
Quality Technology &
Quantitative Management
Vol. 9, No. 1, pp. 97-114, 2012

QQTTQQMM
© ICAQM 2012

Efficient Bayesian Network Learning for
System Optimization in Reliability Engineering

A. Gruber and I. Ben-Gal

Department of Industrial Engineering, Faculty of Engineering, Tel Aviv University, Tel-Aviv 69978, Israel
(Received October 2010, accepted March 2011)

__

Abstract: We present a new Bayesian network modeling that learns the behavior of an unknown system

from real data and can be used for reliability engineering and optimization processes in industrial systems.
The suggested approach relies on quantitative criteria for addressing the trade-off between the complexity

of a learned model and its prediction accuracy. These criteria are based on measures from Information

Theory as they predetermine both the accuracy as well as the complexity of the model. We illustrate the

proposed method by a classical example of system reliability engineering. Using computer experiments, we

show how in a targeted Bayesian network learning, a tremendous reduction in the model complexity can

be accomplished, while maintaining most of the essential information for optimizing the system.

Keywords: Bayesian networks, differential complexity, mutual information, reliability of complex systems,
resources optimization.
__

1. Introduction

ayesian network (BN) is a probabilistic model representing the relations between random

variables of a certain domain. BNs have been extensively employed in various

applications in engineering and decision making (Pearl [11]).

A BN is composed of a directed acyclic graph (DAG), and a set of parameters. The
DAG contains vertices (or nodes hereinafter) and edges, where each node represents a

random variable and an edge, connecting two nodes, represents a probabilistic dependency

between these random variables. Essentially, the BN encodes the joint probability distribution

()P X of the domain’s random variables that are denoted by .X Since BNs can be presented

graphically they are fairly intuitive (Ben-Gal [1], Heckerman [8]).

A BN can be learned from observable data. Graphical constraints can be applied while

learning, and can be used efficiently for limiting the complexity of the resulting model. In this

paper, we pay special attention to complexity-reduction versus the accuracy of the model that

can be accomplished from the learning.

In order to efficiently learn a BN, numerous learning methods have been suggested in

recent years (e.g., Chickering [3], Heckerman [8], Heckerman et al. [9], Cheng et al. [2],
Pearl [12]). In particular, the K2 (Cooper and Herskovits [5]) and the PC (Spirtes et al. [13])
are two examples of predominant BN learning algorithms. Most of these methods, address

the model complexity by justifying independencies or conditional independencies between

variables, through statistical tests that are imposed on the data in one way or another.

One of the methods that we follow here is the adding-arrows by Williamson [14]. The

adding-arrows is an algorithm which attempts to maximize the total information weight of the

B

98 Gruber and Ben-Gal

BN. Williamson [14] showed that a BN, satisfying some arbitrary constraint, that best

approximates a joint probability distribution, is one for which total mutual information (MI)

weight is maximized. He generalized the arguments presented earlier by Chow and Liu [4]

regarding spanning trees. Chow and Liu [4] proved that, minimizing the Kullback-Leibler
(KL) divergence between the “true” distribution and the distribution represented by a
Bayesian tree, is equivalent to maximizing the sum of MI weights within the tree.
Nonetheless, their underlying objective was to best approximate the joint probability

distribution describing the domain without addressing any random variable differently from

the other variables. In particular, Chow and Liu did not attempt to address optimization cases

- as we aim doing here - where some of the variables might have larger effects on the target

variable than others.

Our underlying purpose is to learn a BN in an efficient manner such that it can support

optimization process of a complex system. In particular, we consider a system

reliability-availability-maintainability (RAM) problem where the knowledge is extracted

from data generated by the system (or other identical systems), encoded into the learned BN,
such that the redundant information is diminished.

In order to improve the reliability of the system, one might have to establish a system

model that represents the system’s performance as a response function of some input

variables. Having done that, maximization of an objective function could be accomplished by

changing some of the controllable input variables. For example, when considering the

availability of a RAM system, as we do in this paper, the controllable variables can be the

number of spare parts of different types, the preventive maintenance policy and the number of

workbenches to be used. The system model, however, is fundamentally difficult to establish

due to several reasons (Zacks [17]) such as:

 Exponential complexity in the number of components in the system

 Unknown failure distributions as well as distributions of other relevant processes

 Interactions between various components that affect the system states

These obstacles can be tackled by using numerical methods and computer experiments

(Kennet and Zacks [10]), e.g., using Monte Carlo Simulation for predicting the system output.
The statistical properties of man-made systems are fundamentally difficult to retrieve. Yet,
they are often modeled via Weibull distributions for failures (Zacks [18]) and Log-normal
distributions for repairs/replacements (Zacks [16]). With the growing number of inputs,
however, numerical calculations should generate as many predictions of the objective

function as required for the optimization procedure - reaching tens of thousands and

sometimes hundreds of thousands realizations. This approach becomes rapidly impractical
for optimization purpose, as the calculation procedures of a single prediction realization

might last minutes and sometimes hours (Dubi [6]).

The motivation of this work is to improve the performance of a complex system with a

minimal use of expert knowledge for modeling the system, avoiding the above-listed obstacles.
We claim that BN learning from data could address such a task efficiently, as will be

illustrated in section 5.

In this paper we present a BN learning method oriented to support optimization. To do

so, we maximize the sum of weights (in terms of mutual information measures) about the

target variable, and then we maximize the sum of the remaining weights within the network,
according to the principles of Williamson [14]. It is shown that when the learning is

target-oriented, a good trade-off between the model accuracy and the model complexity can

Efficient Bayesian Network Learning for System Optimization 99

be achieved if the predetermined target variable is taken into account at the learning stage.

More formally, the proposed method has the following two stages: for a given target

variable ,iX X the approximation to the marginal probability distribution ()iP X as a

function of the entire domain can be efficiently achieved by first obtaining the set of the most

affecting (parent) variables iZ X where ,i iX Z such that the sum of the MI weights

between iX and iZ is maximized. Then, having obtained ,iZ by maximizing the total MI

weights among the variables that are included in .iZ Generally in this paper, vectors and sets

are bold, random variables are denoted by capital letters and their realizations by small case

letters.

The rest of this paper is organized as follows. Section 2 provides the mathematical
formulation to BN and BN learning. It discusses the unconstrained and the constrained

learning approaches, both compared to Williamson’s [14] method. Section 3 gives a

schematic example and compares the adding-arrows approach with the proposed method, in

both unconstrained and constrained learning configurations. The algorithm is presented and

detailed in Section 4. Section 5 presents the suggested approach through a real-life example of

a RAM problem. It also suggests quantified measures for the trade-off between model
accuracy and model complexity. Section 6 summarizes the paper.

2. Bayesian Networks Learning

A Bayesian network (,)B G can often be used to represent the joint probability

distribution of a vector of random variables 1(,...,).NX XX The structure (,)G V E is a

directed acyclic graph (DAG) composed of ,V a vector of nodes representing the random

vector ,X and ,E a set of directed edges connecting the nodes. An edge ji j iE V V

manifests dependence between the variables jX and ,iX while the absence of an edge

demonstrates independence between the variables. A directed edge jiE connects a parent

node jV to its child node iV (Heckerman [8], Yehezkel and Lerner [15]). We denote by
1{ ,..., }iL

i i iX XZ the set of “parent” variables of the random variable iX represented by the

set of parent nodes
1{ ,..., }iL

i i iD V V in (,)G V E where for any literal, the superscript j

stands for its index in the corresponding set and where i iL Z is the size of the set .i Z X

The set of parameters holds the local conditional probabilities over , ()i ip xX z that

quantify the edges for each node state ix and each parents’ state iz (i.e., a conjunction of

states 1 ... iL
i ix x) of .iZ

Williamson [14] indicated that a BN suffices to determine a probability distribution,
since for each atomic state that is defined by a conjunction of all variable states 1(,...,),Nx x

one obtains 1(,...,) ().iN i ip x x p x z He showed that a BN, satisfying some arbitrary

constraint, that best approximates a joint probability distribution, is one for which the sum of

MI weights over the edges is maximized. In particular, he generalized the argument presented

by Chow and Liu [4] regarding the best approximating spanning tree. Chow and Liu [4]

proved that a Bayesian tree (with encoded probability distribution)q that best approximates

a true distribution ,p is a maximum weight spanning tree. They used the Kullback-Leibler

(KL) divergence (also known as the relative entropy) as a distance measure between the two

distributions:

1

1
1

,..., 1

(,...,)
() (,...,) log ,

(,...,)N

N
N

x x X N

p x x
d p q p x x

q x x
 (1)

where edges between two nodes in the tree are weighted by the MI of their corresponding

random variables, defined as follows:

100 Gruber and Ben-Gal

,

(,)
(,) (,) log .

() ()i j

i j
i j i j

x x i j

p x x
I X X p x x

p x p x
 (2)

Chow and Liu [4] also proposed an algorithm (we shall refer to it henceforth as the CLA)

based on their weighting approach. Williamson [14] implemented his straightforward

generalization to a BN, simply by replacing the single parent variable jX with the set of

parent variables iZ as follows:

,

(,)
(,) (,) log .

() ()i i i i

i i
i i i i

x X z Z i i

p x
I X p x

p x p
z

Z z
z

 (3)

In a similar manner as Chow and Liu [4] used (2) as the MI weight within a Bayesian tree,
Williamson [14] used (3) as the MI weight between a variable and a set of parent variables in a

BN. Since (3) follows the MI chain rule, it is more complex - in the same sense that a BN is

more complex than a Bayesian tree.

2.1. Unconstrained Learning-A Complete Network

In a complete BN, each node is connected to all the other (1)N nodes, resulting in a

maximum total-weighted unconstrained BN. The total weight in the network is a fixed sum

of conditional MI elements, while the edges’ directions are subject to the requirement that the

graph must be a DAG. Note that there might be !N possible complete BNs that would

provide maximum total weighted BN. The total MI weight of a complete BN can be

calculated as follows:

1 2 2 3 1
1

(;) (; ,...,) (; ,...,)... (;).
N

i i N N N N
i

I X I X X X I X X X I X X

 Z (4)

The term in (4) can be then reorganized:

1

1 1
1 1 1

(;) (; ,...,),
N N N

i i i j j i
i i j i

I X I X X X X

 Z (5)

where 1 1(,...,)j iX X if 1.j i

Since MI is a symmetric measure, i.e., (;) (;)I A B I B A for any random variables A

and ,B the total weight in (5) sums up to the same solution regardless of the starting point

(i.e., regardless of the order of summation), despite the different elements comprising the total
weight. The above understanding is of significant importance because it implies that the order

of an unconstrained BN learning is irrelevant from the perspective of obtaining the total of the

MI weights. For any set of variables , ,A B C the conditional information (;)I A B C is also

called the (conditional) information gain (IG) between B and A given .C Note that some

edges might contribute a zero weight (where the IG is zero), hence, it is viable to remove them

from the BN.

2.2. Constrained Learning

We start by referring to two specific constraints mentioned by Williamson [14]. The

constraint 1C is imposed on ,K the maximum number of parents for each node. The

constraint 2C is imposed on ,k the complexity of a BN, where (1)2 1Kk N K for

binary nodes (of two states). The above expression implies that constraining the complexity is

Efficient Bayesian Network Learning for System Optimization 101

an alternative way for limiting the number of parents. Upon that, we suggest two additional
information-related constraints 3C and 4C related to the percentage relative IG (PRIG)

and the percentage relative information exploitation (PRIE) measures, respectively. 3C is
imposed on a minimum required PRIG (by the user-adjusted parameter) and 4C is
imposed on the maximum PRIE (by the user-adjusted parameter). For any given

variable ,X X with parent variables set ,Z X and a set of candidate variables

 ,Z X 3C can be expressed as 3 (;) / () 100C I X H X Z Z and 4C can be
expressed as 4 (;) / ()C I X H XZ 100 . The range of as well as of is [0-100].

0 implies that any feasible edge could be drawn from each potential parent, except for

those contributing zero weights, whereas 100 implies that the current node will not have

any parents. 0 implies that the current node will not have any parents and 100

implies that any feasible edge could be drawn from each potential parent, except for those

contributing zero weights. The PRIG can be considered as a sort of a derivative of the PRIE.
Both constraints are essential for reasonably controlling the complexity as they represent its
scale and shape altogether. Note however that the selection is ordered by the relative
information gain, and not arbitrarily as done by the conventional constraints 1C and 2C .

Consider the MI between a random variable iX X and a set of variables i Z X

representing its parents. The MI can be obtained using the chain rule of information as

follows:

 1 1

1
(;) (; ,...,).

iL
j j

i i i i i i
j

I X I X X X X

 Z (6)

Given (;),i iI X Z if one considers to add another parent
1iL

iV
 to iV in (,),G V E

representing the variable
1 ,iL

iX X then the MI between iX and
1iL

i iX Z should take

the following form:

 1 1(;) (;) (;).i iL L
i i i i i i i iI X X I X I X XZ Z Z (7)

The IG between iX and
1iL

iX
 given ,iZ is the marginal information gained upon

adding the node
1iL

iX
 to ,iD the parents set of the node .iV Since Chow & Liu [4]

considered only Bayesian trees (max () 1),i iK L they did not address the information

chain rule. In their search procedure they focused on finding the largest MI measure between

each of the remaining nodes and the nodes already populated within the tree. In a tree, only

the first component of the MI in the chain, i.e., 1(;)iL
i iI X X

 is considered 1,..., .i N

Moreover, the greedy search of the CLA ascertains a tree with maximal total weight, because

it covers all possible edges. However, such an approach would not hold in the considered

realm of BNs, where multiple parents are available. Williamson [14] did consider the IG of

each and every edge while maximizing the total information weight within the BN. To assure

a network with a maximal total weight, one has to search all possible sets of parents for each

node, raising the complexity of the problem up to a level of computational intractability in
larger networks.

As a practical solution, Williamson [14] suggested the adding-arrows learning algorithm.
The adding-arrows can be seen as a generalization to the CLA by replacing the scoring

information quantity (,)i jI X X with the conditional information quantity (,)i j iI X X Z

and ensuring at each stage that the set of constraints 1 2{ , ,...}C CC still holds and the graph

remains a DAG. As seen below we propose a somewhat similar approach.

102 Gruber and Ben-Gal

3. A Small Illustrative Example

Consider the “toy” example in Table 1. Here, 1 2 3 4{ , , , }X X X XX and the dataset

contains twelve instances of .X The adding-arrows algorithm, when applied in this example,
yields an unconstrained BN as shown in Figure 1. Each node is depicted by a circle, labeled by

the corresponding variable name. The arrows depict the edges, each attributed alongside by

its IG expression and weight.

Table 1. Illustrative Example of data.

Case 1X 2X 3X 4X
1 1 1 1 2
2 1 1 2 2
3 1 1 2 2
4 1 2 2 3
5 1 2 2 3
6 1 2 2 3
7 2 2 1 1
8 2 2 1 1
9 2 2 1 1
10 2 2 2 1
11 2 2 2 1
12 2 2 2 1

Figure 1. An unconstrained Bayesian network learned by the
adding-arrows algorithm applied to the small dataset in Table 1.

According to (5), and as long as the graph remains a DAG, the location of each variable

in the network is unimportant when the purpose is encoding the joint probability distribution.
The fact that 4 ,X for example, depends on 3X and not the opposite can be simply reversed

by using Bayes’ rule. That is, in the above example, one could reverse the edge
3 4,X XE

(replacing it with
4 3,)X XE and update the probability sets in accordingly.

For illustration purposes, suppose now that variable 3X is defined as a target variable
that should be optimized. The proposed algorithm, which is presented in Section 4, draws

one edge at a time, i.e., the one for which IG weight is the largest. The process is detailed in

Table 2. Having started with 3X as the target variable, an edge from 4X to 3X is drawn,
gaining 0.189 bits of information. Next, since no information is gained if 1X or 2X are

added to 3X conditioned on 4 ,X no other parents are added since the stopping condition is

Efficient Bayesian Network Learning for System Optimization 103

satisfied. The same routine is applied then to each parent of 3X in turn (only to 4X in the

current example). The first parent added to 4X is 1X (having an IG weight of 1 bit in this

case) and the second parent is 2.X Since adding an edge from 2X to 4X is conditioned on

1,X the edge’s weight is 0.5 bits (rather than 0.811 bits when applying the adding-arrows).
Finally, and in the same manner, an edge is drawn from 2X to 1.X The BN structure that

was learned by the proposed algorithm from the data in Table 1 is shown in Figure 2 where

the node representing the target variable is bold.

Table 2. Information gain weights of each possible edge between the
potential parents and the current learned node, given its existing parents.

Potential Parents

NodeExisting Parents 1X 2X 4X

3X 0.093 0 0.189

3 4X X 0 0

4X 1 0.811

4 1X X 0.5

1X 0.311

Figure 2. An unconstrained Bayesian network learned by the
proposed algorithm applied to the small dataset in Table 1.

As expected, the total information weight of the unconstrained BN, learned by the

proposed algorithm, which is 4
1 (,) 0.189 1 0.5 0.311 2i i iI X Z bits is equal to the

one obtained by Williamson’s adding-arrows algorithm, which is also

 4
1 (,) 1 0.811 0.189 2i i iI X Z bits. These BNs are only two out of 4! 24 possible

complete networks, each of which would yield a maximum total weight (of 2 bits in the

current example). Note that an unconstrained BN must contain all (1) / 2N N possible

edges. Nonetheless, for the reader’s convenience, the zero weighted edges are not displayed in
the figure.

Let us consider now the conventional constraint 1C proposed by Williamson and limit
the number of parents to one (1).K Figure 3 and Figure 4 show the results obtained by the

104 Gruber and Ben-Gal

adding-arrows algorithm and by the proposed algorithm respectively, both with 1.K The

total information weight ascribed to the BN learned by the adding-arrows is 1.811 bits, about

6% less than that of the unconstrained BNs in Figure 1 and Figure 2. This result can be

compared with the 1.5 bits obtained by the proposed algorithm under 1,C that is 25% less

than the unconstrained BN. Note that although the total weight of the BN shown in Figure 4

is smaller, the proposed algorithm fulfills its objective - to maximize the information on the

target variable.

Figure 3. A Bayesian network learned by the adding-arrows
algorithm applied to the dataset in Table 1 with a constraint of a
single parent per node, 1.K

Figure 4. A Bayesian network learned by the proposed algorithm
applied to the dataset in Table 1 with a constraint of a single parent
per node, 1.K

Notwithstanding, the outstanding consequence of the BN shown in Figure 3 is that the

target variable 3X is not connected to any other variable. Since 3X has relatively small
information about the rest variables, it is excluded from the tree. Here is where the profound

gap comes in. While the result shown in Figure 3 would be satisfying for Williamson’s [14]

and Chow’s & Liu’s [4] common objective, it displays an undesirable outcome for the

proposed objective. Our objective in this case is to maximize the information about the target
variable 3X via other variables which comprise the entire joint distribution. Figure 3

emphasizes that the method proposed by Williamson [14] does not satisfy such a requirement
efficiently.

Efficient Bayesian Network Learning for System Optimization 105

4. Proposed Algorithm

Our underlying assumption in this study is that a target variable 1X X is given, and

that we aim to best approximate the probability distribution ()ip X using the law of complete

probability with respect to the entire domain. Namely, we wish to represent the expression

shown in (8) with an approximation shown in (9).

() () (),
C C
i i

C C
i i i i

x
p X p X p

X

x x (8)

 () () (),

i i

i i i i
z

q X p X p
Z

z z (9)

where
Cx denotes the atomic states of \C

i iXX X and iz denotes a state of ,C
i iZ X

the set of variables representing the parents of iX in the BN. Aiming at minimizing ()d p q

for p in (8) and q in (9), we consider two steps. In the first step we aim to find the set
C

i iZ X such that (;)i iI X Z is maximized. In the second step we apply Williamson’s [14]

method and attempt to maximize the sum of information weights only within C
i iZ X

instead of within the entire domain .X Finally, Min((() ()))i id p X q X is approximated by

the following stages

1.
 arg max ((;)).C

i
i iX

I X
Z

Z Z

2. Max((;)).
j iX j jI XZ Z

Thus, in the first stage we look for the parents’ subset of the target variable that

maximizes the information about the target variable. In the second stage we maximize the

sum of information weights within the parents subset, as shown in (5) by Williamson for the

entire domain.

The above approximation is of significant importance as it implies that large amount of

data can be filtered out while learning, when the objective is the optimization of a given target

variable.

We also suggest constraining the network differentially. Let us redefine the constraints as

-t
jC the -thj constraint applied to the target variable and -r

jC the -thj constraint applied to

the rest of the variables (referred to as “attributes” in classification problems). Let us also

compute the complexity for the general case. Recall that if variable jX takes one out of jx

values, then the complexity in terms of the number of independent parameters is expressed,
as follows:

1 1
(1) .

iKN

i j
i j

k x x

 (10)

Equation (10) is free of the assumption of binary nodes, as it quantifies the complexity of

variables with multiple states.

Our proposed algorithm handles two options of representations, that follow from the

above mentioned stages. They are similar with respect to stage 1, but are different with respect

to stage 2. The first algorithmic option maximizes (;)C
j iX j jI X X Z and will be referred to

as the Extended-Family representation. The second option maximizes (;)
j iX j jI X Z Z and

will be referred to as the Nuclear-Family representation. Our proposed algorithm employs a

recursive procedure that can be applied on any given node at a time, and with any set of

potential parents. The procedure adds edges from candidate nodes to the node to which the

106 Gruber and Ben-Gal

procedure is currently applied-each time an edge, for which IG weight is the largest. The

stopping condition for this procedure is the breaking of some arbitrary constraint C C (e.g.,
reaching the maximum number of parents) or when the set of candidate parents is empty. The

procedure begins with the node representing the target variable (the target node). Having

determined the target node’s parents, the same procedure is then applied to each one of the

parents in turn, obtaining each parent’s ancestors and so forth. The candidate parents at each

call of the procedure are subject to the algorithmic option of representation. In the case of the

Extended-Family option, all nodes, excluding those which might break the DAG, are

candidates as ancestors and the remaining ancestors are being looked for also outside the

parents of the target variable. In the case of the Nuclear-Family option, only the parents of the

target node are candidates as ancestors. The Nuclear-Family ends up with a BN in which all
nodes are connected to the target node and among themselves up to a level controlled by the

constraints.

A flow chart of the proposed algorithm, with X as the target variable and X as the

variables domain, is given in Figure 5.

Figure 5. A flow chart of the proposed subroutine, taking a differential set of constraints

{ , },t rC CC which is a function of oldh and newh and is regarded “true” if it is satisfied or

false otherwise. The constraints may include (but are not limited to) the maximum number of

parents; the maximum number of children; and . Note that the input parameters

and are applied through 3C and 4C . T represents the set of nodes, representing the

candidate variables remaining either from the entire domain (the case of the Extended-Family

mode) or from the parents of the current node that represents the variable as the current

argument of the procedure (the case of the Nuclear- Family mode).

Efficient Bayesian Network Learning for System Optimization 107

5. A Communication System Case Study

In this section we present an implementation of a realistic example. The example data is

taken from a simulation of an operating communication system, supplied by spare parts of

different types, each of which has a turnaround time upon failures (Dubi [6]). A reliability

block diagram (RBD) of the system is shown in Figure 6 displaying redundancy. The first line

comprises the power supply units (components 1, 4, 7), the second line comprises transmitters

(components 2, 5, 8) and the third line comprises modems (components 3, 6, 9). The

right-hand module of the RBD is a ‘Line’ module representing the wiring of the system

(components 10, 11). The failure distributions of the components in this example are

Exponential. The mean time to failure (MTTF) and the recycling times of the unit types are

presented in Figure 6. The ‘Line’ components are discarded. Namely, upon failure, they are

not shipped to the repair depot and can be replaced only with new spare parts that were

purchased and allocated for it in advance (in other words, their cycling time is infinity). Also,
at least two of the series on the left-hand side of the system must operate for the system to

function properly.

Figure 6. The RBD of a communication system with the components’
failure and repair data and the cost of spares.

Upon failure, the failed component is taken from the system and is shipped from the field

to a repair depot. Having been repaired, the component will return to the storage as an

available spare part. If an old demand for a spare part is due at that time, it will be sent to the

system for a replacement of a failed component. The time since failure to replacement is also

referred to as the turnaround time. An illustration of the above described logistic cycle is given

in Figure 7. Roughly speaking, the optimization problem arises from a competition of two

objectives: maximizing performance versus minimizing the cost of spare parts or other system

resources.

108 Gruber and Ben-Gal

Figure 8 illustrates a comparison among various optimization approaches of previous

studies on a similar system, operating in a different logistic environment, which included

multiple logistic levels and multiple fields, that apart from spare parts, are influenced by other

resources, such as the number of workbenches. This figure, based on Gruber and Keane [7]

presents uniformly distributed random samples of the system unavailability as a platform for

applying Genetic Algorithms (GA) for optimization. The motivation was inspired by the

independency of the GA approach of the physical model compared to other methods, that
require information on the physical system. Figure 8 draws the density of the system

unavailability over the resources space, scaling the resources mixture on the cost axis. The

cost is sampled uniformly, by which spare parts and other resources are allocated. The

corresponding resulting Pareto Front of the unavailability is compared with the unavailability

accomplished by other optimization approaches. Each sample shown in Figure 8 is an

outcome of a complete computer experiment (see Kenett and Zacks [10]) a Monte Carlo

Simulation of a well-defined model that meets the definitions and descriptions of the above

communication system.

Figure 7. Logistic cycle of the communication system LRUs.

Figure 8. A communication system unavailability as a function of the cost allocated
for supporting the system’s performance (based on Gruber and Keane [7]).

Efficient Bayesian Network Learning for System Optimization 109

The input to our proposed BN learner was a flat database containing the states of all
components, also known as ‘line replaceable units’ (LRUs), assembling the system along with

the System state and the spare parts availability, held by four Stock variables (i.e., a stock per

each LRU type). The System performance is defined as the target variable in this example, and

is measured by the System availability that derives from its reliability and resources’ support.
Since in this example the LRU variables are not considered as controllable variables, their

inclusion in the BN is not really relevant for the optimization. The only controllable variables

are the Stock variables, as they constitute the spare parts strategy supporting the

communication system availability. The observations were sampled on a daily basis

throughout 10 simulated years of operation. Figure 9 and Figure 10 show the BNs learned by

the proposed algorithm in Extended-Family and in Nuclear-Family modes, respectively. Both

BNs were constrained to comply with complexity levels associated with [98%]t and

[25%].r

Figure 9. A Bayesian network supply chain of the communication system, as learned by
the proposed algorithm in an Extended-family mode, constraints are set to [98%t and

25%].r

The complexity of the BN shown in Figure 9, obtained by (10) is 131090.k The

complexity of the BN shown in Figure 10 is 50k (thus, four orders of magnitude off!),
displaying the tremendous difference between the two algorithmic modes. Figure 9

emphasizes how exhaustive computation can be wasted to no avail, should one attempts to

learn a BN for optimization purposes without considering the constraints differentially, as

proposed. While the information weight associated with the System variable remains the same,
much information weight is reflected among the attributes, increasing the complexity: not

only would it end up with an extremely complex BN, but also the learned BN might be

inferior for optimization purposes than the one learned by the Nuclear-family mode. In this

stage we study the complexity level as a function of
t and ,r

 going from minimum PRIG

of 0% to some positive small fixed-values. This is preferable for illustration purposes, as it

smoothes the complexity curve due to its exponential nature. Hence, we set fixed minimum

110 Gruber and Ben-Gal

PRIGs of [2%]t r . The resulting complexity of the BN model as a function of t and
r is illustrated in Figure 11.

Figure 10. A Bayesian network supply chain of the communication system, as learned by
the proposed algorithm in a Nuclear-family mode, constraints are set to [98%t and

25%].r

Figure 11. The complexity (),k as a function of

t and ,r i.e., the MaxPRIE about the
target variable and MaxPRIE about the rest variables, which are applied through 3C .

Efficient Bayesian Network Learning for System Optimization 111

The dashed diagonal curve on top of the complexity surface designates the ‘traditional’
or conventional complexity trade-off, as a one-dimensional measure. The trade-off is
executed between and the model complexity (as a scalar that controls the complexity

without differentiating the target variable from the rest attributes) and creates a limited

decision line. Along this line, two corresponding BNs are illustrated. Their locations can be

regarded an outcome of a strategic decision. In each of these BNs, the bottom node, that is

the System node, represents the target variable. One can see that along the diagonal curve, the

BNs tend to be narrow, implying that the information is relatively exploited among all the

variables, where few nodes are connected to the System node. Similarly, the K2 curve in Figure

11 demonstrates such limitation. Furthermore, the K2 algorithm does not consider

information measures for constraining the BN and, therefore, its complexity curve does not

form an information-based decision line.

Through the differential outlook, where
t and

r are displayed orthogonally, the

trade-off changes significantly, enabling a decision plane, rather than a decision line where all
the variables are treated equivalently. It is clear from the graph that the complexity can be

reduced remarkably, while maintaining a considerable level of the maximum target PRIE

requirement. For example, the BN pointing to [100%; 0%]t r connects four LRU

nodes to the System node, providing the maximal possible information for optimization with a

complexity value of 39. This point is the end point of the [0%]r curve, referred to as the

“Best Target” curve. In addition, three more curves with fixed
r values are displayed: the

[30%]r curve; the [35%]r curve; and the [40%]r curve.

To illustrate the outcomes that can be learned from a BN, Figure 12 demonstrates some

optimization considerations based on the trained network, with its stock controllable

variables set to {1, 3,1, 7}. This BN was learned by the Extended-family algorithmic mode

enabling to represent the indirect influence of the Stock variables. To avoid a complex BN

structure, such as the one shown in Figure 9, the minimum PRIGs were set to comply with

2%;t and 5%.r

Figure 12. Two assignments of a Bayesian network of a communication system supply
chain, learned by the proposed algorithm in an Extended-Family mode, constrained to
[2%t and 5%]r . The left-hand assignment shows the distribution of each variable,
given that the System variable is in state “ 1x ” (an “available” state of the system). The
right-hand assignment shows the distribution of each variable, given that the System is in
state “ 0x ” (an “unavailable” state of the system).

112 Gruber and Ben-Gal

Having learnt this BN, one can firstly notice that the dominant LRU variables affecting

the target System variable are LRU1, LRU7, LRU10 and LRU11. Also, that LRU1 as well as

LRU7 depend on Stock1, where LRU10 and LRU11 depend on Stock4. The average system

availability with this setting is about 99%. Given that the system is unavailable, the dominant

parent LRUs (i.e., LRU10 and LRU11) are failed, with a conditional probability of 54% and

65% respectively (taking the state “ 0x ” in Figure 12). Given the conditional state distribution

of LRU10 and LRU11, the distribution of Stock4 changes such that there is a shortage of spare

parts with a probability of 78% compared with a conditional probability of 5% when the

system is available. This observation can suggest on increasing the number of spare parts in

stock number 4. Indeed, running a simulation study with a stock setting of {1, 3,1, 8},

increases the average availability to nearly 99.9%. Note that the cost of the added spare part is

the cheapest among other parts in this example. Although we do not discuss here the

optimization trade-off between unavailability costs and stock costs, this example displays the

means by which such a desired optimization can be processed, as the above BN incorporates

all the sufficient information for carrying it out.

6. Summary

Bayesian networks are predominant modeling methods when dealing with large systems

that involve and can supply large amounts of data. The drawback of modeling based on large

datasets is often the required modeling complexity. There exist several methods that tackle

this issue. This paper continues a line of previous works, as it suggests a practical approach,
for better a complexity control, by distinguishing between the target variable versus other

variables in the system. This enables the distinction of the required complexity for

understanding what affects a target variable, as opposed to general complexity measures that

are irrelevant to the target variable.

In this work, we present a new algorithmic approach, which efficiently tackles the

complexity issue. Accordingly, the algorithm aims at maximizing the information between

the target variable and the relevant domain variables (attributes) and subsequently it

maximizes the information weights among these variables.

Through a realistic example, it was illustrated, how the proposed algorithm handles well
the trade-off between information measures and complexity when learning a BN from a large

dataset that was generated by computer experiments. In particular, measuring the complexity

differentially is suggested, stressing the ability to reduce the complexity remarkably while

maintaining most of the essential information for performing the desired optimization.

Note that the proposed algorithm is not limited to data bases related to systems
engineering, and can potentially address various types of applications with different
objectives.

Acknowledgements

This research was supported by THE ISRAEL SCIENCE FOUNDATION (grant No.
1362/10).

References

1. Ben-Gal, I. (2007). Bayesian Networks. Encyclopedia of Statistics in Quality and Reliability,
F. Ruggeri, F. Faltin and R. Kenett (eds.), John Wiley & Sons.

2. Cheng, J. and Greiner, R. (2001). Learning Bayesian belief network classifiers: algorithms and

Efficient Bayesian Network Learning for System Optimization 113

system. Lecture Notes in Computer Science, 141-151.

3. Chickering, D. M. (2002). Optimal structure identification with greedy search. Journal of
Machine Learning Research, 3, 507-554.

4. Chow, C. K. and Liu, C. N. (1968). Approximating discrete probability distributions

with dependence trees. IEEE Transactions on Information Theory, 14(3), 462-467.

5. Cooper, G. F. and Herskovits, E. (1992). A Bayesian method for the induction of

probabilistic networks from data. Machine Learning, 9, 309-347.

6. Dubi, A. (2000). Monte Carlo Applications in Systems Engineering. John Wiley & Sons.

7. Gruber, A. and Keane, A. J. (2006). Optimisation of System Resources in Reliability
Availability & Maintainability Problems Using Genetic Algorithms, in 16th
International Mirce Symposium, Mirce Akademy, Exeter, UK.

8. Heckerman, D. (1995). A Tutorial on Learning with Bayesian Networks. In Learning in
Graphical Models, M. Jordan (eds.). MIT Press, Cambridge, MA, 1999.

9. Heckerman, D., Geiger, D. and Chickering, D. M. (1995). Learning Bayesian networks:
The combination of knowledge and statistical data. Machine Learning, 20, 197-243.

10. Kennett, R. and Zacks, S. (1998). Modern Industrial Statistics: Design and Control of Quality

and Reliability. Boston: Duxbury Press.

11. Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Morgan Kaufmann: San Francisco.

12. Pearl, J. (2000). Causality: Models, Reasoning, and Inference. University Press: Cambridge.

13. Spirtes, P., Glymour, C. and Scheines, R. (2000). Causation, Prediction and Search. 2nd

edition, MIT Press.

14. Williamson, J. (2000). Approximating Discrete Probability Distributions with Bayesian

Networks, in Proceedings of the International Conference on Artificial Intelligence in Science and

Technology, 16-20 December: Hobart Tasmania.

15. Yehezkel, R. and Lerner B. (2009). Bayesian network structure learning by recursive
autonomy identification. Journal of Machine Learning Research, 10, 1527-1570.

16. Zacks, S. (1966). Sequential estimation of the mean of a log-normal distribution having a

prescribed proportional closeness. The Annals of Mathematical Statistics, 37, 1688-1696.

17. Zacks S. (1992). Introduction to Reliability Analysis: Probability Models and Statistics Methods.
Springer-Verlag, New York.

18. Zacks, S. (2004). Distributions of Failure Times Associated with Non-Homogeneous Compound

Poisson Damage Processes, Lecture Notes-Monograph Series, 45, A Festschrift for Herman

Rubin, 396-407.

Authors’ Biographies:

Aviv Gruber is a doctoral student, under the supervision of Professor Irad Ben-Gal, in the
Department of Industrial Engineering at Tel Aviv University. His research combines
applications from Machine Learning and Information Theory. The research is focused on
Bayesian network learning, mainly for optimization purposes in industrial and service
systems. Aviv is a B.Sc. (2000) and an M.Sc. (2003) in Nuclear Engineering from Ben-Gurion
University of the Negev. He has 8 years experience in Modelling & Simulation of complex
systems as a consultant and a senior tutor, and as an algorithms developer. During his studies,
Aviv is teaching a mandatory course for undergraduate students in the Computer Integrated
Manufacturing (CIM) Laboratory. Aviv's work awarded first prize at the IE & M 2010 for an
outstanding research work.

114 Gruber and Ben-Gal

Irad Ben-Gal is an Associate Professor and the head of the CIM Lab in the Department of
Industrial Engineering at Tel Aviv University. His research interests include statistical
methods for control and analysis of stochastic processes; Applications of Information Theory
to industrial problems; Machine Learning and Automation and Computer Integrated
Manufacturing systems. He holds a B.Sc. (1992) degree from Tel-Aviv University, M.Sc.
(1996) and Ph.D. (1998) degrees from Boston University. He is a member of the Institute for
Operations Research and Management Sciences (INFORMS), the Institute of Industrial
Engineers (IIE), The European Network for Business and Industrial Statistics (ENBIS) and
an elected member in the International Statistical Institute (ISI). He is a Department Editor in
the IIE Transactions on Quality and Reliability and serves in the Editorial Boards of several other
professional journals. He wrote and edited five books, published more than 70 scientific
papers and received several best papers awards. His papers have been published in IIE
Transactions, International Journal of Production Research, Technometrics, IEEE Transaction,
Quality and Reliability Engineering International, Journal of Statistical Planning and Inference, as
well as Bioinformatics and BMC Bioinformatics. Prof. Ben-Gal supervised dozens of graduate
students and received several research grants, among them from General Motors, IEEE, the
Israeli Ministry of Science and the European Community.

