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The paper considers a sequential Design Of Experiments (DOE) scheme. Our objective is to maximize both information and
economic measures over a feasible set of experiments. Optimal DOE strategies are developed by introducing information criteria
based on measures adopted from information theory. The evolution of acquired information along various stages of experimen-
tation is analyzed for linear models with a Gaussian noise term. We show that for particular cases, although the amount of
information is unbounded, the desired rate of acquiring information decreases with the number of experiments. This observation
implies that at a certain point in time it is no longer efficient to continue experimenting. Accordingly, we investigate methods of
stochastic dynamic programming under imperfect state information as appropriate means to obtain optimal experimentation
policies. We propose cost-to-go functions that model the trade-off between the cost of additional experiments and the benefit of
incremental information. We formulate a general stochastic dynamic programming framework for design of experiments and
illustrate it by analytic and numerical implementation examples.

1. Introduction and literature review

Design Of Experiments (DOE) is applied to help an ex-
perimenter gain information about a particular process or
system through experiments. DOE and in particular Re-
sponse Surface Methodology (RSM) comprise a group of
statistical techniques for empirical model building and
analysis, seeking to relate a response Y to the values of
control factors n1; n2; . . . ; nn (Myers and Montgomery,
1995). In some systems the nature of the relationship
between Y and the n0s is known ‘exactly’ on the basis of
underlying engineering, chemical, or physical principles.
In many cases, however, the underlying physics are not
fully understood and the experimenter must approximate
the unknown response function g �ð Þ by an empirical
model:

Y ¼ ĝg n1; n2; . . . ; nn;B1;B2; . . . ;Bp
� �

þ e; ð1Þ

where, in most cases, ĝg is a first-order or a second-order
polynomial; B1;B2; . . . ;Bp are the parameters, which the
experimenter needs to estimate; and e is an additive noise
component. In practice, estimators are often obtained by
the method of least mean squares or maximum likelihood
from a set of m experiments. Experiments are represented

by the m� p design matrix X, whose jth row corresponds
to the jth experiment and columns are associated with
polynomial terms (random variables are denoted here by
capital letters except for the design matrix; vectors and
matrices are bolded). Thus, the j; ið Þ entry of X j ¼ð
1; . . . ;m; i ¼ 1; . . . ; pÞ reflects the level of a specific factor
or the interaction of two or more factors in the jth ex-
periment.
An important distinction is often made between ex-

perimentation procedures that seek to maximize (or
minimize) the value of the experimental response, and
those procedures aiming to gain information about a
system. A good example for the first class of methods is
the RSM whose objective is to move sequentially to more
promising design regions with respect to a predefined
response objective and to refine gradually the empirical
model. Lindley (1956) proposed the maximization of the
expected Shannon information as a design criterion be-
longing to the second class of methods ‘where the
objective of experimentation is not to reach a decision but
rather to gain knowledge about the world’. Bernardo
(1979) adopted this criterion and showed that it is a
special case of the normative DOE procedure ‘to select a
utility function, assess the probabilities, and to choose
that design of maximum expected utility’. In particular,
he maximizes the expected information in a design with
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respect to the posterior Bayesian density of a quantity of
interest. The posterior density captures personal opinions
of the scientists about the quantity after the experiment
is performed. The author clearly demonstrated how the
expected information criterion arises naturally from a
decision problem of statistical inference within a Bayesian
framework. DeGroot (1962) generalized Lindley’s ap-
proach by suggesting a universal uncertainty and infor-
mation function, which is not necessarily based on
Shannon’s entropy function.
Another important distinction is made between the

comprehensive (off-line) approach and the sequential
(on-line) approach to DOE. Extensive literature has been
devoted to off-line selection of design matrices (Box and
Draper, 1971, 1987; Atkinson and Donev, 1992) and off-
line optimization of designs with respect to variance-
reduction related criteria (St. John and Draper, 1975;
Lucas, 1976). Most publications consider the number of
experiments and the number of levels, that each control
factor may be set to, as fixed constraints of the design
problem. Thus, for a given number of experiments and
factor levels, one tries to determine the best designs rel-
ative to specified performance criteria, such as maximum
resolution and minimum prediction variance.
A considerably smaller literature addresses design costs

and revenues by using an on-line sequential approach,
where, after each experiment is completed, the accumu-
lated information is used to specify the next design. Box
et al. (1978) claimed that the worse time to design an
experiment is at the beginning, when the experimenter
knows the least. As a general recommendation they
proposed the 25% rule of thumb, according to which not
more than one-quarter of the experimental budget should
be used in the first design. In this paper we develop a
formal optimization approach for the sequential design
problem that includes an information-theoretic measure
not considered by Box et al. (1978). In the Sequential
Hypothesis Testing (SHT) problem (Bertsekas, 1995) the
designer is interested in selecting one of two hypotheses.
At time k, after observing Y0; Y1; . . . ; Yk he has to decide
whether to make an additional observation at cost c > 0,
or to stop experimenting and accept a hypothesis with a
higher probability of error. In contrast to the approach
proposed in this paper, the incurred costs in the SHT are
related to the probability of making an erroneous selec-
tion and not to the value of the information obtained.
Moreover, in SHT the observation space is assumed to be
finite. Hardwick and Stout (1995) considered an on-line
experimentation involving two Bernoulli populations.
They suggested an algorithm for design of optimal ex-
periments in which adaptive sampling is performed in
stages. However, unlike our approach, the total sample
size for the experiment was considered to be fixed.
Krehbiel and Anderson (1992) proposed a monetary loss
function to determine the optimal fractional replicate of a
fractional experiment. The loss function incorporates ‘the

cost of producing estimates with larger variances and the
cost associated with experimentation’. We propose a
similar cost function, since, in certain cases, the reduction
in the variance of the estimates is proportional to the
increase in Shannon information expected from the ex-
periment. However, our cost function is not limited to
fractional experiments. Box and Hunter (1965) consid-
ered the problem of sequential construction of D-optimal
designs for nonlinear models. Their work employs a
Bayesian paradigm and linear system approximations. At
every experimentation stage they add the trail that max-
imizes the determinant of the information matrix, which,
under certain assumptions, is equivalent to Shannon’s
information measure. However, they did not consider the
explicit cost of experiments. The forward procedure that
they use for the sequential construction of variance-
optimal designs is similar to the coordinate exchange
algorithm proposed by Feodorov (1972) and used by the
limited look-ahead approach employed as a building
block of the optimal DOE algorithm developed here.
Berliner (1987) adopted a similar Bayesian approach to
control the output of a mixture linear model by choosing
adequate values of independent variables using quadratic
programming. Box (1992) mentioned several strategies by
which a second stage of experimentation might evolve as
a result of the analysis of the first stage. His work,
however, does not address issues of experimentation cost.
Ben-Gal et al. (1999) suggested a probabilistic sequential
methodology (PSM) for designing a factorial system,
which is based on sequential experimentation, statistical
inferences and a probabilistic local search. However, the
experimentation costs are again not modeled directly in
that work.
Sequential experimentation was discussed by DeGroot

(1962) in relation to the optimal selection of experiments
when the goal is either to minimize the expected uncer-
tainty after a fixed number of experiments or to minimize
the expected number of experiments needed to reduce
uncertainty to a fixed level. Bradt and Karlin (1956)
formulated a dynamic programming solution approach
for particular problems of this nature.
Following Lindley (1956) and Bernardo (1979) we use

Shannon’s entropy function as a measure of uncertainty
and aim to reduce its expected value through experi-
mentation. It is shown that information theory measures
motivate the use of a stochastic dynamic programming
approach for DOE, and, for linear Gaussian models, are
related to the well-known D-optimality criterion. Ac-
cordingly, we follow the work of Bradt and Karlin (1956)
and DeGroot (1962) to develop a Dynamic Programming
(DP) approach for sequential experimentation. However,
in our DP formulation we also consider the experimen-
tation cost in addition to the gain from uncertainty re-
duction. The proposed framework optimizes both the
number of sets of experiments as well as the actual design
of each set of experiments. The number of experiments in
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each set is optimized by proving and relying on the fact
that the expected incremental information gained from
additional experiments decreases monotonically with the
number of experiments. The design of the next set of
experiments is optimized at each step of the algorithm
with respect to the trade-off between the cost of an ad-
ditional experiment and the benefits of the expected in-
cremental information.
We present and employ the DP approach to DOE in

both an optimal backward recursion algorithm and a
more tractable, forward, limited look-ahead algorithm
that yields near-optimal designs. The latter is obtained by
implementing a version of the coordinate exchange algo-
rithm (CEA) suggested by Feodorov (1972). In order to
reduce the initial model-bias, we propose an upgrade
procedure of the model order based on information ac-
cumulating through experimentation. Our procedure
eliminates the problematic assumption (Box et al., 1978)
that the mathematical model that describes the physical
phenomenon is known exactly a priori. Both algorithms
are illustrated in detailed examples. A further contribu-
tion is the development of upper and lower bounds on the
value of incremental information under certain assump-
tions. These bounds are independent of future experiment
outcomes and assist the designer to estimate the mini-
mum and the maximum benefit obtainable by an addi-
tional experiment, and thus, to decide whether to
continue experimenting.
The rest of the paper is organized as follows. Section 2

defines basic information theory concepts, mainly entropy
and information, and discusses the evolution of informa-
tion in sequential experiments. Section 3 includes a
quantitative description of the evolution of information
with incremental experimentation and motivates a dy-
namic programming (DP) approach to sequential DOE.
Section 4 provides a general stochastic DP framework for
DOE. A detailed one-dimensional analytic algorithm is
developed in Section 5 for near-optimal sequential DOE.
The algorithm is based on a limited look-ahead approx-
imation of the optimal DP solution. The applicability of
sequential DOE to real problems is demonstrated in a
numerical implementation of the algorithm in Section 6
for a multi-dimensional problem where the structure of
the response model is not known a priori and is selected
by the algorithm. Section 7 concludes the paper.

2. Evolution of information in sequential experiments

Consider a system described by the model given in
Equation (1). Let Y be a continuous random variable
(r.v.) representing the experiment response and K be the
random variable representing the estimator of an un-
known characteristic of the system (henceforth, random
variables, other than e, are denoted by capital, and their
realizations by lower case). The information ‘in Y about

K’, denoted by IðY ;KÞ, introduced by Shannon (1948a,b)
is defined as

I Y ;Kð Þ ¼ H Kð Þ � H K Yjð Þ ¼
Z
y;kf g

f y; kð Þ log f y; kð Þ
fY yð ÞfK kð Þ dydk;

ð2Þ

where fY yð Þ, fK kð Þ and f y; kð Þ are the marginal and the
joint probability density functions (pdf) of Y and K, re-
spectively, H Kð Þ is the differential entropy of K defined as

H Kð Þ ¼ �
Z
kf g

fK kð Þ log fK kð Þdk; ð3Þ

and H K Yjð Þ is the conditional differential entropy of K
given Y which is the expected value of the entropy of the
conditional distribution, averaged over the conditioning
random variable, i.e.,

H K Yjð Þ ¼ �
Z
y;kf g

f k; yð ÞlogfK k yjð Þdydk: ð4Þ

Thus, Shannon interpreted information as the reduction
of the entropy of one r.v. conditioned by another r.v. and
used the entropy as a measure of uncertainty, as illus-
trated for a Bernoulli r.v. in Fig. 1. The figure considers a
discrete r.v. taking one value with probability a and an-
other value with probability 1� a. The binary entropy
function, given by h að Þ ¼ �a log a � 1� að Þ log 1� að Þ, is
measured in bits (or shannons) if the log base is two.
Following the above definitions, a reasonable formu-

lation of the DOE task is: determine that subset of ex-
periments, out of all possible combinations of factor
levels, which maximizes information, namely solve

max
X

I Y ;Kð Þ½ ;

where X belongs to a feasible design sets (conditions and
constraints on feasibility of designs can be found, for
example, in Atkinson and Donev, 1992). In words, the
DOE task can be thought of as aiming to maximize, over

Fig. 1. The binary entropy of a discrete random variable.
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a set of feasible designs, the information in the experi-
ment outcomes about an estimator of system character-
istics. Later it is shown that for linear Gaussian models,
the information criterion produces designs that are
identical to the ones produced by traditional DOE al-
phabetic optimality criteria (Atkinson and Donev, 1992).
In a sequence of k experiments, one can consider the

conditional information, given by

I Yk;K Y1j ; . . . ; Yk�1ð Þ ¼ H K Y1; . . . ; Yk�1jð Þ
� H K Y1; . . . ; Yk�1; Ykjð Þ; ð5Þ

which, in the context of experimental design, we interpret
as the incremental information gained from the kth ex-
periment response Yk, given the responses of previous
experiments Y1; . . . ; Yk�1. Since information satisfies the
chain rule, the total information, which is gained by a set
of experiments, can be expressed as follows:

I Y1; . . . ; YK�1; YK ;Kð Þ ¼
XK
k¼1

I Yk;K Y1; . . . ; Yk�2; Yk�1jð Þ:

ð6Þ
The models considered here are those described by

Equation (1) and include additive Gaussian noise terms.
Hence, responses are normally distributed. The Gaussian
distribution maximizes the entropy over all distributions
with the same covariance matrix (Cover and Thomas,
1991). Hence, the normal distribution provides us with an
upper bound on the uncertainty of a r.v. with an un-
known pdf. Moreover, the normal distribution is widely
used in DOE and regression models, and is practically
justified in many situations by the central limit theorem.
It can be shown that maximization of the information

measure in designs that include interactions requires ap-
plying a design matrix with a certain resolution, in par-
ticular, a resolution ensuring that model terms are not
aliased with each another. The problem of obtaining a
design with the highest possible resolution for a limited
number of experiments is further addressed in Ben-Gal
and Levitin (1998, 2001) by applying criteria that are
based on the mathematical correspondence between Er-
ror-Correcting Codes (ECC) and Fractional Factorial
Experiments (FFE).

3. Decreasing returns of incremental information gath-
ering

Consider the case where the experimenter wants to
maximize the information about the model parameters
(i.e., K, in this case, are the model parameters) through
sequential experimentation. Let Yk be the response vector
of the kth experiment in a multiple linear regression
model:

Yk ¼ Xkb þ e; ð7Þ

where Xk is the m� p design matrix used in the kth ex-
periment; e is a m-dimensional vector of iid Gaussian
random variables with zero mean and variance r2; and b
is a p-dimensional vector of unknown parameters. Let Bk
be the maximum likelihood estimator of b after the kth
experiment, which is also the least-squares estimator for
the Gaussian case. It is well-known (Myers and Mont-
gomery, 1995) that Bk is p-variate normally distributed:

Bk ¼
Xk
i¼1

X0
iXi

 !�1 Xk
i¼1

X0
iyi

 !
�Np b;

Xk
i¼1

X0
iXi

 !�1

r2

2
4

3
5;
ð8Þ

where yi is the response of the ith experiment.
The a priori conditional distribution of Yk can be esti-
mated at time k � 1 through Bayesian inference using the
previous k � 1 responses. Yk is an m-variate normal
random variable

Yk Y1 ¼ y1; . . . ;Yk�1 ¼ yk�1ð Þj �

Nm XkBk�1;
Xk�1
i¼1

X0
iXi

 !�1 Xk
i¼1

X0
iXi

 !
r2

2
4

3
5:

Given the joint pdf of the estimators and the responses,
the incremental information and the total information in
the responses about the parameters are defined as follows
(proofs are given in Ben-Gal and Caramanis (1999) and
Ben-Gal and Levitin (2001).

Definition 1. The incremental information in the responses
about the parameters in a Gaussian linear regression
model is given by

I Yk;B Y1j ; . . . ;Yk�1ð Þ ¼ 1

2
log det I

_

p þ X0
kXk

Xk�1
i¼1

X0
iXi

 !�1
2
4

3
5;
ð9Þ

where I
_

p is the p-dimensional identity matrix and det
stands for the determinant of the matrix.

Definition 2. The total information gained from K ex-
perimental responses about the parameters in a Gaussian
linear regression model is given by

I Y2; . . . ;YK�1;YK ;B Y1jð Þ ¼ 1

2
log det

XK
k¼1

X0
kXk

 !
X0
1X1

� ��1" #
:

ð10Þ

Conditioning over Y1 is done through Bayesian inference
when the designer has no advance knowledge about the
pdf of B. The vector of the first experimental response Y1

enables the designer to establish a prior distribution of B

and proceed to update it by successive experimental re-
sponses.
Observations made in connection to the above results

assist in specifying designs that maximize incremental (or
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total) information. We call information-maximizing de-
signsH-optimal designs. Ben-Gal and Levitin (2001) show
that for a linear regression model with an additive
Gaussian noise, the H -optimality criterion and the well-
known D-optimality criterion (Atkinson and Donev,
1992) coincide, since both tend to minimize the scaled
determinant of the variance matrix of B. This coincidence
should not be surprising in the Gaussian case. It is simply
due to the relation between the differential entropy and
the variance matrix.
D-optimal designs have been extensively investigated in

DOE literature (Keiefer and Wolfowitz, 1959; St. John
and Draper, 1975; Hardin and Sloane, 1993). In partic-
ular, it is known that for multiple linear regression
models with coded factors (i.e., factors with level range
from �1 to 1), the D-optimality criterion (and hence, in
the Gaussian case, the H -optimality criterion) requires
the normalized design matrix to be orthogonal so that all
off-diagonal elements of X0X are zeros and the diagonal
elements of X0X are as large as possible (Box and Draper,
1971; Myers and Montgomery, 1995).
A second observation considers the rate and cost of

acquired information in a sequential DOE approach and
motivates the use of a dynamic-programming-based de-
sign framework. By applying orthogonal designs that

satisfy X0X ¼ m� I
_

p to multiple linear regression models
with coded factors, one obtains the following incremental
information out of Equation (9):

I Yk;B Y1; . . . ;Yk�1jð Þ ¼ 1

2
log det km I

_

p

 �
k � 1ð Þm I

_

p

 ��1� �

¼ p
2
log

k
k � 1

� �
; ð11Þ

and by Equation (10), the total information is

I Y2; . . . ;YK�1;YK ;B Y1jð Þ ¼ p
2
logK; ð12Þ

which is the maximum amount of information obtained
from a series of K experiments about the linear regression
model. Note that the information per estimator compo-
nent is equal to 1=2 logK and increases at a slow log-
arithmic rate with the number of experiments (or
equivalently, the incremental information decreases in-
versely proportional to k). That is, as K ! 1 one can
obtain an infinite amount of information (since B is a
continuous r.v.), albeit, at a decreasing rate. This implies
that at a certain point the cost of additional experimen-
tation will outweigh the value of additional information.

The answer to the interesting question ‘when should one
stop experimenting?’ is complicated further when the
value of r2 is unknown. Optimal stopping rules for
sequential DOE can be obtained in principle from the
stochastic dynamic programming problem formulation
presented next.

4. A stochastic dynamic programming (DP) framework

In this section we consider a sequential design of experi-
ments approach. We develop optimal sequential DOE
strategies by applying the information measure presented
above.

4.1. Modification of the standard DP problem notation
convention

We start by modifying the standard DP problem notation
convention to accommodate standard DOE notation
conventions. The matrix of control factor settings (i.e., the
control variable) in the experiments performed at time k
is denoted by Xk; the observations at time k correspond to
system responses or experimental outcomes and are
denoted by yk; the observation disturbance at time k is
denoted by ek (ek is generally considered to be a constant-
variance Gaussian random variable and the subscript is
omitted); the system state is the system unknown pa-
rameters and is denoted by bk; the noise component is
denoted by the standard symbol wk, but wk ¼ 0 for
standard DOE models with fixed parameters: bk ¼ b. The
sufficient statistic at time k is denoted by Pk. Pk can be
either the probability distribution of B, the estimator of b,
or the probability of an event, i.e., a measure of an ap-
propriately defined subset of the range space of the esti-
mator B. Finally, the time reference is modified so that
the control selected at time k, namely the designed ex-
periment matrix Xk, affects the responses yk associated
with the end of the same time period k instead of the
beginning of period k þ 1.

4.2. General formulation of the DP approach to DOE

We consider the stochastic dynamic programming para-
digm under imperfect state information (Bertsekas, 1995).
Figure 2 presents the time sequence of decisions and in-
formation gathering. The designer has imperfect know-
ledge of the unobserved response surface parameters b.
Thus, for system response functions with fixed parame-

Fig. 2. Decision and information evolution in a stochastic DP framework for design of experiments.
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ters, b is considered as a time invariant imperfectly ob-
served state where bkþ1 ¼ bk ¼ b. Another interesting
approach is to consider a time-dependent system state
identification, where one starts with a low-order model,
and hence a low-dimension b vector, and gradually up-
grades its order if the statistical significance of higher
order terms is supported by the information obtained
from past experiments. For example, the initial model
may be a first-order polynomial with insignificant qua-
dratic terms that may become significant and support an
increase of the model order in later stages. We illustrate
such an approach in Section 6 by implementing the DP
algorithm to a numeric multi-dimensional example.
In general, we note that information is gathered by

observing the system responses yk through experiments.
Kk is an estimator of some characteristics of the system,
whose probability distribution depends on b, and which is
defined to represent our partial knowledge of the system
characteristics of interest at time k. The system responses
are determined by the generally time-varying functional
relation:

yk ¼ fk Xk; ek; bð Þ; ð13Þ
where yk is a vector of system responses at time k. Xk is the
controlled design matrix at time k that belong to the set of
feasible and allowable designs, Xk 2 Nk. ek is the obser-
vation disturbance at time k. It is characterized by a given
probability distribution Pek � Xk; bkjð Þ, which depends on
the system parameters and the current controls and dis-
turbances. Wk is the noise random variable characterized
by the probability distribution PWk � Xk; bkjð Þ, which may
depend explicitly on Xk and b but not on prior realiza-
tions of the noise and disturbance variables: wk�1; . . . ; w0,
ek�1; . . . ; e0. Wk is considered only for systems with time-
varying parameters, i.e., cases where system response
parameters evolve over time, such as when there is pa-
rameter drifting. Note that DOE traditionally deals with

a system of fixed parameters, namely wk ¼ 0 for all k.
Denote the information available to the controller at time
k by Ik and call it the information matrix (Bertsekas,
1995).

Ik ¼ yk; . . . ; y1;Xk; . . . ;X1ð Þ; ð14Þ
thus,

Ik ¼ Ik�1; yk;Xkð Þ; I1 ¼ y1;X1ð Þ k ¼ 1; . . . ;K: ð15Þ

We view these equations as describing the evolution of
the experimenter’s knowledge about the system, where Ik

is a statistic of the system at k. Note that when experi-
ment Xkþ1 is contemplated, ykþ1 has not yet been ob-
served and is a random variable whose probability
density depends on past responses and current control,

Pr ykþ1 Ik;Xkþ1j
� �

¼ Pr ykþ1 X1;X2; . . . ;Xkþ1; y1; . . . ; ykj
� �

:

ð16Þ
Usually one can define a sufficient statistic Pk Ikð Þ that
represents all the relevant information in Ik about those
characteristics of the system one is interested in (e.g., the
probability of achieving a system response within a spe-
cific required tolerance). In particular, the sufficient sta-
tistic is given by the conditional probability distribution
Pk � PKk jIk of an appropriately defined r.v. Kk, which
takes values kk, and depends on the system parameters as
estimated by past experimental responses. For example,
Pk can represent the conditional probability distribution
of a binary r.v. and, hence, the probability of an event, or
the conditional probability distribution of B, the estima-
tor of b, given the information matrix at time k, i.e.,
Pk � PBk jIkðbÞ. This latter example is used in the rest of this
paper. As additional information is obtained through
experiments, Pk is re-evaluated and updated recursively,
through a filter of the form:

Pk ¼ /k�1 Pk�1; yk;Xkð Þ ¼ /̂/k�1 y1; . . . ; yk;X1; . . . ;Xkð Þ:
ð17Þ

When, the sufficient statistic can be characterized by a
set of numbers whose cardinality is time invariant, and
therefore smaller, for all k � �kk, than the monotonically
increasing cardinality of the information matrix Ik, it is
easier to implement a policy that maps the sufficient
statistics to the action space (Bertsekas, 1995).
Assume that the cost per stage can be expressed as a

function of the control Xk, and the sufficient statistic Pk.
Thus,

The function gCk represents the cost of running an addi-
tional experiment while the function gTk represents the
cost associated with uncertainty when experimentation is
terminated in a manner similar to that proposed by
Krehbiel and Anderson (1992). Note that estimation of
the expectation over kk requires Pk. Xkþ1 is a matrix of
real numbers if another set of experiments is conducted.
Otherwise, Xkþ1 is a logical variable (flag). Xkþ1 � T de-
notes termination of experimentation.
Using Bellman’s principle of optimality, the imperfect

state information DP can now be written as:

gk Pk;Xkþ1ð Þ ¼
E

wkþ1;kk
gCk Xkþ1;wkþ1; kkð Þ
� �

when Xkþ1 is the k þ 1 design matrix,

gTk Pkð Þ when Xkþ1 � T ðTerminateÞ.

(
ð18Þ
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An optimal policy, g�0; g
�
1; . . . ; g

�
K�1

� �
, minimizes Equa-

tion (19) by determining the control at time k,
Xk ¼ g�k�1 Pk�1ð Þ, where gk is an appropriate function
mapping the sufficient statistic to the allowable control
set, gk Pkð Þ 2 Nk. The optimal policy, marked by a star,
can be obtained recursively by starting from the bound-
ary condition JK PKð Þ ¼ gTK PKð Þ and then using Equation
(17) to minimize the right-hand side of Equation (19) for
every possible PK�1 to obtain g�K�1 PK�1ð Þ and continue
with the DP backward recursion until J1 P1ð Þ is computed.
The optimal cost J � is then obtained by calculating

J� ¼ E
y1

J1 /0 g�0 P0ð Þ; y1;P0
� �� �� �

:

A special but important case arises when the control,
i.e., the design of experiments, must conform to a design
resolution constraint and a constraint in the minimum
number of levels that factors must be set at. In this case,
the optimal experimental design task, which arises at each
recursion of the DP algorithm (i.e., min over Xkþ1 in
Equation (19)) can benefit from the results in Ben-Gal
and Levitin (2001).

4.3. The cost per stage function and its relation to
information

The cost per stage function can be modeled to represent
the costs and revenues associated with information. For
example, consider a system subject to Gaussian noise,
where wk ¼ 0, Pk ¼ Ck the variance matrix of B at time k,
and gTk Pkð Þ � c log detCkð Þ , i.e., a logarithmic function of
the determinant multiplied by a cost constant c. This is a
reasonable representation of cost since it suggests that
termination costs are proportional to uncertainty. It fol-
lows from Equation (19) that for a selected value of Xkþ1
an additional experiment at time k is desirable when

max
Xkþ1

E
ykþ1

gTk Pkð Þ � gTkþ1 /k Xkþ1; ykþ1;Pk
� �� �� ��

� E
kk

gCk Xkþ1; kkð Þ
� ��

> 0; ð20Þ

where the second term of Equation (20) is the experiment
expected cost and the first term of Equation (20) is
nothing but the revenue generated by the expected in-
cremental information, since under the above assump-
tions it follows (see Equation (9)) that

E
ykþ1

gTk Pkð Þ � gTkþ1 /k Xkþ1;ykþ1;Pk
� �� �� �

¼ c E
ykþ1

log detCkð Þ � log detCkþ1ð Þ½ 

¼ c0 E
ykþ1

H KjY1; . . . ;Yk�1;Ykð Þ �H KjY1; . . . ;Yk;Ykþ1ð Þ½ 

¼ c0I Ykþ1;KjY1; . . . ;Yk�1;Ykð Þ: ð21Þ

Thus, conducting an additional experiment is desirable
only if an experiment can be designed whose revenue
from the expected incremental information exceeds the
expected cost of the experiment. Note that if the incre-
mental information decreases monotonically with the
number of experiments, as in the case above where K � B

(in Equation (11)), and if the cost of experiments is time
independent, then, it is reasonable to apply a limited
look-ahead algorithm. In fact, because of the monotoni-
cally decreasing incremental information, a one-step
look-ahead algorithm corresponds to the open-loop
feedback control method (Bertsekas, 1995). This leads to
re-optimization of future decisions at each time period
after replacing all future costs and benefits with their
expected values (calculated on the basis of available in-
formation), and assuming that no additional information
will be made available in the future. The rationale of the
look-ahead algorithm is that if the cost of an additional
experiment at time k is larger than the expected incre-
mental information, then, on the average, the same will
be true at time k þ 1. The algorithm is illustrated further
by an analytical one-dimensional example in Section 5,
and a numerical multi-dimensional example in Section 6.
The information-based definition of the cost-to-go

function provides additional justification for using the
DP algorithm. Note from Equation (8) that the variance
of B is given by C ¼ r2 X0Xð Þ�1, allowing standard DP
results for quadratic cost functions to be applied. More-
over, the logarithmic function is a monotonic increasing
function, which mimics the incremental revenue gained
by an additional experiment. This transformation is
consistent with respect to the optimization problem, as
argmin log xð Þ½  ¼ argmin x½ , and it has some appealing
statistical features as shown by Box (1988). Finally, note
that logarithmic costs are appropriate in many situations
for physical reasons. The storage cost of a memory device
with a q-ary alphabet is a case in point; if U denotes the
largest attainable value of the data, then, at most logq Ud e
encoding bits are needed.

Jk Pkð Þ ¼ min
min
Xkþ1

E
wkþ1;ykþ1;kk

gCk Xkþ1;wkþ1; kkð Þ þ Jkþ1 /k Xkþ1; ykþ1;Pk
� �� �� �� �

;

gTk Pkð Þ

8><
>:

9>=
>; ð19Þ

k ¼ 1; 2; . . . ;K and Xk ¼ T at the final stage:
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The ability to assign a monetary cost to uncertainty
that is consistent with the monetary cost of running ex-
periments is clearly a prerequisite to the practical value of
the DOE framework proposed in this article. We briefly
comment on several application areas where costing un-
certainty is standard practice.
Material handling systems in wafer fabrication clean

rooms consist of several design parameters, the most
important of which is the size of the ‘stockers’ to be
placed in various locations of the clean room. Lengthy
Monte Carlo simulations of the clean room operation are
run assuming infinite capacity stockers, and the mean
stocker level and its variance, or alternatively, the maxi-
mum stocker level and its variance are estimated. The
stocker is then sized according to rules of the type:
stocker size = average stocker level + k (standard de-
viation of average stocker level), or stocker size = max
stocker level + k*(standard deviation of max stocker
level). The cost of a unit of standard deviation is then
equal to the cost of a unit of stocker capacity divided by k
or k�.
Supply chains of interacting suppliers and buyers owe

their profitability to the extent to which they can operate
with low inventory levels or safety stocks. Experience and
theory both point towards the fact that the raw material
inventory in front of a supply chain link is almost linearly
related to the sum of the coefficients of variation of the
inter-arrival and processing times at that link (Silver
et al., 1998). Associating the coefficients of variation with
information extracted from experiments, and noting that
the cost of holding inventory due to obsolescence, de-
gradation and the opportunity cost of working capital, is
financially quantified, the value of information in mone-
tary terms appears clear and within reach.
Inventory management is another application area

where the economic ‘value of information’ is important.
The literature reports various closed-form cost functions
that describe the economic value of information. For
example, Silver et al. (1998) provide penalty functions for
different inventory control rules that depend on the
standard deviation of the demand lead-time and report
on numerical illustrations of the penalty cost where the
standard deviation is one of the parameters. Finally,
Krehbiel and Anderson (1992) use a penalty loss func-
tion, which is associated with the variance of unknown
parameters in the context of engineering product and
process design. They propose the use of a quadratic loss
function of the type introduced by Taguchi (1978) and
Taguchi and Clausing (1990).

5. Analytic algorithm: a limited look-ahead stopping
rule for a one-dimensional model

Consider the simple one-dimensional model with a fixed
noise component,

yk ¼ xkb þ e; where e � N 0; r2
� �

: ð22Þ
We start this example by assuming that r2 is known. This
assumption is relaxed later. We define r.v. Kk � BjIk, i.e.,
implying Pk � PBk jIk and wk ¼ 0. We use a compact no-
tation:

Pk
i¼1 x

2
i �

Pk x2i and
Pk

i¼1 xiyi �
Pk xiyi. Note

that at time k these expressions are known constants. The
maximum likelihood estimator of b at time k is normally
distributed,

Bk ¼
Xk

xiyi
.Xk

x2i � N b; r2
.Xk

x2i

 !
: ð23Þ

Following Equations (17) and (23), the mean and the
variance of Bk are defined as sufficient statistics. The
probability distribution of Bk is updated after observing
the ðk þ 1Þth response as follows:

E Bkþ1½  ¼ /l Bk; xkþ1; ykþ1ð Þ ¼
Pk xiyi þ xkþ1ykþ1Pk x2i þ x2kþ1

;

V Bkþ1½  ¼ /S Bk; xkþ1; rð Þ ¼ r2Pk x2i þ x2kþ1
: ð24Þ

Recall from Equation (9) that, for a given r2, the future
value of the incremental information can be pre-calcu-
lated as a function of future control factors solely. Thus,
at time k, the incremental information is a function of
xkþ1 only,

I Ykþ1;Bkð Þ ¼ 1
2 log V Bk½ =V Bkþ1½ ð Þ ¼ 1

2 log 1þ x2kþ1=
Pk x2i

 �
:

ð25Þ
Let the termination cost at the kth step be gTk V Bk½ ð Þ ¼
c2 log V Bk½ ð Þ, where c2 is a fixed uncertainty cost rate
expressed in units of dollars per bits. The experiment cost
at time k is assumed to be linear in the magnitude of the
control, namely gCk xkþ1ð Þ ¼ c1 xkþ1j j, where c1 is the ex-
periment cost per unit of the control magnitude. Such a
cost structure implies an experiment, where higher values
of the control factors are considered to be more expen-
sive. Consider a finite horizon backward DP algorithm,
where k ¼ 1; 2; . . . ;K. The termination cost at time K is
JK V BK½ ð Þ ¼ gTK V BK½ ð Þ ¼ c2 log V BK½ ð Þ, and the cost-to-
go function at the kth step is

Jk V Bk½ ð Þ ¼

min min
xkþ1

c1 xkþ1j j þ Jkþ1 /k V Bk½ ; xkþ1ð Þð Þ½ ; c2 log V Bk½ ð Þ
� �

:

ð26Þ

Thus, by investing c1 xkþ1j j at the kth step, the designer
decreases the termination cost at least by the value of
incremental information obtainable from an additional
experiment,

c2 � log V Bk½ ð Þ � log V Bkþ1½ ð Þð Þ
¼ c2 I Ykþ1;B Y1; . . . ; Yk�1; Ykjð Þ: ð27Þ
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The first minimization operator in Equation (26) opti-
mizes the number of experiments with respect to experi-
ment costs and revenues of incremental information,
which decreases with time. The second minimization
operator (inside the curly brackets) optimizes the value of
the control variable if an additional experiment is to be
conducted.
We now suggest a conservative near-optimal one-step

look-ahead heuristic for the on-line forward DP algo-
rithm. Note again that the expected incremental infor-
mation decreases monotonically with the number of
experiments (Equation (11)), therefore, if the cost of an
additional experiment is larger than the expected incre-
mental information revenue in the kth experiment, then,
it is larger than the expected incremental information in
the ðk þ 1Þth experiment. Accordingly, at each step, the
designer considers whether to continue experimenting by
comparing the cost of an additional experiment with the
minimum expected revenue generated by the incremental
information from the next experiment. That is, the cost
function at step k is written simply as

Jk V Bk½ ð Þ �

min min
xkþ1

c1 xkþ1j j þ c2 log V Bkþ1½ ð Þ½ ; c2 log V Bk½ ð Þ
� �

:

ð28Þ
If an additional experiment is carried out, the value of

the control factor is optimized as illustrated in Fig. 3.
Note that such an algorithm is practically applicable,
although in the absence of the strict monotonicity as-
sumption it may cause a premature stop of the experi-
ment, since the benefit of the incremental information
gathered from future experiments is not taken into
account. Applying such an algorithm with a limited
‘look-ahead’ of more than one experiment can improve
its accuracy.
For illustrative purpose, we consider a further simpli-

fication by assuming a fixed positive value of the control
and a fixed number of experiments. Then, the DP reduces
to a closed-form, open-loop minimization problem,
where the total cost function is given by

�JJ x;Kð Þ ¼ K � 1ð Þx� c1 þ c2 log r2=Kx2
� �

; ð29Þ
which yields an optimal solution as a function of K for a
fixed value of x, and a limited look-ahead solution as a
function of x for a fixed value of K:

�JJ �x Kð Þ ¼ c2 2þ log c21 K � 1ð Þ2r2=4c22K
 �h i

; where

x� ¼ 2c2=c1ðK � 1Þ;
�JJ �k ðxÞ ¼ c2 1þ logðc1r2=c2xÞ

� �
� c1x; where

K� ¼ c2=c1x; ð30Þ
as illustrated by Fig. 4(a and b) respectively.
Next, we present an on-line DP algorithm, which is

applicable when r2 is unknown and has to be estimated
and updated after each experiment. Note that at time k
the unbiased maximum likelihood estimator of r2 is given
by the sample variance. Applying Equations (23) and (24)
the experimental noise and the variance of Bk are esti-
mated as follows:

r̂r2k ¼
1

k � 1
Xk
i¼1

yi � xiBð Þ2 ¼
Pk x2i

Pk y2i �
Pk xiyi
 �2

k � 1ð Þ
Pk x2i

;

V Bk½  ¼
Pk x2i

Pk y2i �
Pk xiyi
 �2

k � 1ð Þ
Pk x2i
 �2 : ð31Þ

Fig. 3. A schematic illustration of the cost function of an ad-
ditional experiment at time k. The value of the control is op-
timized to support a single step look-ahead DP algorithm.

Fig. 4. (a) The total cost function �JJx Kð Þ, for a fixed value of the control factor (x) as a function of the number of experiments (K),
where c1 ¼ 1 and c2 ¼ 4; and (b) the total cost function �JJK xð Þ, for a fixed number of experiments (K) as a function of the control
factor value (x), where c1 ¼ 1 and c2 ¼ 2.

Sequential DOE via dynamic programming 1095



Similarly to the previous example, the variance of B de-
creases as the values of the control factor increase.
Namely, multiplying each control factor by a positive
constant c results in a reduction of the estimator variance
by an order of 1=c2. Note, however, that now the future
values of the variance of B can not be pre-calculated, as
was done in the previous example, since they explicitly
depend on future response values. Accordingly, one has
to consider an on-line DP algorithm based on the ex-
pected incremental information with respect to future
responses. Using Equation (21) the incremental infor-
mation at time k, for this case, is given by

I Ykþ1;Bkð Þ ¼ E
ykþ1

"
1
2 log

�
V Bk½  � k

Pk x2i þ x2kþ1
 �2

Pk y2i þ y2kþ1
 � Pk x2i þ x2kþ1

 �
�

Pk xiyi þ xkþ1ykþ1
 �2

0
B@

1
CA
3
75;

ð32Þ

which is a function of xkþ1 with minimum at xkþ1 ¼ 0
(where ykþ1 ¼ e). The expectation is taken with respect to
the future experiment response ykþ1. Note that at time k,
Ykþ1 is a Gaussian random variable whose pdf depends
on xkþ1, past responses and past controls as follows:

Ykþ1 xkþ1ð Þ y1; . . . ; yk; x1; . . . ; xkð Þj �

N xkþ1B̂Bkþ1;

Pk x2i þ x2kþ1
 �

r̂r2kþ1Pk x2i

2
4

3
5: ð33Þ

In particular, by applying Equations (23) and (31) it
follows that

Ykþ1 xkþ1ð Þ y1; . . . ; yk; x1; . . . ; xkð Þj �

N
xkþ1

Pk xiyiPk x2i
;

Pk x2i þ x2kþ1
 � Pk x2i

Pk y2i �
Pk xiyi
 �2� �

k � 1ð Þ
Pk x2i
 �2

0
BB@

1
CCA:

ð34Þ
Accordingly, the on-line one-step look-ahead DP algo-
rithm for positive controls is:

which implies, once again, that one conducts an addi-
tional experiment, paying the cost c1x1, only if the reve-
nue associated with the expected incremental information
is higher than the experiment costs, namely, if the fol-
lowing condition is satisfied:

c2 E
ykþ1

I� Ykþ1;Bkð Þ½  ¼ c2 � log V Bk½ 

� E
ykþ1

c2 � log V Bkþ1½ ð Þ½  � c1x1; ð36Þ

where the star in I� Ykþ1;Bkð Þ denotes an optimal selection
of the control factor xkþ1 that maximizes the net revenue
of an additional experiment. Equation (36) can be com-
puted numerically for given response values. Moreover,
we suggest both an upper bound and a lower bound on
the value of incremental information. These bounds are
independent of future responses and may assist the de-
signer to evaluate the minimum and the maximum benefit
obtainable by an additional experiment, and thus deter-
mine whether to continue experimenting. We derived
these lower and upper bounds by applying, respectively,
the Jensen’s inequality or utilizing a Taylor series ex-
pansion about E ykþ1½  (proofs are given in Ben-Gal and
Caramanis (1999)):

1

2
log 1þ

x2kþ1Pk x2i

 !
� I Ykþ1;Bkð Þ � 1

2
log

Pk x2i þ x2kþ1
 �

Pk x2i
� k
k � 1

0
@

1
A

þ 1

2 k � 1ð Þ : ð37Þ

Note that the bounds approach each other, at a rate
proportional to 1=k, which is equivalent to the decrease
rate of incremental information. A similar approach can
be used in the multi-dimensional case when observation
error is present.

6. Numerical example: a limited look-ahead stopping
rule for a multi-dimensional model

In this section, we implement the limited look-ahead
algorithm to the multi-dimensional model given in
Equation (7), where the control is a design matrix. The

Jk V Bk½ ð Þ � min min
xkþ1

E
ykþ1

gCk xkþ1ð Þ þ gTkþ1 V Bk½ ; ykþ1; xkþ1ð Þ
� �� �

; gTk V Bk½ ð Þ
� �

¼ min

min
xkþ1

E
ykþ1

c1xkþ1 þ c2log
Pk

x2i þx2kþ1

� � Pk
y2i þy2kþ1

� �
�
Pk

xiyiþxkþ1ykþ1
� �2

k�1ð Þ
Pk

x2i þx2kþ1

� �2
" #( )

;

c2log
Pk

x2i
Pk

y2i �
Pk

xiyi
� �2

k�1ð Þ
Pk

x2i

� �2
 !

;

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
;

ð35Þ
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forward limited look-ahead algorithm is presented in
Fig. 5. It consists of two parts both using the Coordinate
Exchange Algorithm (CEA) suggested originally by Feo-
dorov (1972). Originally, the CEA was designed to gen-
erate D-optimal designs by improving a starting design
and by making incremental changes to individual ele-
ments of the design matrix. At each iteration, the CEA
considers both addition (as suggested by Box and Hunter
(1965)) and deletion of design points. Among all possible

exchanges of pairs of points it selects the one that gen-
erates the greatest increase in the determinant of the in-
formation matrix. The CEA constructs D-optimal designs
based on three inputs: (i) the number of control factors, n;
(ii) the model order (e.g., ‘main-effects’, ‘linear with in-
teractions’, and ‘quadratic’); and (iii) the required number
of experiments, m. Since under the Gaussian assumption
the H-optimality and the D-optimality criteria coincide,
the CEA is used to generate H-optimal designs.

Fig. 5. The limited look-ahead forward algorithm for the multi-dimensional case.
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In the initial part, the CEA is applied to generate an
initial H-optimal design. The outputs of this part are the
initial entropy, H 0, and the initial design matrix, X0 with
m0 experiments supporting the lower model order that is
assumed at that point.
In the second part, the limited look-ahead algorithm

uses the CEA to generate an economic-optimal design
with respect to the expected information revenues and the
expected experimental costs, as discussed in Section 4.2
and Equation (19). The algorithm in this part is per-
formed iteratively (see Fig. 5). Given a model order and
the number of factors, the algorithm generates the
smallest feasible design matrix, containing m1 experi-
ments (i.e., enough experiments to estimate all the model
parameters). Then, using a given cost function, the
algorithm calculates the net expected revenue by consid-
ering both the expected revenues of incremental infor-
mation in units of dollars per bit, as well as the expected
experimental costs measured in units of dollars per ex-
periment. At each step, a larger design, in which m1 is
augmented by d new experiments (m1 :¼ m1 þ d) is con-
sidered. CEA is then employed to generate a new H-op-
timal design. The net expected revenue of the augmented
design is calculated and compared with the net expected
revenue of the old design. If the new design is more
profitable, the algorithm selects it as the best design thus
far and the next iteration begins. If the new design is less
profitable, the algorithm stops and declares the best de-
sign found thus far as the optimal one for the current
model order.
The suggested forward algorithm is independent of the

cost function and the step-size (of course, a step-size of
d ¼ 1 is the most accurate step-size, although it requires
higher computational effort). The suggested algorithm
has another appealing feature. At each iteration, after
obtaining the design matrix that maximizes the expected
net revenue for the current model order, the algorithm
examines a model upgrade. Provided that statistical
analysis supports the significance of the model upgrade,
its economic desirability is evaluated. One can use a
model upgrade procedure to introduce an adaptation
towards higher order terms of the model. For example,
one can select the initial model as ‘linear’, with quadratic
term coefficients insignificantly small. Then, as informa-
tion is gathered, if quadratic terms are observed to have a
significant impact on the response, one can investigate an
increase of the model order. The model upgrade proce-
dure reduces the initial model-bias of the limited look-
ahead algorithm: instead of assuming a known model
from the beginning, the algorithm starts with a low-order
model increasing it gradually, in a fashion similar to that
of the RSM. When the order of the model increases, the
amount of information obtained for a given (fixed)
number of experiments will increase since more parame-
ters can be now estimated. For this reason, the algorithm

considers a model upgrade at a point when it is no longer
economical to conduct more experiments under the cur-
rent model. During the model upgrade process, the al-
gorithm calculates the incremental information in each
iteration by applying an augmented version of the CEA.
The augmented CEA allows selection of additional ex-
periments optimally, given the augmented design matrix
of the experiments performed in the previous stages (for
more details see in Atkinson and Donev (1992)).
Table 1 presents the results of a numerical experiment

with the limited look-ahead algorithm implemented using
the MATLAB statistical toolbox. For simplicity, we
consider an intuitive cost function: the net expected rev-
enue is the difference of expected income minus excepted
costs. We calculate the expected income by multiplying
the expected incremental information by the constant
income rate c1 ¼ 10ð$=bitsÞ, and compute the expected
cost by multiplying the number of augmented experi-
ments, m1, by cost rate c2 ¼ 1 or c2 ¼ 1:2 ($/experiment).
The number of factors examined ranges from three to six
factors. The integer step-size used is d ¼ 1, i.e., the ex-
periment size at each iteration increases by a single run.
We consider several models, including ‘main effects’,
‘main effects with interactions’ and ‘quadratic’. Table 1
presents the number of minimum required initial runs m0,
the number of optimally augmented runs m�

1, the incre-
mental information and the total expected revenue in
each case.
The number of optimally augmented experiments, m�

1,
and as a result the design matrix, X1, are affected by the
number of factors and are very sensitive to the order of
the model. The number of additional experiments is (not
surprisingly) sensitive to the cost ratios. However, it was
reassuring to observe that the initial number of experi-
ments has almost no effect on the total number of ex-
periments performed by the proposed algorithm.
Figure 6 presents a sensitivity analysis of expected

revenues as a function of the experimental size for three
factors and different order models. It also presents the
process of upgrading the model order by using optimal
augmentation of experiments. Revenues are plotted
against the number of experiments for three different
models separately: ‘main effects’, ‘main effects with in-
teractions’ and ‘quadratic’ for the same cost function
considered above with cost rates c1 ¼ 10 ($/bit) and
c2 ¼ 1:2 ($/experiment). Note that the incremental in-
formation for a given number of experiments increases
with the model order, resulting in higher expected net
revenue. Thus, the optimal number of experiments grows
with the model order. The ‘model upgrade’ line represents
the process of gradually upgrading the model order, using
the augmented CEA. Particularly, in this example, we
upgrade the model order once the optimal design for the
current model order is found and it is no longer profitable
to increase the size of the set of experiments in current
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DOE. We assume that two model-order upgrades are
performed following statistical evidence that additional
coefficients are significant. Note that almost no revenues
are lost during this upgrading process, since the aug-
mented CEA accumulates information efficiently (that is,
with few iterations the ‘model upgrade’ line is very close
to the higher order model line). This is the reason, for
example, that the maximum revenue of $78.96 is obtained
with a fixed quadratic model using a design matrix with
50 experiments, while a revenue of $78.1 is obtained for
the same number of experiments by upgrading from the
‘interaction’ model to the quadratic model, and using
the augmented CEA to add iteratively 15 experiments to
the best design obtained for the ‘interaction’ model.

7. Conclusion

We proposed a dynamic programming framework for
sequential design of experiments. The DP algorithm op-
timizes both the number of experiments and the actual
design of each experiment. The number of experiments is
optimized since it is shown that the incremental infor-
mation, which is gained from additional experiments, is
decreasing with the number of experiments (as 1=k for
orthogonal coded designs). The value of the control (i.e.,
the design of the next experiment) is optimized at each
step of the algorithm with respect to the trade-off between
the cost of an additional experiment and the revenue
generated by its incremental information. We suggested a
stochastic DP approach to DOE and applied it by both a
backward algorithm and a forward, limited look-ahead
algorithm, which is practically convenient and on the
average near-optimal. We used both an analytic one-di-
mensional implementation and a numerical multi-di-
mensional implementation to illustrate the proposed
approach.
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