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In this paper we follow previous “pseudo-stochastic” approaches that solve stochastic control problems by using deterministic optimal
control methods. In a similar manner to the certainty equivalence principle, the suggested model maximizes a given profit function
of the expected system outcome. However, unlike the certainty equivalence principle, we model the expected influences of all future
events (including those that are expected beyond the planning horizon), as encapsulated by their density functions and not only by
their mean values. The model is applied to the optimal scheduling of multiple part-types on a single machine that is subject to random
failures and repairs. The objective of the scheduler is to maximize the profit function of the produced multiple-part mix. A numerical
study is performed to evaluate the suggested pseudo-stochastic solutions under various conditions. These solutions are compared to
a profit upper bound of the stochastic optimal control solutions.

1. Introduction

A major difficulty that has to be resolved when modeling
a stochastic dynamic system is how to treat information
regarding future events. Several modeling approaches have
been suggested for stochastic optimal control (Boukas et al.,
1996; Sethi et al., 1998; Bertsekas, 2000). Yet, the effects of
future information on the decision-making process within
a finite planning horizon are not fully understood (Neck,
1984).

Neck (1984) suggested the division of the analytical mod-
eling of stochastic optimal control into two approaches
which he called “stochastic optimal control” and “pseudo-
stochastic.” The stochastic optimal control approach is con-
cerned with models where the state variables are distributed
stochastically. In these models, the dynamic equations are
often approximated by Ito’s differential equations that in-
clude additive components, such as: (i) the expected out-
come of random variables; (ii) the control function; and (iii)
a white-noise Weiner process that represents the environ-
mental changes. As an example of this approach, consider a
Markovian process that models a dynamic system in which
the state variables are random (Kimemia and Gershwin,
1983; Haurie, 1995; Farid and Davis, 1999).

The large body of literature that deals with the modeling
of stochastic optimal control has revealed common difficul-
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ties in the representation of uncertain future events. Elhafsi
and Bai (1997) selected the state variable of the production
system to be the random variable whose expectation is esti-
mated. Such a selection is problematic since the distribution
of the state variables strongly depends on a priori unknown
optimal control. Kleindorfer and Glover (1973) discussed a
linear system whose dynamics were described by a discrete
stochastic process with a randomized component that was
assumed to be additive. Such an assumption limits the con-
sideration to approximate models of stochastic behavior.
Haurie (1995) dealt with the problem in which demand and
machine failures were assumed to be independent sources
of uncertainty. The uncertainty sources were combined into
a single, continuous-time Markov chain, where each state
is a vector. The author assumed that the dynamic equation
is represented by the sample mean and sample variance of
a random demand. Love and Turner (1993) represented the
variability of the process by a given error density function,
which influenced the state variable.

The pseudo-stochastic approach solves stochastic prob-
lems by using deterministic optimal control methods. This
approach was used, for example, in Tapiero and Venezia
(1979), Kamien and Schwartz (1981) and Tapiero (1983).
Perhaps the earliest and most applied pseudo-stochastic
method is known as the certainty equivalence principle. In
the context of optimal control theory, the certainty equiv-
alence principle is applied to a control problem with linear
dynamics and a quadratic objective function in the presence
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of a Gaussian white noise. Assuming that the state variable
cannot be directly measured, it can be shown that the op-
timal control can be derived based on the estimate of the
state variable as obtained by the Kalman filter. As indicated
in Sethi and Thompson (2000), the principle is termed by
different names in the literature. In Economics, it is known
as the “certainty equivalence principle” and in Engineering
and Mathematics, as the “separation principle”. When using
the first term, one emphasizes the fact that the state variable
can be replaced by its estimates and used for the purpose
of optimal feedback control. In other words, one can say
that the certainty equivalence holds, if the optimal policy
of the stochastic control problem is unaffected when the
disturbances are replaced by their means (Bertsekas, 2000).
When using the term “separation principle,” one emphasizes
that the optimal control process is broken into two steps:
(i) estimating the state variable by using an optimal filter;
and (ii) using that estimate in the feedback control formula
for the deterministic problem (Sethi and Thompson, 2000).
The certainty equivalence control is a related suboptimal
policy that has been suggested to replace the stochastic con-
trol problem with the “deterministic equivalent” problem
(Whittle, 1982; Bertsekas, 2000). It implies that a stochastic
control problem is replaced by a deterministic one, where
at each time period the uncertain quantities are fixed at
some “typical” values: not necessarily the expected values.
The remaining difficulty in all these approaches is how to
handle stochastic phenomena by deterministic state vari-
ables that should capture all future realizations. Such a task
seems impossible for the general case when one uses only
the expected values of the unknown quantities, rather than
using their (known) density functions, as we endeavor to
do here.

In this work we follow the above-mentioned pseudo-
stochastic approaches to obtain an optimal control of a
dynamic system over a given planning horizon. Similar
to these approaches, our model is deterministic in nature
and, thus, allows us to analyze the optimal control by means
of the maximum principle. The main difference with respect
to these approaches, including the certainty equivalence
principle, is that we try to incorporate future stochastic
phenomena by using all the known information about the
uncertain quantities, as captured by their density functions.
In particular, we apply the suggested method to a specific
optimal control problem of scheduling multiple part-types
on an unreliable machine.

The rest of the paper is organized as follows. In Section
2, a general modeling formulation is presented. An appli-
cation of this model is given in Section 3, where an optimal
control problem of scheduling multiple part-types on an
unreliable machine is analyzed. Based on the properties of
the optimal solution, an optimal scheduling procedure that
maximizes a given profit function of the produced parts
is suggested. It is evaluated with respect to El-Ferik et al.
(1998) that practically deals with the same application in
the framework of stochastic optimal control. In Section 4,

a numerical analysis of the suggested application is con-
ducted. In particular, the obtained pseudo-stochastic solu-
tion is compared to an upper bound of an unknown solu-
tion of the stochastic optimal control. It is found that the
difference between these solutions is negligible, being in the
vicinity of less than 0.8%, for all instances of the considered
problem. Section 5 concludes the paper.

2. Pseudo-stochastic model

In this section we consider optimal control modeling
of systems that operate under uncertainty. Various real-
life systems fall into this category. Examples include in-
ventory systems that are controlled by a given set of rules,
heuristic scheduling systems, service systems and so on.

2.1. Main idea

We follow the pseudo-stochastic approach that was de-
scribed in Section 1. We model future uncertain events by
their probability density functions. This allows us to con-
sider the influence of all future events (including those that
are expected beyond the planning horizon) on the system
dynamics within the finite planning horizon. The magni-
tude of an event’s influence on the state variables at future
time t is proportional to the probability for that event to
occur at time t . The model seeks an optimal control func-
tion u∗(t), which maximizes a performance measure along
the planning horizon T .

2.2. Modeling assumptions and formulation

We consider the following assumptions when applying the
suggested pseudo-stochastic approach to a real-life system:

1. all sources of uncertainty are known;
2. different sources of uncertainty have an independent in-

fluence on the system states;
3. the dynamics of the state variables can be described by

differential equations.

The model formulation now follows. Consider a dynamic
system characterized by a set of state variables which define
the system state at each point in time. The variables are de-
noted by the vector X(t) and follow the dynamic equation,
Equation (1), and the set of constraints of Equations (2)
and (3):

dX(t)
dt

= f(X(t), u(t), M(t), t), X(0) = X0, (1)

g(X(t), u(t), t) ≤ 0, (2)

p1(X(T)) ≤ 0, p2(X(T)) = 0 (3)

where f(X, u, M, t) is a deterministic vector-valued function
(differentiable with respect to (w.r.t.) X, u, and integrable
w.r.t. M and t) which defines the dynamics of the state vari-
able vector X(t); u(t) is the control vector-function which
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is integrable; and M(t) is a function which represents un-
certainties in the system. Particularly, M(t) encapsulates
all future (discrete) events that will influence the system
dynamics. Functions g, p1 and p2 defining the constraints
imposed on the system are assumed differentiable w.r.t. their
arguments.

Let there be K different types of stochastic events. The
inter-arrival times between successive events of type k, Zk,
k = 1, . . . , K are independent and identically distributed
random variables with probability density ϕk(t). The oc-
currence time t , of the nth event (n = 1, . . . , ∞) of type k,
given that the occurrence of the kth event type before t = 0
happened at t = −sk, is a stochastic variable denoted by
Zk

n (s1, . . . , sK ) with a given density function πk
n (t). Here-

after, we omit the parameters sk for simplicity and without
loss of generality.

The function M(t) represents an expected influence of
the uncertainty sources at time t . We assume that it takes
an additive form with respect to

∑∞
n=1 πk

n (t). In Appendix
A we demonstrate the calculation of function M(t) for a
special case. Generally, the function M(t) is assumed to be
of the following form:

Ṁ(t) =
K∑

k=1

αk

∞∑
n=1

πk
n (t), (4)

where the multipliers αk, which may be either positive or
negative, represent the effects of the kth event type on the
system dynamics and normalize the units of the various
density functions to a single scale.

A performance measure of the system dynamics is:

U(X(T)) → max, (5)

where U(X) is a profit function of outcome X. Thus, the
problem is to find off-line the optimal control function
u∗(t) that will maximize the performance measure of Equa-
tion (5) under the system dynamics of Equation (1) and the
constraints of Equations (2) and (3).

The problem represented by Equations (5), (1)–(3) is the
canonical form of the deterministic optimal control and
can, in principle, be solved by means of the maximum prin-
ciple and by known numerical procedures (Maimon et al.,
1998; Sethi and Thompson, 2000). Moreover, in certain
cases such problems can be solved more easily on the basis
of their specific properties, which also give a basis to the
development of simple heuristics, as illustrated in the next
sections.

Maximizing the profit of an expected system outcome,
as we suggest here, is an entirely different problem to that
of maximizing expected profit over all possible system out-
comes. In fact, the famous Jensen inequality (Cover and
Thomas, 1991; Hillier and Lieberman, 1995) addresses ex-
actly that phenomenon and ensures that for a convex profit
function, the outcome of the latter approach will be greater
than or equal to the outcome of the former approach.
The statements of stochastic problems in the framework

of stochastic optimal control are given, for example, in
Akella and Kumar (1986) and in El-Ferik et al. (1998).
It is important to note that although the stochastic opti-
mal control tries to solve the “real problem” by the latter
approach, it is not only more complicated and often com-
putationally intractable, but also, in many cases, unfeasible.
In particular, an exact control for any possible trajectory in
the system is unknown in many cases, as illustrated in the
next section, and, thus, obtaining a solution based on this
paradigm is unfeasible. There are very rare cases (Akella
and Kumar, 1986) that do allow rigorous analytical solu-
tion of a stochastic optimal control problem. At the same
time, although a control for the suggested approach might
be obtained easily, it should be carefully checked against
some upper bound (even a numerical one) to ensure its rel-
evance as demonstrated next.

3. Maximizing profit: modeling application problem

In this section we exemplify both the advantages and ap-
plicability of the suggested modeling approach by solving
a stochastic scheduling problem. We consider the schedul-
ing of multiple product-types on a single machine which
can process any part type from a given set of cardinality I .
The machine is subject to random failures and repairs. An
off-line production planning (scheduling) has to be per-
formed at the beginning of the planning horizon t = 0.
The machine state at any future time (t > 0), denoted by
a zero for an idle state or by a one for a running state, is
unknown a priori, yet, the time-dependent probabilities of
machine failures and repairs can be calculated. In partic-
ular, we define two new random variables, Z1

n ≡ Fn(s) and
Z2

n ≡ Rn(s), n = 1, . . . ,∞, denoting, respectively, the time
of the nth failure (recovery), provided that the last change
of the machine-state before t = 0 happened at t = −s. The
random variables Fn(s) and Rn(s) are defined under two
initial conditions:

1. If at t = 0 the machine is up (see Fig. 1):

Fn(s) = F1(s) +
n−1∑
j=1

R1j +
n−1∑
j=1

F1j;

Rn(s) = F1(s) +
n−1∑
j=1

R1j +
n∑

j=1

F1j. (6)

2. If at t = 0 the machine is down:

Fn(s) = R1(s) +
n∑

j=1

R0j +
n−1∑
j=1

F0j;

Rn(s) = R1(s) +
n−1∑
j=1

R0j +
n−1∑
j=1

F0j, (7)

where Rij is a random variable denoting the time between
the jth recovery and the ( j + i)th failure, i = 0 and 1 and
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Fig. 1. Machine state dynamics.

also Fij is a random variable denoting the time between the
jth failure and the ( j − i + 1)th recovery, i = 0 and 1.

The system state variable at time t , which is, in this case,
the inventory level of part types, depends on the expected
machine state M(t), where:

0 ≤ M(t) ≤ 1. (8)

The derivative of M(t) with respect to t , i.e., the rate of the
expected machine state at time t , is equal to (see proof in
Appendix A):

Ṁ(t) =
∞∑

n=1

[
πR(s)

n (t) − πF(s)
n (t)

]
, M(0) = M0, (9)

where, π
R(s)
n (t) denotes the probability density function of

Rn(s), and π
F(s)
n (t) denotes the probability density function

of Fn(s), and M0 is the initial machine state (zero or one).
The right-hand side of Equation (9) includes an infinite

sum of probability density functions, since in a stochastic
environment, events which are expected beyond the plan-
ning horizon, have a positive probability to occur within
the planning horizon.

If we were interested in solving a “certainty equiva-
lence” approximation, i.e., a deterministic problem where
the stochastic parameters in the dynamics are replaced by
their expected values, we would use M(t) as shown in Fig. 2.
That is, we would assume a representing “average scenario”
where the machine is working for E[Rij] time units and then
it is idle for E[Fij+1] time units. Our pseudo-stochastic ap-
proach goes far beyond this by making use of the entire

Fig. 2. Function M(t) in the “certainty equivalence” approxima-
tion case.

probablity distribution of the events as in Equation (9),
rather than only their expected values.

An expression similar to Equation (9) was used in Herbon
et al. (2004) for a pseudo-stochastic description of the de-
mand process, where the demand rate of parts arriving for
processing was modeled as:

∞∑
n=1

πn(t, s),

where πn(t, s) is the probability density funciton of the nth
part arrival at time t , provided that the last part arrival
before t = 0 happened at t = −s.

As before, we omit the parameter s when using the func-
tion M(t) for the analysis of the profit maximization prob-
lem, which is considered in the next section.

3.1. Optimal control model

Let Xi(t) denote the expected number of parts of type
i = 1, . . . , I , accumulated by time t , and ui(t) denote the
scheduler, which controls the production process:

ui(t) =
{

1, if machine produces type i at time t,
0, otherwise. (10)

The problem is to maximize the profit function:

Max U(X1(T), . . . , XI (T)), (11)

subject to the following constraints:

1. The change in Xi(t) is equal to the expected production
rate:

dXi(t)
dt

= M(t)ui(t)
ti

, ∀i, t Xi(0) = X0
i , (12)

where ti is the processing time of part type i and X0
i is

the initial surplus of parts i.
2. The machine can process only one part at a time, i.e.,

I∑
i=1

ui(t) ≤ 1, ∀t. (13)

As stated earlier, the problem defined by Equations (10)–
(13), which is in general a very difficult problem, can be
solved on the basis of its specific properties that allow us
to transform the problem into an equivalent and simpler
form. This is done by mapping the time variable t to a new
variable,

t ′(t) =
∫ t

0
M(τ )dτ .

Intuitively, such a mapping means that the “machine clock”
slows down at a time interval where the expected machine
state is less than one. The higher the probability is that
the machine is down, the slower is the “machine clock”
at that time interval. Therefore, as the expected machine
state decreases, the time interval required to produce a part
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increases. Following this transformation, the new planning
horizon is:

T ′ =
∫ T

0
M(τ )dτ ,

and the equivalent form of the problem can now be written
as:

Max U(X1(T ′), . . . , XI (T ′)), (14)

subject to

dXi(t ′)
dt ′ = ui(t ′)

ti
, ∀i, t ′ ∈ [0, T ′], Xi(0) = X0

i , (15)

I∑
i=1

ui(t ′) ≤ 1, ui(t ′) ∈ {0, 1} . (16)

Note that the profit function in Equation (14) is static, i.e.,
it depends on the machine net working time but not on the
sequence (timing) of the product types along the planning
horizon [0, T ′]. Thus, by integrating Equation (15) along
[0, T ′], we reduce the dynamic problem defined by Equa-
tions (14)–(16) to a static one:

Max U(X1(T ′), . . . , XI (T ′)), (17)

subject to

I∑
i=1

(
Xi(T ′) − X0

i

)
ti ≤ T ′ and Xi(T ′) ≥ X0

i . (18)

This is a non-linear programming problem with decision
variables Xi(T ′) which is, in general, very hard to solve. The
optimal policy for a linear profit function, U = c + ∑

i aiXi,
where c and ai are given constants, is to produce part type
i = arg max(ai/ti), which generates the highest increment
of the profit function. The optimal solution for a convex
separable function is similar. However, if U(X) is not lin-
ear or convex separable, the optimal solution might require
the machine to switch from one part-type to another, thus
producing a subset of part types. In such a case, the prob-
lem becomes hard and is solved numerically by making use
of methods for maximizing the non-linear function Equa-
tion (17) on the simplex of Equation (18) (Bertsekas, 1999).
Since the problem of Equations (17) and (18) is static, one
may choose any sequence of the product types to obtain the
optimal schedule of the machine. The switching time, ri, at
which the machine starts processing product type i + 1, is
then obtained iteratively from the following expression:∫ ri

ri−1

M(τ )dτ = Xi(T ′)ti, ∀i = 1, . . . , I, (19)

where r0 = 0 and rI = T .
The suggested solution approach can now be summa-

rized as follows.

Step 1. Calculate the expected machine state, M(t), from
Equation (9) (see technical details in Appendix B)

Table 1. Processing times and profit function coefficients of dif-
ferent part types

Part
types P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

ti 5 10 8 12 15 9 30 3 45 25
ai 0.3 0.4 0.2 0.8 0.08 0.5 1.0 0.1 0.9 0.6

Step 2. Calculate the transformed time horizon:

T ′ =
∫ T

0
M(τ )dτ .

Step 3. Find the optimal produced quantities of parts
Xi(T ′), i = 1, . . . , I , by solving Equations (17) and
(18) (a detailed algorithm for solving a case of
Equations (17) and (18) is given in Appendix C).

Step 4. Calculate the switching times ri, i = 1, . . . , I , from
Equation (19).

Note that the suggested pseudo-stochastic formula-
tion admits an exact analytical solution. In contrast to
the pseudo-stochastic formulation, the stochastic optimal-
control formulation significantly complicates the solution,
as shown in El-Ferik et al. (1998). In fact, in El-Ferik et al.
(1998) only a heuristic Simple Maximal Hedging (SMH)
policy was developed to control a single machine over a
long time period. Numerical optimization over the class of
SMH policies was then performed by solving the Hamilton-
Jacobi-Bellman equations. An exact analytical solution was
not obtained even for a simpler version of the problem with
an additional simplifying assumption that allows a num-
ber of different part types to be produced simultaneously.
Thus, using the suggested pseudo-stochastic formulations,
one can solve more complex models that approximate the
solutions of stochastic optimal control.

In spite of the fact that the original problem of Equa-
tions (11)–(13) seeks an “open-loop” optimal solution, it
turns out that, due to the specific properties of the prob-
lem, the optimal solution of Equations (11)–(13) is a feed-
back control rule: this is so because the machine switches
to another product when the produced quantity reaches
the desirable threshold Xi(T ′). In order to uniquely define
the obtained feedback controller for an on-line application,
and, thus, to make the controller usable (not necessarily
optimal) in the stochastic optimal-control framework, we

Table 2. Probability density functions of work and repair times
(with parameters measured in minutes)

Case 1 Case 2 Case 3

ϕF(t) Uniform Uniform exp(50)
[40,60] [30,70]

ϕR(t) Uniform Uniform exp(10)
[5,15] [0,20]
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Fig. 3. Numerically obtained expected machine state, M(t), for the three cases.

assume the following: (i) if in a specific realization the net
machine working time is smaller than T ′, then only a por-
tion of the required quantities Xi(T ′) are produced; and (ii)
if in a specific realization the net machine working time is
greater than T ′, then all the required quantities Xi(T ′) are
produced, and in the remaining time the machine produces
one of the part types, which is chosen arbitrarily. Since this
“pseudo-stochastic” policy is implementable, when apply-
ing it on-line it serves as a lower bound for the stochastic
optimal control, which is unknown as discussed above. In
the next section we also develop a numerical upper bound
for the stochastic optimal control. Thus, the stochastic opti-
mal control lies between the suggested “pseudo-stochastic”
solution and the numerical upper bound.

4. Numerical analysis

In this section, we present a numerical example to demon-
strate the applicability of the proposed method and to com-
pare its result with an upper bound for the stochastic opti-
mal control solution.

Table 3. Parameters of the optimal solution

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

Case 1 Xi 7.14 4.43 2.39 8.05 0.0 6.54 3.52 3.52 1.71 2.26
ri 109.2 223.0 417.3 0.0 600.0 152.5 276.6 403.8 508.0 440.6

Case 2 Xi 7.13 4.42 2.38 8.03 0.0 6.53 3.5 3.51 1.71 2.25
ri 110.0 224.3 417.9 0.0 600.0 153.5 277.8 405.1 509.2 441.0

Case 3 Xi 7.10 4.40 2.37 8.00 0.0 6.50 3.50 3.50 1.70 2.24
ri 113.5 226.5 418.2 0.0 600.0 156.2 279.4 405.5 508.3 441.0

4.1. System description

Consider a single machine subjected to random failures
and repairs. The machine can process 10 part types, each
requiring a single operation. The processing times of the
parts, ti, i = 1, . . . , 10 are given in Table 1.

Three cases are considered and presented in Table 2. Each
case consists of different density functions of the work time,
ϕF(t), and repair time, ϕR(t). The density functions are cho-
sen to have identical mean values, in order to emphasize that
the optimal solution (scheduler) takes into account higher
distribution moments. In terms of uncertainty, case 3 has a
much higher variance for both work and repair times than
the other two cases, whereas case 1 is the closest to the
deterministic case.

The planning horizon over which the production system
operates is T = 600 minutes. The initial quantity of parts
X0

i i = 1, . . . , 10 is equal to zero. Next, the profit function
is to be chosen.

Several methods (Korhonen and Wallenius, 1988; Brans
and Mareschal, 1994) have been suggested over the years
to assist users to define appropriate profit functions.
In this example, we choose a simple concave separable
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Table 4. Profit function values

“Worst-sequence” “Best-sequence” Numerical
pseudo-stochastic pseudo-stochastic upper

solution solution bound

Case 1 7.578 7.588 7.591
Case 2 7.558 7.583 7.590
Case 3 7.453 7.523 7.563

function:

U(X) =
∑

i

ai ln(Xi + 1), (20)

where the weights ai (given in Table 1) represent subjective
profit function coefficients obtained from producing part
type i.

4.2. Results

Figure 3 presents the expected machine state, M(t), ob-
tained by integrating Equation (9) for all three cases. A pro-
cedure for computing M(t) is detailed in Appendix B. The
resulting quantities of the produced parts are presented in
Table 3. They are obtained analytically by solving the prob-
lem defined by Equations (17) and (18) with the Lagrange
multipliers method (a solution algorithm for a case of
the problem of Equations (17) and (18) can be found in
Appendix C).

Now, in order to apply the obtained controller on-line
as described in the previous section, we have to choose a
production sequence. Generally, the sequence of part types
should not affect the value of the profit function signifi-
cantly, since their relative contributions are already con-
sidered by the quantities to be produced. Thus, even if a

Fig. 4. The empirical distributions of the machine net working time for the three cases.

non-valuable part type is produced in the beginning of the
time horizon, its low quantity will result in a short produc-
tion time slot. For the purpose of illustration, we considered
two extreme types of sequences for production. The first se-
quence, {4,1,6,2,7,8,3,10,9,5}, which is supposed to be the
most effective one (termed as “best sequence” in Table 4), is
ordered with respect to a decreasing ratio ai/ti. The second,
least effective sequence, {5,9,10,3,8,7,2,6,1,4}, is simply in
reverse order of the best sequence (this sequence is termed
as “worst sequence” in Table 4).

The obtained profit function values for the pseudo-
stochastic solution are given in Table 4. Note that for all
cases, as expected, the difference between the “worst se-
quence” and “best sequence” is negligible. Although the
distributions of all cases have the same mean, the opti-
mal values are different, emphasizing that the suggested
scheduler depends on higher moments of the probability
distributions.

Since the solution for the stochastic optimal control
is unknown, we compare our pseudo-stochastic solution
to a numerical upper bound for the stochastic optimal
control problem, which is given in the last column of
Table 4. The upper bound is computed by the following
procedure:
Step 1. Generate 5000 000 arbitrary realizations of com-

plete sequences of machine breakdowns and repairs
in the planning horizon of 600 time units. Use the
given distributions to generate machine work times
and repair times. For each realization calculate the
machine net working time.

Step 2. Calculate the empirical distribution of the machine
net working time with a resolution of one time
unit, pj, j = 1, . . . , 600. Figure 4 depicts the empir-
ical distributions of the machine net working time
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Table 5. Profit function values

“Worst-sequence” “Best-sequence” Numerical
pseudo-stochastic pseudo-stochastic upper

solution solution bound

Case 1 37.79 37.96 38.00
Case 2 37.50 37.90 37.99
Case 3 36.65 37.62 37.91

(rounded up) for all three cases. Note that for all
cases, the empirical distributions resemble a Gaus-
sian distribution with its variance being propor-
tional to the initial variance of the machine work
and repair times.

Step 3. Solve analytically the problem defined by Equa-
tions (17) and (18), for each value of the machine net
working time, and obtain the optimal profit func-
tion values, Uj, j = 1, . . . , 600.

Step 4. Obtain the numerical upper bound by the empirical
expectation of the optimal profit function, i.e.:

UB =
600∑
j=1

pjUj.

Provided that pj, j = 1, . . . , 600 represent the “real” un-
known distribution of the machine net working time, the
above expression is an upper bound for the profit value of
the stochastic optimal control. The reason for this is that
when calculating the numerical upper bound, UB, we as-
sume that whatever the future scenario is, its net working
time is known in advance. Therefore, we can apply the op-
timal control in each scenario. As a result, we achieve a
higher profit in comparison to a practical setting when the
future scenario and its net working time are unknown.

It is interesting to reveal that for the particular consid-
ered problem, the pseudo-stochastic approach provides a
solution, which is very close to an unknown solution of
stochastic optimal control: in the vicinity of less than 0.5%.

4.3. Large-scale system

This section demonstrates the appicability of the developed
method to a system where the machine has to process a
large number of products. We took I = 200 and T = 1000,
with the parameters ai and ti being chosen randomly, ai
within the range [0.05, 1.0] and ti within the range [1.0, 50.0].
In Appendix C we discuss the complexity of the method

Table 6. Comparison of the produced quantities according to the pseudo-stochastic and the certainty equivalence methods

Method X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

Pseudo-stochastic, (case 3) 1.87 0.91 0.20 2.19 0 1.66 0.60 0.60 0 0.15
Certainty equivalence 1.95 0.97 0.23 2.28 0 1.74 0.64 0.64 0 0.18

Table 7. Comparison of the profit function according to the
pseudo-stochastic and the certainty equivalence methods

Method Profit function

Pseudo-stochastic, (case 3) 2.01
Certainty equivalence 0.84

and find that with respect to the number of products, the
complexity is O(I2). Table 5 presents the values of the profit
function for this case.

4.4. Short planning horizon

In comparison with the certainty equivalence method, we
forecast more accurately the net working time of the ma-
chine, T ′, since our M(t) takes into account the entire prob-
ability distributions, rather than only their first moments
(compare Figs. 2 and 3). The difference is especially evident
on short planning horizons, where the values of

T ′ =
∫ T

0
M(t)dt

for the two methods significantly differ. In this section we
consider the planning horizon T = 100, and the probabil-
ity distributions of case 3 above. The net working time,
according to certainty equivalence, is T ′ = 90 and accord-
ing to our procedure, is T ′ = 84.7. The importance of ac-
curate calculation of the net working time is exemplified
by the situation when the capacity of the machine mainte-
nance crew is planned in advance. The planned net repair
time of the machine is T − T ′. The profit function in such
a situation includes, in addition to Equation (20), a penalty
term of, say, 0.01 per time unit overage of repair time and
a penalty term of, say, 0.1 per time unit underage of the re-
pair time in each scenario. Tables 6 and 7 present the values
of Xi, i = 1, . . . , 10 and of the profit function for the two
methods.

The evident difference in the profit function as seen in
Table 7 results from the different computations of the net
working time of the machine using the two methods. Ac-
cordingly, since the net working time is used here for the
maintenance plan, it directly affects the profit function.
When the net working time is not included in the profit
function and the planning horizon is relatively large, it ap-
pears that the certainty equivalence method provides accu-
rate enough results. In such cases, one will prefer to use the
simpler certainty equivalence method.
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5. Discussion and conclusions

In this paper, a pseudo-stochastic approach for modeling a
dynamic system was proposed. The suggested approach has
several advantages: (i) it models the stochastic phenomena
by a simple, deterministic formulation that can be analyzed
by the maximum principle; (ii) the model directly consid-
ers the stochastic information in the system dynamics by
indexing each future event and estimating its influence on
the expected realization; (iii) the model can directly han-
dle several sources of uncertainty as long as they can be
represented by random variables with known distributions;
(iv) any type of distribution can be easily integrated into
the suggested modeling approach; and (v) the suggested
approach does not assume steady-state conditions of the
system dynamics.

In a particular case study, we have applied an off-line
optimal scheduling of multiple parts on a single machine,
which is prone to random failures and repairs. The numer-
ical analysis has shown that for the particular problem we
consider the obtained value of the profit function is very
close to that of the stochastic optimal control. We also ob-
served that for a large planning horizon the net working
times, as computed by the pseudo-stochastic method and
by the certainty equivalence principle, become closer to one
another. As a result, an on-line application of the two meth-
ods may yield similar results. In more complex systems, it is
not always possible to determine a lucid upper bound for the
optimal stochastic control. As a result, the accuracy of the
pseudo-stochastic method in those cases is hard to verify.

Further research is required in order to generalize the
above observation and to determine the conditions under
which the profit function values of the above approaches are
close. A possible strategy to improve the pseudo-stochastic
approach, in the case of significant differences between
these approaches, is to reapply it each time new significant
information is gathered and affects our knowledge of future
events.

References

Akella, R. and Kumar, P.R. (1986) Optimal control of production rate in
a failure-prone manufacturing system. IEEE Transactions on Auto-
matic Control, 31, 116–126.

Bertsekas, D.P. (1999) Nonlinear Programming, 2nd edn., Athena Scien-
tific, Belmont, MA.

Bertsekas, D.P. (2000) Dynamic Programming and Optimal Control, 2nd
edn., Athena Scientific, Belmont, MA.

Boukas, E.K., Yang, J., Zhang, Q. and Yin, G. (1996) Periodic mainte-
nance and repair rate control in stochastic manufacturing systems.
Journal of Optimization Theory & Applications, 91(2), 347–361.

Brans, P.J. and Mareschal, B. (1994) The PROMCALC & GAIA decision
support system for multiplecriteria decision aid. Decision Support
Systems, 12, 297–310.

Cover, T.M. and Thomas, J.A. (1991) Elements of Information Theory,
Wiley, New York, NY.

El-Ferik, S., Malhame, R.P. and Boukas, E.K. (1998) A tractable class
of maximal hedging policies in multi-part manufacturing systems.
Discrete Event Dynamic Systems, 8, 299–331.

Elhafsi, M. and Bai, S.X. (1997) Optimal and near optimal con-
trol of a two-part-type stochastic manufacturing system with dy-
namic setups. Production and Operation Management, 6(4), 419–
438.

Farid, M. and Davis, M.H.A. (1999) Optimal consumption and explo-
ration: a case study in piecewise-deterministic Markov modeling.
Annals of Operations Research, 88, 121–137.

Haurie, A. (1995) Time scale decomposition in production planning for
unreliable flexible manufacturing systems. European Journal of Op-
erational Research, 82, 339–358.

Herbon, A., Khmelnitsky, E. and Maimon, O. (2004) Effective informa-
tion horizon length in measuring off-line performance of stochastic
dynamic systems. European Journal of Operational Research, 157,
688–703.

Herbon, A., Khmelnitsky, E. and Blanchini, F. (2003) Effective informa-
tion for off-line stochastic feedback and optimal control of dynamic
systems. Journal of Optimization Theory and Applications, 116(2),
283–310.

Hillier, F.S., and Lieberman, G.J. (1995) Introduction to Operations Re-
search, 6th edn., McGraw Hill, New York.

Kamien, M.I. and Schwartz, N.L. (1981) Dynamic Optimization: The
Calculus of Variations and Optimal Control in Economics and Man-
agement, North-Holland, New York, NY.

Kimemia, J. and Gershwin, S.B. (1983) An algorithm for the computer
control of a flexible manufacturing system. IIE Transactions, 15,
353–362.

Kleindorfer, P. R. and Glover, K. (1973) Linear convex stochastic optimal
control with applications in production control. IEEE Transactions
on Automatic Control, 18(1), 56–59.

Korhonen, P. and Wallenius, J. (1988) A Pareto race. Naval Research
Logistics, 35, 615–623.

Love, C.E. and Turner, M. (1993) Note on utilizing stochastic optimal
control in aggregate production planning. European Journal of Op-
erational Research, 65, 199–206.

Maimon, O., Khmelnitsky, E. and Kogan, K. (1998) Optimal Flow Con-
trol in Manufacturing Systems: Production Planning and Scheduling,
Kluwer, Dordrecht, The Netherlands.

Neck, R. (1984) Stochastic control theory and operational research. Eu-
ropean Journal of Operational Research, 17, 283–301.

Sethi, S.P., Suo, W., Taksar, M.I. and Yan, H. (1998) Optimal produc-
tion planning in a multi-product stochastic manufacturing system
with long-run average cost. Discrete Event Dynamic Systems, 8, 37–
54.

Sethi, S.P. and Thompson, G.L. (2000) Optimal Control Theory: Appli-
cations to Management Science and Economics, 2nd edn., Kluwer,
Dordrecht, The Netherlands.

Tapiero, C.S. (1983) Stochastic diffusion models with advertising and
word-of-mouth effects. European Journal of Operational Research,
12, 348–356.

Tapiero, C.S. and Venezia, I. (1979) A mean variance approach to the
optimal machine maintenance and replacement problem. Journal of
the Operational Research Society, 30, 457–466.

Whittle, P. (1982) Optimization over Time: Dynamic Programming and
Stochastic Control, Wiley, New York, NY.

Appendixes

Appendix A

Lemma A1. The rate of the expected machine state at time t
is given by:

Ṁ(t) =
∞∑

n=1

[
πR(s)

n (t) − πF(s)
n (t)

]
.
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Proof. Let us introduce two binary random variables:
An(t) = {0, 1}, which defines whether the nth repair occurs
(or not) by time t ; and Bn(t) = {0, 1}, which defines whether
the nth failure occurs (or not) by time t .

By definition, the probability mass functions of these
variables are:

PAn(t)(x) =
{∫ t

0 π
R(s)
n (τ )dτ if x = 1

1 − ∫ t
0 π

R(s)
n (τ )dτ if x = 0,

PBn(t)(x) =
{∫ t

0 π
F(s)
n (τ )dτ if x = 1

1 − ∫ t
0 π

F(s)
n (τ )dτ if x = 0.

Let us introduce a new random variable, Cn(t), as Cn(t) =
An(t) − Bn(t), which is used in obtaining the machine status
at time t . Let M0 be the initial machine state (zero or one).
Then, Cn(t) = −1 when M0 = 1 and by time t the nth fail-
ure has occurred whereas the nth repair has not occurred
and Cn(t) = 1 when M0 = 0 and by time t the nth repair has
occurred, whereas the nth failure has not occurred. Other-
wise, Cn(t) = 0. The machine status at time t , C(t) can be
regarded as the accumulation of differences Cn(t):

C(t) = M0 +
∞∑

n=1

Cn(t), ∀t.

The expected machine state at each time t , M(t) is, thus, the
expectation of the right-hand side of the above expression,
i.e.:

M(t) = M0 + E

[ ∞∑
n=1

[An(t) − Bn(t)]

]

= M0 +
∞∑

n=1

E[An(t) − Bn(t)]

= M0 +
∞∑

n=1

[∫ t

0
πR(s)

n (τ )dτ −
∫ t

0
πF(s)

n (τ )dτ

]
.

By taking the time derivative of the last expression we
obtain the dynamics from which the lemma immediately
follows. �

The proof can be extended to the general case presented
in Equation (4) by appropriately representing the affecting
random variables.

Appendix B

To compute function M(t) from Equation (9), one has to
know theoretically the probability density functions of all
future events, since each event (failure or repair), no matter
how far beyond the planning horizon it is expected to occur,
has a positive probability to occur within the planning hori-
zon. The number of all future events is infinite. Practically,
however, only a limited number of future events, N, (usu-
ally in the order of the number of events expected within
the planning horizon) is necessary to obtain the optimal

solution. This number is called the “effective information
horizon” (EIH) and is discussed in details in Herbon et al.
(2003). For the example in Section 4.1, the number of pairs
(failure and repair) expected within the planning horizon
is 10. The EIH was found to be N = 25, since for a larger
N the function M(t) within the planning horizon does not
change significantly.

Having determined N, the following steps are needed to
calculate M(t) (for the case M(0) = 1 (the case M(0) = 0 is
similar):

Step 1. Set n = 0 and set the probability density function of
the first failure πF

1 (t) = ϕF(t), (we omit argument s
for simplicity of representation).

Step 2. Set n = n + 1. Calculate the probability density
function of the absolute time of the nth recovery,
πR

n (t), as the convolution of πF
n (t) with ϕR(t), i.e.:

πR
n (t) =

∫ t

0
πF

n (y)ϕR(t − y)dy, t ∈ [0, T ],

(A1)
and calculate the probability density function of the
absolute time of the (n+1)th failure, πF

n+1(t), as the
convolution of πR

n (t) with ϕF(t), i.e.:

πF
n+1(t) =

∫ t

0
πR

n (y)ϕF (t − y)dy, t ∈ [0, T ].

(A2)

Step 3. If n ≤ N, then go to Step 2, otherwise go to Step 4.
Step 4. Calculate the sum

N∑
n=1

[
πR

n (t) − πF
n (t)

]
, t ∈ [0, T ], (A3)

and integrate the result on the interval [0, T ] from
left to right starting with the initial value M(0) = 1.

Appendix C

The problem

Max u(x)
I∑

i=1

aih(Xi), (A4)

subject to

I∑
i=1

Xiti ≤ T ′ and Xi ≥ 0, (A5)

where h(Xi) is a monotone increasing concave func-
tion and parameters ti > 0 and ai > 0, i = 1, . . . , I . The
optimal solution of the problem satisfies the following
properties.

Property 1. The constraint
∑I

i=1 Xiti ≤ T ′ is active, i.e.:

I∑
i=1

Xiti = T ′. (A6)
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Proof. The property immediately follows from the fact that
h(Xi) is an increasing function. �
Property 2. If ai/ti ≥ aj/tj, and Xi = 0, then Xj = 0.

Proof. The Lagrangian of the problem is:

L =
I∑

i=1

aih(Xi) − λ

(
I∑

i=1

Xiti − T ′
)

, (A7)

where λ ≥ 0 is the Lagrange multiplier. By differentiating
the Lagrangian w.r.t. Xi, we obtain that:

Xi =
[

∂h
∂Xi

]−1 (
λti

ai

)
. (A8)

By taking into account the non-negativity of Xi, we finally
have:

Xi = max

{
0,

[
∂h
∂Xi

]−1 (
λti

ai

)}
. (A9)

The property follows from Equation (A9) and the concavity
of h. �

From Equations (A6) and (A9) it follows that the La-
grange multiplier satisfies the equation:

I∑
i=1

ti max

{
0,

[
∂h
∂Xi

]−1 (
λti

ai

)}
= T ′. (A10)

Based on the properties of the optimal solution proved
above, the following algorithm solves the problem.

Step 1. Sort the products in the decreasing order of ai/ti.
Re-number the products in this order. Set index
m = 0.

Step 2. Set m = m + 1.
Step 3. Calculate λ from:

m∑
i=1

ti

[
∂h
∂Xi

]−1 (
λti

ai

)
= T ′,

and calculate

Xm+1 =
[

∂h
∂Xm+1

]−1 (
λtm+1

am+1

)
.

Step 4. If Xm+1 > 0, then go to Step 2. Otherwise, set Xi =
0 for i = m + 1, . . . , I

and

Xi =
[

∂h
∂Xi

]−1 (
λti

ai

)
for i = 1, . . . , m. Stop.

The complexity of the algorithm is O(I2), since
Steps 2 and 3 comprise two loops with respect to
the number of products.

Example: If h(Xi) = ln(Xi + 1) as in Section 4, then λ is
calculated in Step 3 as:

λ =
∑m

i=1 ai

T ′ + ∑m
i=1 ti

,

and the non-zero production quantities are calculated in
Step 4 as:

Xi = ai

λti
− 1.
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