deteriorating pro-
cess in a data-rich environment. The process is represented
by an ordered sequence of symbols that can represent obser-
vations measured in a multivariate process (each variable
consisting of nine categories in this illustrative example):
the monitoring of activities on a machine through a con-
tinuous stream of audit events recorded in log files (Ye
et al., 2001; Ye et al., 2003; Kim et al., 2007), string of sen-
sors’ input, machine failures history, customers purchase
history, and production processes in an assemble-to-order
environment (Ruschin-Rimini et al., 2012).

In this illustrative case study, each sequence of N = 15 000
data points was generated from a uniform distribution with
an alphabet of m = 9 symbols. The random sequence rep-
resented an unstructured noise, with the pattern 8, 0, 4
being inserted randomly yet approximately every 15 data
points. An out-of-control process was obtained by reverting
the order of the reoccurring pattern to 4, 0, 8 in approxi-
mately 5% of the cases. Pattern-reoccurring processes can
be used to represent machine types, part types, or produc-
tion sequencing, as shown in Ruschin-Rimini et al. (2012).
In that paper the categories represented operation types,
and sequences represented optional production routes. For
example, consider the production route 31452. It consists
of five operations types, starting with operation 3 contin-
uing with operation 1, and so on up to the last operation
2 in that manufacturing process. The fractal-SPC proto-
type was coded in MATLAB. As mentioned in Section 3.3,
during the monitoring stage, each sample is mapped online
into the fractal graph. The fractal dimension is recalculated
whenever a new process sample is added. Process deviations
are indicated by out-of-control signals. Figure 3 presents a
histogram of the information dimension values, before and

Fig. 3. Histograms of fractal dimension values for both pattern-
reoccurring samples without deviation (on the left) and for
pattern-reoccurring samples with ∼5% deviation (on the right)
(color figure provided online).

Fig. 4. A control chart of the fractal information dimension for
the pattern-reoccurring process samples without deviation (sam-
ples 1 to 50) and with deviation of ∼5% (samples 51 to 60).
Numerically derived control limits are marked with continuous
lines. Analytically derived control limits are marked with dashed
lines (color figure provided online).

after the process’s change point. Dimension measures for
in-control samples are marked on the left-hand side and di-
mension measures for out-of-control samples are marked
on the right-hand side. Note the significant change in the
information dimension statistic, making it appealing for
the monitoring of such process.

Figure 4 presents the control chart for the informa-
tion dimension statistic with control limits adjusted for
α = 0.0027. The information dimension values are marked
blue. The limits that were obtained numerically are marked
with continuous lines, whereas control limits based on the
analytical computation are marked with dashed lines. The
numerically drived control limits were achieved as follows:
the monitoring statistic (i.e., the fractal dimension) of in-
control data was computed for a large number of samples.
Since we have demonstrated (see Section 3.2.2) that the
monitoring statistic is approximately normally and inde-
pendently distributed, we simply computed the mean and
standard deviation of the fractal dimension measures for
the in-control samples and applied the control limits for
the specified Type I error rate. The analytically derived
control limits were obtained using the procedure presented
in Section 3.2.2. Both types of control limits clearly enable
us to distinguish between in-control samples (samples 1
to 50) that contain the 8, 0, 4 patterns and out-of-control
samples (samples 51 to 60), in which approximately 5% of
the patterns are reversed to 4, 0, 8. Note that the over-
all number of data points in this experiment was 900 000.
The out-of-control average run length (ARL1) measure for
this experiment is one. A description of the complete ex-
periment, including ARL1 measures of different process
deviation levels, is presented in Section 4.1, under the
“Pattern-reoccurring process” case.
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Fig. 5. (a) A box counting dimension histogram for the pattern-
reoccurring samples without deviation (samples 1 to 50, marked
on left) and for those with deviation of ∼5% (samples 51 to 60,
marked on right) and (b) a correlation dimension histogram for
the pattern-reoccurring samples without deviation (samples 1 to
50, marked on left) and for those with deviation of ∼5% (samples
51 to 60, marked on right) (color figure provided online).

For the purpose of root cause analysis, one can analyze
other fractal dimension statistics whenever a change point
is detected. We continue with the above pattern-reoccurring
example and start by examining histograms of both the box
counting and the correlation dimension measures before
and after the process change point.

Figures 5(a) and 5(b) present histograms of the box
counting dimension and the correlation dimension mea-
sures, respectively. Both histograms show the dimension
values before and after the change point in the process.
Dimension measures for in-control samples are marked in
red, while dimension measures for out-of-control samples
are marked blue. If the figures are in grayscale, please refer

Fig. 6. Fractal-SPC monitoring chart. Green points indicate
in-control process samples; blue points indicate patterns of in-
control process samples; red point indicates out-of-control sam-
ples; pink points indicate patterns of out-of-control samples. For
demonstration purposes, we explore the blue marked area de-
tected in circle address 4 (color figure provided online).

to the online version of the article, where the figures appear
in color.

Looking at the histograms, one can draw the following
conclusions regarding the process deviation: it is caused
by significant correlation changes within the process sub-
sequences (in Fig. 5(b), Dcor shows an excellent separation);
however, it does not involve the appearance of new sub-
sequences (since DBC shows a weak separation, as presented
in Fig. 5(a)).

The fractal-SPC chart is presented in Figs. 6 to 8. As can
be seen, it has the advantage of capturing both in-control
and out-of-control patterns that may affect the process.
Thus, the fractal-SPC can be considered both as a special

Fig. 7. Zooming into circle address 4. A blue marked area reveal-
ing the in-control pattern is detected in circle address 04 (color
figure provided online).
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Fig. 8. Zooming in to circle address 04. A blue marked area
revealing the rest of the in-control pattern is detected in circle
address 804 (color figure provided online).

cause chart and as a casual cause chart, as defined by Alwan
and Roberts (1988).

For illustration, we suggest the following color scheme to
ease the process of visual process monitoring and root cause
analysis: points of in-control process samples in green; pat-
terns detected for in-control process samples in blue; points
of out-of-control samples in red; patterns detected for out-
of-control samples in pink. If figures are in grayscale, please
refer to the online version of the article, where the figures
appear in color.

Figures 6 to 8 demonstrate how an in-control pattern can
be revealed.

Similarly, out-of-control patterns are revealed by zoom-
ing in to the pink marked circles. Figure 9 shows the third
resolution graph revealing the out-of-control pattern. Thus,
the presented fractal-SPC control chart enables us to vi-
sually learn and analyze the process. One can reveal un-
derlying patterns and correlations in both in-control and

Fig. 9. A third resolution fractal graph. The pink marked area
reveals the out-of-control pattern in circle address 408 (color
figure provided online).

out-of-control stages and use it for root cause analysis and
assignable causes identification.

4. Comparative study with known methods

4.1. Fractal-SPC versus conventional robust
SPC approaches

In this section we study the performance of the pro-
posed fractal-SPC by evaluating the out-of-control aver-
age run length (ARL) in various process-deviation scenar-
ios. We compare the fractal-SPC with several conventional
SPC procedures: in particular, the Shewhart, Exponentially
Weighted Moving Average (EWMA), and the CUSUM
SPC that are considered to be relatively robust to underly-
ing independence assumptions. The control limits were cal-
culated by using a distribution fit of the observed statistics
and were set such that the in-control ARL would satisfy a
required level of 370.4. Shore (2000) demonstrated that for
non-normal data, the standard normal percentiles can be
used to compute control limits in cases where the skewness
of the process is low. Nonetheless, we found that despite the
fact that the generated processes had a low skewness, the
conventional robust SPC procedures failed to control the
processes, as a result of the violation of the independence
assumption. These methods generated control limits that
were widely spread and resulted in wrong (much higher)
in-control (as well as out-of-control) ARL values. We did
not compare the fractal-SPC to the ARIMA SPC family,
since Ben-Gal and Singer (2004) have already demonstrated
that ARIMA models are inadequate for the monitoring of
state-dependant Markovian processes with discrete mea-
sures, as is the case for most of the processes considered
here.

Three types of processes were generated in the study:
Markov, pattern reoccurring, and a distribution-based pro-
cess. Each process was represented by an ordered sequence
of symbols that can be seen also as a subset of observations
measures from a multivariate process. Note that the con-
ventional inverse transform method was used to generate a
discrete data set from a given (continuous) distribution. In
all three cases, each point in the control chart was derived
from a sample that contained 15 000 data points represent-
ing a data-rich environment. Five levels of process devia-
tion were defined, relying on the percentage of points that
deviate from the underlying process in the sample. These
levels were used to simulate a gradually deteriorating pro-
cess. These deviation levels, ranging between 0.66% and
13%, are indicated in the first columns of Table 1, which
summarizes the experiment results. For example, a devia-
tion level of 0.66% represents a sample in which only 100
points are generated by a deviated out-of-control process,
with the remaining 14 900 points being generated by the
underlying in-control process. For each level of process de-
viation, the first 50 samples were in control and the last
10 samples consisted of the defined percentage of deviated
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Table 1. Out-of-control ARL for three types of processes and five deviation levels

Percentage of ARL1 of Shewhart, ARL1 of the fractal-SPC
deviated EWMA, CUSUM, for all
points (%) three process types Markovian process Pattern-based process Distribution-based process

0.66 d.n.i. 3.6 1 96.15
1.66 d.n.i. 1.05 1 28.5
3.33 d.n.i. 1 1 11.9
6.66 d.n.i. 1 1 1.5
13.33 d.n.i. 1 1 1

data points. Note that for each experiment, and thus each
level of process deviation, 900 000 data points (60 samples
of 15 000 data points) were generated (i.e., for each process
scenario, 5 × 900 000 = 4500 000 data points were gener-
ated), to create a data-rich environment. Each simulation
run was replicated 10 times and returned similar results in
each run. Note that the suggested fractal-SPC is also rele-
vant to smaller samples, as demonstrated in Section 4.2.

Table 1 summarizes the experimental results for the three
types of processes as follows. Note that the various types
of process deviation were not identified by the Shewhart,
EWMA, or CUSUM SPC methods (abbreviated to d.n.i.;
i.e., deviation not identified). This could be explained by
the dependencies in the generated processes that resulted
in spread control limits that contained both in-control and
out-of-control samples.

Markov process: A Markov process is generated from a
given transition matrix. Deviation from the generating pro-
cess is obtained by changing the transition matrix in a man-
ner that relatively preserves the sample average. Note that
Markov processes have been used to represent many real-
life settings, including queuing systems, buffer monitoring
in manufacturing lines with known production probabil-
ities, and feedback-controlled processes (Singer and Ben-
Gal, 2007).

Pattern-reoccurring process: Each sample consists of un-
structured noise, generated from a uniform distribution,
with the pattern 8, 0, 4 being randomly inserted, approxi-
mately every 15 data points. Deviation from the generating
process is obtained by changing the order of the reoccur-
ring pattern to 4, 0, 8. Pattern-reoccurring processes can be
used to represent machine types, part types, or production
sequencing, as shown in Ruschin-Rimini et al. (2012).

Distribution-based process: Each sample is generated ran-
domly from an underlying normal distribution. Deviation
from the generated process is obtained by changing the
underlying distribution to a uniform distribution and dis-
cretizing its values. Such a distribution change can appear,
for example, when monitoring an independent measure of
the process or when monitoring residuals in residual-based
control charts for non-normal situations (see Castagliola
and Tsung (2005)).

We refer the interested reader who would like to repro-
duce the experiments to a technical reference (Ruschin-

Rimini et al., 2011b), that contains the generated data and
the relevant transition matrix utilized for data generation
of the Markov process scenario.

4.1.1. The fractal information dimension
computation results

The dimension of information measure was computed for
each of the 60 samples and per each experiment (i.e., for
each deviation level and per each process type). For il-
lustration purposes, Fig. 10 demonstrates measures of the
fractal information dimensions in the case of a deviation
level of 3.33% in the Markov process for (i) the first 50
in-control samples (marked on the left-hand side); and (ii)
the last 10 samples consisting of the defined percentage
of deviated data points (marked on the right-hand side).
Figure 11 presents the fractal dimension chart with its con-
trol limits for this case. Control limits achieved numerically
are marked with continuous lines, whereas control limits
based on analytically derived computation according to
the procedure presented in Section 3.2 are marked with
dashed lines. As demonstrated, both methods for control
limit computations clearly distinguish between in-control

Fig. 10. A fractal dimension histogram for the Markov process
without deviation (on the left) and with deviation of 3.33% of the
data (on the right) (color figure provided online).
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Fig. 11. Information-dimension chart for the Markov process
samples without deviation (samples 1 to 50) and for samples with
a deviation level of 3.33% (samples 51 to 60). Numerically derived
control limits (∼0.638–0.646) are marked with continuous lines.
Analytically derived control limits (∼0.6439–0.646) are marked
with dashed lines (color figure provided online).

samples (samples 1 to 50) and out-of-control samples (sam-
ples 51 to 60).

As Fig. 10 shows, the obtained distributions reflect a
good separation between the two populations by the frac-
tal dimension statistic. In Fig. 12 we present both the Shew-
hart and the EWMA charts with the same deviation level
of 3.33% of the Markov process for both (i) the in-control
process (samples 1 to 50) and (ii) the out-of-control process
(samples 51 to 60). It can be clearly seen that these conven-
tional SPC approaches cannot reveal the change point in
the process. The inherent deviation of the process is signifi-
cantly large such that the process appears within the control
limits both before and after the change point.

Our experimental results include other cases in which
the dimension of information succeeds in identifying pro-
cess deviations, whereas traditional control charts fail to
do so. However, certain types of process deviations are
not well indicated by the fractal-SPC, such as the case

of small deviations in certain distribution-based processes.
In these cases, further work is needed to fine-tune the
fractal-SPC.

4.2. Fractal-SPC versus CSPC multi-attribute control chart
As previously mentioned, Ben-Gal et al. (2003) proposed
the CSPC as a model-generic framework that can deal with
autocorrelated non-linear state-dependent processes. Since
the proposed fractal-SPC method addresses the same re-
quirements of a model-generic framework, we compare
the performance of fractal-SPC with the CSPC method
by evaluating the out-of-control ARL in various process
scenarios.

Jolayemi (1999) proposed the Multi-Attribute Control
Chart (MACC) as a multivariate control chart technique
aimed at monitoring multi-attribute data by a single chart.
The MACC model is based on an approximation for the
convolution of independent binomial variables (Jolayemi,
1992) and on an extension of np-control charts. Since the
proposed fractal-SPC method also addresses multivariate
processes with a finite state space, we compare the per-
formance of fractal-SPC with that for the MACC model
by evaluating the out-of-control ARL in various process
scenarios.

We also compare all three SPC methods with the same
conventional SPC procedures mentioned in Section 4.1.
Four types of processes were generated in this study: (i)
Markovian; (ii) pattern reoccurring; (iii) pattern inter-
rupted by unstructured noise; and (iv) distribution based.
In all four cases, the learning phase (Phase 1 of SPC pro-
cesses) included 15 000 data points of a historical in-control
process, representing a data-rich environment. The moni-
toring phase (Phase 2 of SPC processes) included samples
of 100 data points each to reflect an online mode of sam-
pling with less data. For each process scenario, the first 50
samples were in the in-control state and the last 10 samples
consisted of out-of-control data points that simulate a step
change in the process.

Fig. 12. The Shewhart and EWMA control charts for the Markov process without deviation (samples 1 to 50) and with deviation of
3.33% (samples 51 to 60) (color figure provided online).
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Table 2. Out-of-control ARL for four types of processes

ARL1

Process type Shewhart EWMA CUSUM Fractal SPC CSPC MACC

Fixed-order Markov d.n.i. d.n.i. d.n.i. 1.02 1 d.n.i.
Pattern reoccurring d.n.i. d.n.i. d.n.i. 1.04 3.15 d.n.i.
Pattern interrupted by unstructured noise d.n.i. d.n.i. d.n.i. 1.07 6.92 d.n.i.
Distribution based d.n.i. d.n.i. d.n.i. 1.08 1 d.n.i.

Table 2 summarizes the experimental results for the four
types of processes. Note that the various types of process
deviation were not identified by the Shewhart, EWMA,
CUSUM, or MACC SPC methods (abbreviated d.n.i., i.e.,
deviation not identified). The Markov process, pattern-
reoccurring process, and distribution-based process were
generated as explained in the previous section. The pattern
interrupted by unstructured noise process was generated as
follows: each sample was generated from a uniform distri-
bution to simulate unstructured noise. The pattern 8-X-0-
X-4 (where X represents any symbol generated from the
underlying distribution) was inserted approximately every
15 data points. Deviation from the generating process was
obtained by changing the order of the reoccurring pattern
to 4-X-0-X-8. Such an interrupted pattern was chosen in
order to simulate realistic conditions regarding reordering
or shuffles of real processes (see the illustrative example in
Section 3.5), as well as to examine the robustness of both
SPC schemes to varying order models.

4.2.1. Computation results
Fractal SPC versus MACC. Our experimental results
demonstrate cases in which the various types of process

Fig. 13. A histogram of the fractal-SPC monitoring statistic for
the case of patterns interrupted by unstructured noise: without
deviation (on the left) and with deviation (on the right) (color
figure provided online).

deviation were not identified by the MACC model. This
result is due to the fact that in order to monitor multiple
attributes in a single chart, the MACC model utilizes a sin-
gle monitoring statistic that averages the np values of each
attribute; hence, roughly speaking it “loses information”
regarding each attribute independently. Moreover, even if
each attribute is monitored separately, the detection of de-
viations such as change in patterns and changes in correla-
tions between attributes is not guaranteed, since attributes
are assumed to be independent.

In order to emphasize the difference between the MACC
model and the fractal-SPC model, one can consider three
levels of monitoring multivariate data, as follows.

1. Methods that utilize a monitoring statistic that averages
the attributes’ data.

2. Methods that monitor each attribute independently.
3. Methods that monitor each attribute yet can identify

autocorrelations and patterns between them, such as
the fractal-SPC, which monitors all data in one single
chart.

The first level comprises the least information regarding
the attributes. Averaging attributes’ data results in loss of

Fig. 14. The CSPC monitoring statistic histogram for the case of
patterns interrupted by unstructured noise: without deviation (on
the left) and with deviation (on the right) (color figure provided
online).
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Fig. 15. The Shewhart and EWMA control charts for the pattern-reoccurring process without deviation (samples 1 to 50) and with
deviation (samples 51 to 60) (color figure provided online).

information regarding each attribute independently. The
MACC model matches this level of monitoring. The sec-
ond monitoring level matches traditional control charts for
attributes such as the p, np, c, and u, which are aimed at uni-
variate data. When using this level of monitoring in cases
of multivariate processes, it is suggested to monitor each at-
tribute independently. Such monitoring does not suit cases
in which data are autocorrelated, as some of the processes
demonstrated in the presented comparative study. More-
over, monitoring of each attribute separately increases the
statistical Type I error and is more complex to manage
and maintain than a single chart scheme. Consequently,
the fractal-SPC, which matches the third of the defined
monitoring levels, outperforms traditional approaches for
monitoring multi-attribute data in cases in which autocor-
relation exists.

Fractal-SPC versus CSPC. For illustration purposes,
Fig. 13 demonstrates measures of the fractal-SPC moni-
toring statistic in the case of the patterns interrupted by
unstructured noise process: (i) the first 50 in-control sam-
ples (marked on the left-hand side) and (ii) the last 10
samples consisting of deviated data points (marked on the
right-hand side). For illustration purposes, Fig. 14 demon-
strates the measures of the CSPC monitoring statistic in
the same case: (i) the first 50 in-control samples (on the
left-hand side) and (ii) the last 10 samples consisting of
deviated data points (on the right-hand side).

Figure 15 presents both Shewhart and EWMA charts
for the case of patterns interrupted by unstructured noise
in both (i) the in-control process (samples 1 to 50) and (ii)
the out-of-control process (deviated samples 51 to 60). As
seen, these conventional SPC approaches do not reveal the
change point in the process.

Our experimental results demonstrate cases in which
the fractal-SPC and CSPC methods succeed in identify-
ing deviations in pattern-based processes, whereas tradi-
tional control charts fail to do so. As indicated in Table 2,

the main advantage of the fractal-SPC over the CSPC is
when monitoring processes that are populated by deter-
ministic patterns with or without unstructured noise. The
CSPC method is advantageous when the correlation struc-
ture is more complex and unknown; i.e., when the order
of the reoccurring pattern varies and the dependence order
is inhomogeneous. The CSPC does not require knowledge
of the monitoring order (resolution) in advance and thus
can represent processes that are generated by variable-order
Markov processes or by context-specific Bayesian networks
in the case of inhomogeneous models.

Additional preliminary results, presented in Ruschin-
Rimini et al. (2012), mainly focus on monitoring the effects
of various operational settings on the quality of production.
The method was implemented in a world-leading automo-
tive manufacturer. It provides a realistic example where the
proposed method can benefit a service or an industrial or-
ganization and supports root cause analysis applications.

5. Conclusions and further research

In this article we proposed a fractal-SPC method that has
several attractive features. It can learn the process data de-
pendence and its underlying distribution without assuming
a priori information. Thus, it is a model-generic (nonpara-
metric) approach and thus extends the current scope of con-
trol charts to non-linear state-dependent processes (Ben-
Gal et al., 2003). This advantage over traditional control
charts is particularly appealing when monitoring data-rich
processes with an unknown underlying model.

The obtained fractals can be used to visually track
anomalies in data-rich patterns whose order is of sev-
eral magnitudes larger than the one used in traditional
SPC tools. The fractal representation copes well with mod-
ern monitoring schemes that are executed on PC screens
rather than on paper sheets: the proposed IFS trans-
formation projects the multidimensional patterns into a
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two-dimensional space. Moreover, it applies the ability of
zooming in to areas of interest to better analyze patterns
and support root cause analysis tasks.

In order to automate the fractal monitoring process, we
compute the fractal dimension as a representing statistic
that is used to dynamically monitor the process behavior.
Our selection of the fractal dimension is encouraged by the
theoretical relations that are established with information
theory and data compression techniques, which are known
as viable for data-rich applications. We demonstrate that
various definitions of the fractal dimension can support a
multi-level inspection for simultaneously representing both
common and rare patterns in the inspected process.

Despite these advantages, the suggested fractal-SPC is
limited in its current form to discrete processes with a finite
state space (alphabet). The proposed control chart requires
a relatively large amount of data to construct the initial in-
control fractal model; hence, it is best suited for data-rich
environments. Future research could extend the suggested
method to handle continuous problems. It could improve
the fractal visualization chart to exploit a greater portion
of the screen’s available pixels and use modern graphical
techniques. Finally, it could define a better default thresh-
old value for the root cause analysis phase, as a function of
the in-control data type and the type of process deviation.

Another research direction could be to focus on study-
ing the various forms of the fractal dimension in terms of
computation tractability versus its sensitivity and speci-
ficity performance. Such research should analyze the
relations among these statistics to provide a unified mon-
itoring scheme that integrates all of them into a single
anomaly-detection and decision-making tool. We antic-
ipate that such integration can provide excellent inputs
for root cause analyses, especially if it is accompanied by
machine-learning procedures.
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Appendix

Fractal mapping procedure—a running example

In this example we demonstrate the mapping procedure
of a sampled sequence consisting of the following three
ordered observations: 0, 3, 6. These observations can be
taken either from a sliding window of a univariate process
with nine possible categories (realizations) 0, 1, . . . , 8 (i.e.,
m = 9) or from a sliding window of a multivari-
ate vector (of any dimension larger than three), where
the range of each variable contains up to nine values
(categories).

Step 1: Each of the process’ categories is associated with
one contractive mapping. In this example we associate vari-
able 1 with contractive mapping w1; variable 2 with contrac-
tive mapping w2, . . . , variable 8 with contractive mapping
w8; and variable 0 with contractive mapping w9. Follow-
ing are the appropriate contractive mappings according to
Equation (4), where α = 0.08:

w1

([
x1
x2

])
=

[
0.08 0

0 0.08

] [
x1
x2

]
+

⎡
⎢⎢⎢⎣

cos
(

2π

9

)

sin
(

2π

9

)
⎤
⎥⎥⎥⎦,

w2

([
x1
x2

])
=

[
0.08 0

0 0.08

] [
x1
x2

]
+

⎡
⎢⎢⎢⎣

cos
(

2 × 2π

9

)

sin
(

2 × 2π

9

)
⎤
⎥⎥⎥⎦,

.

.

w9

([
x1
x2

])
=

[
0.08 0

0 0.08

] [
x1
x2

]
+

⎡
⎢⎢⎢⎣

cos
(

9 × 2π

9

)

sin
(

9 × 2π

9

)
⎤
⎥⎥⎥⎦.

Step 2: Accordingly, the sequence 0, 3, 6 is represented by
a sequence of three corresponding contractive mappings:
{w9, w3, w6}; x(0) is arbitrarily selected to be plotted in[

0
0

]
.

Step 3: We recursively apply each of the three contrac-
tive mappings w9(x0), w3(x1), w6(x2) by their order in the
sequence. We start by applying contractive mapping w9(x0)
to obtain point x(1) as follows:

x(1) = w9
([

x(0)
])

=
[

0.08 0
0 0.08

]
×

[
0
0

]
+

⎡
⎢⎢⎣

cos
(

9 × 2π

9

)

sin
(

9 × 2π

9

)
⎤
⎥⎥⎦ =

[
1
0

]
.
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Fig. A1. The plotting of three fractal mapping iterations for the ordered sample 0 3 6: (a) points x(0) and x(1); (b) points x(0), x(1), and
x(2); and (c) points x(0), x(1), x(2), and x(3) (color figure provided online).



Fractal geometry applied to statistical process control 391

We then apply contractive mapping w3(x1) to obtain x(2),
as follows:

x(2) = w3
([

x(1)
]) =

[
0.08 0

0 0.08

]
×

[
1
0

]

+

⎡
⎢⎢⎢⎣

cos
(

3 × 2π

9

)

sin
(

3 × 2π

9

)
⎤
⎥⎥⎥⎦ =

[−0.42
0.866

]
.

Similarly, we obtain x(3). Figures A1(a) to A1(c) demon-
strate the plotting outcome of all three iterations. respec-
tively: Fig. A1(a) presents points x(0) and x(1), Fig. A1(b)
presents points x(0), x(1), and x(2), etc. Points x(0) to x(3) are
marked by blue cross signs. For illustration purposes, all
nine circle centers of the fractal graph are marked by red
points. In order to illustrate the fractal interpretation pro-
cedure, one can focus on Fig. A1(b). Note that point x(2)
is positioned close to circle address 3, signifying variable
3. Moreover, note that by zooming into circle address 3,
point x(2) is positioned in circle address 03, indicative of its
preceding variable 0.
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