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Abstract: We present a new Bayesian network modeling that learns the behavior of an unknown system 

from real data and can be used for reliability engineering and optimization processes in industrial systems. 
The suggested approach relies on quantitative criteria for addressing the trade-off between the complexity 

of a learned model and its prediction accuracy. These criteria are based on measures from Information 

Theory as they predetermine both the accuracy as well as the complexity of the model. We illustrate the 

proposed method by a classical example of system reliability engineering. Using computer experiments, we 

show how in a targeted Bayesian network learning, a tremendous reduction in the model complexity can 

be accomplished, while maintaining most of the essential information for optimizing the system. 

Keywords: Bayesian networks, differential complexity, mutual information, reliability of complex systems, 
resources optimization. 
______________________________________________________________________ 

1. Introduction 

ayesian network (BN) is a probabilistic model representing the relations between random 

variables of a certain domain. BNs have been extensively employed in various 

applications in engineering and decision making (Pearl [11]).  

A BN is composed of  a directed acyclic graph (DAG), and a set of  parameters. The 
DAG contains vertices (or nodes hereinafter) and edges, where each node represents a 

random variable and an edge, connecting two nodes, represents a probabilistic dependency 

between these random variables. Essentially, the BN encodes the joint probability distribution 

( )P X  of the domain’s random variables that are denoted by .X  Since BNs can be presented 

graphically they are fairly intuitive (Ben-Gal  [1], Heckerman  [8]).  

A BN can be learned from observable data. Graphical constraints can be applied while 

learning, and can be used efficiently for limiting the complexity of the resulting model. In this 

paper, we pay special attention to complexity-reduction versus the accuracy of the model that 

can be accomplished from the learning. 

In order to efficiently learn a BN, numerous learning methods have been suggested in 

recent years (e.g., Chickering [3], Heckerman [8], Heckerman et al.  [9], Cheng et al.  [2], 
Pearl  [12]). In particular, the K2 (Cooper and Herskovits [5]) and the PC (Spirtes et al. [13]) 
are two examples of  predominant BN learning algorithms. Most of these methods, address 

the model complexity by justifying independencies or conditional independencies between 

variables, through statistical tests that are imposed on the data in one way or another.  

One of the methods that we follow here is the adding-arrows by Williamson [14]. The 

adding-arrows is an algorithm which attempts to maximize the total information weight of the 

  

B 
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BN. Williamson  [14] showed that a BN, satisfying some arbitrary constraint, that best 

approximates a joint probability distribution, is one for which total mutual information (MI) 

weight is maximized. He generalized the arguments presented earlier by Chow and Liu [4] 

regarding spanning trees. Chow and Liu [4] proved that, minimizing the Kullback-Leibler 
(KL) divergence between the “true” distribution and the distribution represented by a 
Bayesian tree, is equivalent to maximizing the sum of  MI weights within the tree. 
Nonetheless, their underlying objective was to best approximate the joint probability 

distribution describing the domain without addressing any random variable differently from 

the other variables. In particular, Chow and Liu did not attempt to address optimization cases 

- as we aim doing here - where some of the variables might have larger effects on the target 

variable than others. 

Our underlying purpose is to learn a BN in an efficient manner such that it can support 

optimization process of a complex system. In particular, we consider a system 

reliability-availability-maintainability (RAM) problem where the knowledge is extracted 

from data generated by the system (or other identical systems), encoded into the learned BN, 
such that the redundant information is diminished.   

In order to improve the reliability of the system, one might have to establish a system 

model that represents the system’s performance as a response function of some input 

variables. Having done that, maximization of an objective function could be accomplished by 

changing some of the controllable input variables. For example, when considering the 

availability of a RAM system, as we do in this paper, the controllable variables can be the 

number of spare parts of different types, the preventive maintenance policy and the number of 

workbenches to be used. The system model, however, is fundamentally difficult to establish 

due to several reasons (Zacks [17]) such as: 

 Exponential complexity in the number of components in the system 

 Unknown failure distributions as well as distributions of other relevant processes 

 Interactions between various components that affect the system states 

These obstacles can be tackled by using numerical methods and computer experiments 

(Kennet and Zacks [ 10]), e.g., using Monte Carlo Simulation for predicting the system output. 
The statistical properties of man-made systems are fundamentally difficult to retrieve. Yet, 
they are often modeled via Weibull distributions for failures (Zacks [18]) and Log-normal 
distributions for repairs/replacements (Zacks [16]). With the growing number of inputs, 
however, numerical calculations should generate as many predictions of the objective 

function as required for the optimization procedure - reaching tens of thousands and 

sometimes hundreds of thousands realizations. This approach becomes rapidly impractical 
for optimization purpose, as the calculation procedures of a single prediction realization 

might last minutes and sometimes hours (Dubi [6]).   

The motivation of this work is to improve the performance of a complex system with a 

minimal use of expert knowledge for modeling the system, avoiding the above-listed obstacles. 
We claim that BN learning from data could address such a task efficiently, as will be 

illustrated in section  5. 

In this paper we present a BN learning method oriented to support optimization. To do 

so, we maximize the sum of weights (in terms of mutual information measures) about the 

target variable, and then we maximize the sum of the remaining weights within the network, 
according to the principles of Williamson [14]. It is shown that when the learning is 

target-oriented, a good trade-off between the model accuracy and the model complexity can 
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be achieved if the predetermined target variable is taken into account at the learning stage. 

More formally, the proposed method has the following two stages: for a given target 

variable ,iX X  the approximation to the marginal probability distribution ( )iP X  as a 

function of the entire domain can be efficiently achieved by first obtaining the set of the most 

affecting (parent) variables iZ X  where ,i iX Z  such that the sum of the MI weights 

between iX  and iZ  is maximized. Then, having obtained ,iZ  by maximizing the total MI 

weights among the variables that are included in .iZ  Generally in this paper, vectors and sets 

are bold, random variables are denoted by capital letters and their realizations by small case 

letters. 

The rest of this paper is organized as follows. Section  2 provides the mathematical 
formulation to BN and BN learning. It discusses the unconstrained and the constrained 

learning approaches, both compared to Williamson’s [14] method. Section  3 gives a 

schematic example and compares the adding-arrows approach with the proposed method, in 

both unconstrained and constrained learning configurations. The algorithm is presented and 

detailed in Section  4. Section  5 presents the suggested approach through a real-life example of 

a RAM problem. It also suggests quantified measures for the trade-off between model 
accuracy and model complexity. Section  6 summarizes the paper. 

2. Bayesian Networks Learning 

A Bayesian network ( , )B G   can often be used to represent the joint probability 

distribution of a vector of random variables 1( ,..., ).NX XX  The structure ( , )G V E  is a 

directed acyclic graph (DAG) composed of ,V  a vector of nodes representing the random 

vector ,X  and ,E  a set of directed edges connecting the nodes. An edge ji j iE V V   

manifests dependence between the variables jX  and ,iX  while the absence of an edge 

demonstrates independence between the variables. A directed edge jiE  connects a parent 

node jV  to its child node iV  (Heckerman [8], Yehezkel and Lerner [15]). We denote by 
1{ ,..., }iL

i i iX XZ  the set of “parent” variables of the random variable iX  represented by the 

set of parent nodes 
1{ ,..., }iL

i i iD V V  in ( , )G V E  where for any literal, the superscript j  

stands for its index in the corresponding set and where i iL Z  is the size of the set .i Z X  

The set of parameters   holds the local conditional probabilities over , ( )i ip xX z  that 

quantify the edges for each node state ix  and each parents’ state iz  (i.e., a conjunction of 

states  1 ... iL
i ix x ) of .iZ  

Williamson  [14] indicated that a BN suffices to determine a probability distribution, 
since for each atomic state that is defined by a conjunction of all variable states 1( ,..., ),Nx x  

one obtains 1( ,..., ) ( ).iN i ip x x p x  z  He showed that a BN, satisfying some arbitrary 

constraint, that best approximates a joint probability distribution, is one for which the sum of 

MI weights over the edges is maximized. In particular, he generalized the argument presented 

by Chow and Liu  [4] regarding the best approximating spanning tree. Chow and Liu  [4] 

proved that a Bayesian tree (with encoded probability distribution )q  that best approximates 

a true distribution ,p  is a maximum weight spanning tree. They used the Kullback-Leibler 

(KL) divergence (also known as the relative entropy) as a distance measure between the two 

distributions: 

1

1
1

,..., 1

( ,..., )
( ) ( ,..., ) log ,

( ,..., )N

N
N

x x X N

p x x
d p q p x x

q x x
                    (1) 

where edges between two nodes in the tree are weighted by the MI of their corresponding 

random variables, defined as follows: 
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,

( , )
( , ) ( , ) log .

( ) ( )i j

i j
i j i j

x x i j

p x x
I X X p x x

p x p x
                    (2) 

Chow and Liu  [4] also proposed an algorithm (we shall refer to it henceforth as the CLA) 

based on their weighting approach. Williamson  [14] implemented his straightforward 

generalization to a BN, simply by replacing the single parent variable jX  with the set of 

parent variables iZ  as follows:  

 
 

,

( , )
( , ) ( , ) log .

( ) ( )i i i i

i i
i i i i

x X z Z i i

p x
I X p x

p x p
z

Z z
z

                  (3) 

In a similar manner as Chow and Liu  [4] used (2) as the MI weight within a Bayesian tree, 
Williamson  [14] used (3) as the MI weight between a variable and a set of parent variables in a 

BN. Since (3) follows the MI chain rule, it is more complex - in the same sense that a BN is 

more complex than a Bayesian tree. 

2.1. Unconstrained Learning-A Complete Network 

In a complete BN, each node is connected to all the other ( 1)N   nodes, resulting in a 

maximum total-weighted unconstrained BN. The total weight in the network is a fixed sum 

of conditional MI elements, while the edges’ directions are subject to the requirement that the 

graph must be a DAG. Note that there might be !N  possible complete BNs that would 

provide maximum total weighted BN. The total MI weight of a complete BN can be 

calculated as follows: 

1 2 2 3 1
1

( ; ) ( ; ,..., ) ( ; ,..., )... ( ; ).
N

i i N N N N
i

I X I X X X I X X X I X X


   Z        (4) 

The term in (4) can be then reorganized: 

1

1 1
1 1 1

( ; ) ( ; ,..., ),
N N N

i i i j j i
i i j i

I X I X X X X


 
   

  Z                  (5) 

where 1 1( ,..., )j iX X     if 1.j i   

Since MI is a symmetric measure, i.e., ( ; ) ( ; )I A B I B A  for any random variables A  

and ,B  the total weight in (5) sums up to the same solution regardless of the starting point 

(i.e., regardless of the order of summation), despite the different elements comprising the total 
weight. The above understanding is of significant importance because it implies that the order 

of an unconstrained BN learning is irrelevant from the perspective of obtaining the total of the 

MI weights. For any set of variables , ,A B C  the conditional information ( ; )I A B C  is also 

called the (conditional) information gain (IG) between B  and A  given .C  Note that some 

edges might contribute a zero weight (where the IG is zero), hence, it is viable to remove them 

from the BN.  

2.2. Constrained Learning 

We start by referring to two specific constraints mentioned by Williamson  [14]. The 

constraint 1C  is imposed on ,K  the maximum number of parents for each node. The 

constraint 2C  is imposed on ,k  the complexity of a BN, where ( 1)2 1Kk N K     for 

binary nodes (of two states). The above expression implies that constraining the complexity is 
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an alternative way for limiting the number of parents. Upon that, we suggest two additional 
information-related constraints 3C  and 4C  related to the percentage relative IG (PRIG) 

and the percentage relative information exploitation (PRIE) measures, respectively. 3C  is 
imposed on a minimum required PRIG (by the user-adjusted parameter )  and 4C  is 
imposed on the maximum PRIE (by the user-adjusted parameter ).  For any given 

variable ,X X  with parent variables set ,Z X  and a set of candidate variables 

  ,Z X 3C  can be expressed as 3 ( ; ) / ( ) 100C I X H X   Z Z  and 4C  can be 
expressed as 4 ( ; ) / ( )C I X H XZ  100 . The range of   as well as of   is [0-100]. 

0   implies that any feasible edge could be drawn from each potential parent, except for 

those contributing zero weights, whereas 100   implies that the current node will not have 

any parents. 0   implies that the current node will not have any parents and 100   

implies that any feasible edge could be drawn from each potential parent, except for those 

contributing zero weights. The PRIG can be considered as a sort of a derivative of the PRIE. 
Both constraints are essential for reasonably controlling the complexity as they represent its 
scale and shape altogether. Note however that the selection is ordered by the relative 
information gain, and not arbitrarily as done by the conventional constraints 1C  and 2C . 

Consider the MI between a random variable iX X  and a set of variables i Z X  

representing its parents. The MI can be obtained using the chain rule of information as 

follows: 

 1 1

1
( ; ) ( ; ,..., ).

iL
j j

i i i i i i
j

I X I X X X X 


 Z                       (6) 

Given ( ; ),i iI X Z  if one considers to add another parent 
1iL

iV 
 to iV  in ( , ),G V E  

representing the variable 
1 ,iL

iX  X  then the MI between iX  and 
1iL

i iX Z   should take 

the following form:  

   1 1( ; ) ( ; ) ( ; ).i iL L
i i i i i i i iI X X I X I X XZ Z Z                   (7) 

The IG between iX  and 
1iL

iX 
 given ,iZ  is the marginal information gained upon 

adding the node 
1iL

iX 
 to ,iD  the parents set of the node .iV  Since Chow & Liu  [4] 

considered only Bayesian trees ( max ( ) 1),i iK L   they did not address the information 

chain rule. In their search procedure they focused on finding the largest MI measure between 

each of the remaining nodes and the nodes already populated within the tree. In a tree, only 

the first component of the MI in the chain, i.e., 1( ; )iL
i iI X X 

 is considered 1,..., .i N   

Moreover, the greedy search of the CLA ascertains a tree with maximal total weight, because 

it covers all possible edges. However, such an approach would not hold in the considered 

realm of BNs, where multiple parents are available. Williamson  [14] did consider the IG of 

each and every edge while maximizing the total information weight within the BN. To assure 

a network with a maximal total weight, one has to search all possible sets of parents for each 

node, raising the complexity of the problem up to a level of computational intractability in 
larger networks. 

As a practical solution, Williamson  [14] suggested the adding-arrows learning algorithm. 
The adding-arrows can be seen as a generalization to the CLA by replacing the scoring 

information quantity ( , )i jI X X  with the conditional information quantity ( , )i j iI X X Z  

and ensuring at each stage that the set of constraints 1 2{ , ,...}C CC  still holds and the graph 

remains a DAG. As seen below we propose a somewhat similar approach.  
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3. A Small Illustrative Example 

Consider the “toy” example in Table 1. Here, 1 2 3 4{ , , , }X X X XX  and the dataset 

contains twelve instances of .X  The adding-arrows algorithm, when applied in this example, 
yields an unconstrained BN as shown in Figure 1. Each node is depicted by a circle, labeled by 

the corresponding variable name. The arrows depict the edges, each attributed alongside by 

its IG expression and weight. 

 
Table 1. Illustrative Example of  data. 

Case 1X  2X  3X  4X  
1 1 1 1 2 
2 1 1 2 2 
3 1 1 2 2 
4 1 2 2 3 
5 1 2 2 3 
6 1 2 2 3 
7 2 2 1 1 
8 2 2 1 1 
9 2 2 1 1 
10 2 2 2 1 
11 2 2 2 1 
12 2 2 2 1 

 

 
Figure 1. An unconstrained Bayesian network learned by the 
adding-arrows algorithm applied to the small dataset in Table 1.  

 

According to (5), and as long as the graph remains a DAG, the location of each variable 

in the network is unimportant when the purpose is encoding the joint probability distribution. 
The fact that 4 ,X  for example, depends on 3X  and not the opposite can be simply reversed 

by using Bayes’ rule. That is, in the above example, one could reverse the edge 
3 4,X XE  

(replacing it with 
4 3, )X XE  and update the probability sets in   accordingly. 

For illustration purposes, suppose now that variable 3X  is defined as a target variable 
that should be optimized. The proposed algorithm, which is presented in Section 4, draws 

one edge at a time, i.e., the one for which IG weight is the largest. The process is detailed in 

Table 2. Having started with 3X  as the target variable, an edge from 4X  to 3X  is drawn, 
gaining 0.189 bits of information. Next, since no information is gained if 1X  or 2X  are 

added to 3X  conditioned on 4 ,X  no other parents are added since the stopping condition is 
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satisfied. The same routine is applied then to each parent of 3X  in turn (only to 4X  in the 

current example). The first parent added to 4X  is 1X  (having an IG weight of 1 bit in this 

case) and the second parent is 2.X  Since adding an edge from 2X  to 4X  is conditioned on 

1,X  the edge’s weight is 0.5 bits (rather than 0.811 bits when applying the adding-arrows). 
Finally, and in the same manner, an edge is drawn from 2X  to 1.X  The BN structure that 

was learned by the proposed algorithm from the data in Table 1 is shown in Figure 2 where 

the node representing the target variable is bold.  

 
Table 2. Information gain weights of  each possible edge between the 
potential parents and the current learned node, given its existing parents. 

Potential Parents 

NodeExisting Parents 1X  2X  4X  

3X   0.093 0 0.189 

3 4X X  0 0  

4X   1 0.811  

4 1X X   0.5  

1X    0.311  

 

 
Figure 2. An unconstrained Bayesian network learned by the 
proposed algorithm applied to the small dataset in Table 1. 

 

As expected, the total information weight of the unconstrained BN, learned by the 

proposed algorithm, which is 4
1 ( , ) 0.189 1 0.5 0.311 2i i iI X Z       bits is equal to the 

one obtained by Williamson’s adding-arrows algorithm, which is also  

    4
1 ( , ) 1 0.811 0.189 2i i iI X Z bits. These BNs are only two out of 4! 24  possible 

complete networks, each of which would yield a maximum total weight (of 2 bits in the 

current example). Note that an unconstrained BN must contain all ( 1) / 2N N   possible 

edges. Nonetheless, for the reader’s convenience, the zero weighted edges are not displayed in 
the figure. 

Let us consider now the conventional constraint 1C  proposed by Williamson and limit 
the number of parents to one ( 1).K   Figure 3 and Figure 4 show the results obtained by the 
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adding-arrows algorithm and by the proposed algorithm respectively, both with 1.K   The 

total information weight ascribed to the BN learned by the adding-arrows is 1.811 bits, about 

6% less than that of the unconstrained BNs in Figure 1 and Figure 2. This result can be 

compared with the 1.5 bits obtained by the proposed algorithm under 1,C  that is 25% less 

than the unconstrained BN. Note that although the total weight of the BN shown in Figure 4 

is smaller, the proposed algorithm fulfills its objective - to maximize the information on the 

target variable. 

 

 
Figure 3. A Bayesian network learned by the adding-arrows 
algorithm applied to the dataset in Table 1 with a constraint of a 
single parent per node, 1.K   

 

 
Figure 4. A Bayesian network learned by the proposed algorithm 
applied to the dataset in Table 1 with a constraint of a single parent 
per node, 1.K    

 

Notwithstanding, the outstanding consequence of the BN shown in Figure 3 is that the 

target variable 3X  is not connected to any other variable. Since 3X  has relatively small 
information about the rest variables, it is excluded from the tree. Here is where the profound 

gap comes in. While the result shown in Figure 3 would be satisfying for Williamson’s  [14] 

and Chow’s & Liu’s  [4] common objective, it displays an undesirable outcome for the 

proposed objective. Our objective in this case is to maximize the information about the target 
variable 3X  via other variables which comprise the entire joint distribution. Figure 3 

emphasizes that the method proposed by Williamson  [14] does not satisfy such a requirement 
efficiently. 
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4. Proposed Algorithm 

Our underlying assumption in this study is that a target variable 1X X  is given, and 

that we aim to best approximate the probability distribution ( )ip X  using the law of complete 

probability with respect to the entire domain. Namely, we wish to represent the expression 

shown in (8) with an approximation shown in (9). 

( ) ( ) ( ),
C C
i i

C C
i i i i

x
p X p X p


 

X

x x                          (8) 


 ( ) ( ) ( ),

i i

i i i i
z

q X p X p
Z

z z                            (9) 

where 
Cx  denotes the atomic states of \C

i iXX X  and iz  denotes a state of ,C
i iZ X  

the set of variables representing the parents of iX  in the BN. Aiming at minimizing ( )d p q  

for p  in (8) and q  in (9), we consider two steps. In the first step we aim to find the set 
C

i iZ X  such that ( ; )i iI X Z  is maximized. In the second step we apply Williamson’s  [14] 

method and attempt to maximize the sum of information weights only within  C
i iZ X  

instead of within the entire domain .X  Finally, Min( ( ( ) ( )))i id p X q X  is approximated by 

the following stages  

1. 
 arg max ( ( ; )).C

i
i iX

I X
Z

Z Z  

2. Max( ( ; )).
j iX j jI XZ Z   

Thus, in the first stage we look for the parents’ subset of the target variable that 

maximizes the information about the target variable. In the second stage we maximize the 

sum of information weights within the parents subset, as shown in (5) by Williamson for the 

entire domain. 

The above approximation is of significant importance as it implies that large amount of 

data can be filtered out while learning, when the objective is the optimization of a given target 

variable.   

We also suggest constraining the network differentially. Let us redefine the constraints as 

-t
jC the -thj  constraint applied to the target variable and -r

jC the -thj  constraint applied to 

the rest of the variables (referred to as “attributes” in classification problems). Let us also 

compute the complexity for the general case. Recall that if variable jX  takes one out of jx  

values, then the complexity in terms of  the number of  independent parameters is expressed, 
as follows: 

1 1
( 1) .

iKN

i j
i j

k x x
 

                             (10) 

Equation (10) is free of the assumption of binary nodes, as it quantifies the complexity of 

variables with multiple states. 

Our proposed algorithm handles two options of representations, that follow from the 

above mentioned stages. They are similar with respect to stage 1, but are different with respect 

to stage 2. The first algorithmic option maximizes ( ; )C
j iX j jI X X Z  and will be referred to 

as the Extended-Family representation. The second option maximizes ( ; )
j iX j jI X Z Z  and 

will be referred to as the Nuclear-Family representation. Our proposed algorithm employs a 

recursive procedure that can be applied on any given node at a time, and with any set of 

potential parents. The procedure adds edges from candidate nodes to the node to which the 
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procedure is currently applied-each time an edge, for which IG weight is the largest. The 

stopping condition for this procedure is the breaking of some arbitrary constraint C C  (e.g., 
reaching the maximum number of parents) or when the set of candidate parents is empty. The 

procedure begins with the node representing the target variable (the target node). Having 

determined the target node’s parents, the same procedure is then applied to each one of the 

parents in turn, obtaining each parent’s ancestors and so forth. The candidate parents at each 

call of the procedure are subject to the algorithmic option of representation. In the case of the 

Extended-Family option, all nodes, excluding those which might break the DAG, are 

candidates as ancestors and the remaining ancestors are being looked for also outside the 

parents of the target variable. In the case of the Nuclear-Family option, only the parents of the 

target node are candidates as ancestors. The Nuclear-Family ends up with a BN in which all 
nodes are connected to the target node and among themselves up to a level controlled by the 

constraints. 

A flow chart of the proposed algorithm, with X  as the target variable and X  as the 

variables domain, is given in Figure 5. 

 

 

Figure 5. A flow chart of the proposed subroutine, taking a differential set of constraints 

{ , },t rC CC  which is a function of oldh  and newh   and is regarded “true” if it is satisfied or 

false otherwise. The constraints may include (but are not limited to) the maximum number of 

parents; the maximum number of children;   and .  Note that the input parameters    

and   are applied through 3C  and 4C . T  represents the set of nodes, representing the 

candidate variables remaining either from the entire domain (the case of the Extended-Family 

mode) or from the parents of the current node that represents the variable as the current 

argument of the procedure (the case of the Nuclear- Family mode). 
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5. A Communication System Case Study 

In this section we present an implementation of a realistic example. The example data is 

taken from a simulation of an operating communication system, supplied by spare parts of 

different types, each of which has a turnaround time upon failures (Dubi [6]). A reliability 

block diagram (RBD) of the system is shown in Figure 6 displaying redundancy. The first line 

comprises the power supply units (components 1, 4, 7), the second line comprises transmitters 

(components 2, 5, 8) and the third line comprises modems (components 3, 6, 9). The 

right-hand module of the RBD is a ‘Line’ module representing the wiring of the system 

(components 10, 11). The failure distributions of the components in this example are 

Exponential. The mean time to failure (MTTF) and the recycling times of the unit types are 

presented in Figure 6. The ‘Line’ components are discarded. Namely, upon failure, they are 

not shipped to the repair depot and can be replaced only with new spare parts that were 

purchased and allocated for it in advance (in other words, their cycling time is infinity). Also, 
at least two of the series on the left-hand side of the system must operate for the system to 

function properly.  

 

 
Figure 6. The RBD of a communication system with the components’ 
failure and repair data and the cost of spares. 

 

Upon failure, the failed component is taken from the system and is shipped from the field 

to a repair depot. Having been repaired, the component will return to the storage as an 

available spare part. If an old demand for a spare part is due at that time, it will be sent to the 

system for a replacement of a failed component. The time since failure to replacement is also 

referred to as the turnaround time. An illustration of the above described logistic cycle is given 

in Figure 7. Roughly speaking, the optimization problem arises from a competition of two 

objectives: maximizing performance versus minimizing the cost of spare parts or other system 

resources. 
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Figure 8 illustrates a comparison among various optimization approaches of previous 

studies on a similar system, operating in a different logistic environment, which included 

multiple logistic levels and multiple fields, that apart from spare parts, are influenced by other 

resources, such as the number of workbenches. This figure, based on Gruber and Keane  [7] 

presents uniformly distributed random samples of the system unavailability as a platform for 

applying Genetic Algorithms (GA) for optimization. The motivation was inspired by the 

independency of the GA approach of the physical model compared to other methods, that 
require information on the physical system. Figure 8 draws the density of the system 

unavailability over the resources space, scaling the resources mixture on the cost axis. The 

cost is sampled uniformly, by which spare parts and other resources are allocated. The 

corresponding resulting Pareto Front of the unavailability is compared with the unavailability 

accomplished by other optimization approaches. Each sample shown in Figure 8 is an 

outcome of a complete computer experiment (see Kenett and Zacks  [10]) a Monte Carlo 

Simulation of a well-defined model that meets the definitions and descriptions  of the above 

communication system. 
 

 
Figure 7. Logistic cycle of  the communication system LRUs. 

 
Figure 8. A communication system unavailability as a function of the cost allocated 
for supporting the system’s performance (based on Gruber and Keane [7]). 
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The input to our proposed BN learner was a flat database containing the states of all 
components, also known as ‘line replaceable units’ (LRUs), assembling the system along with 

the System state and the spare parts availability, held by four Stock variables (i.e., a stock per 

each LRU type). The System performance is defined as the target variable in this example, and 

is measured by the System availability that derives from its reliability and resources’ support. 
Since in this example the LRU variables are not considered as controllable variables, their 

inclusion in the BN is not really relevant for the optimization. The only controllable variables 

are the Stock variables, as they constitute the spare parts strategy supporting the 

communication system availability. The observations were sampled on a daily basis 

throughout 10 simulated years of operation. Figure 9 and Figure 10 show the BNs learned by 

the proposed algorithm in Extended-Family and in Nuclear-Family modes, respectively. Both 

BNs were constrained to comply with complexity levels associated with [ 98%]t   and 

[ 25%].r    
 

 
Figure 9. A Bayesian network supply chain of the communication system, as learned by 
the proposed algorithm in an Extended-family mode, constraints are set to [ 98%t   and 

25%].r   

The complexity of the BN shown in Figure 9, obtained by (10) is 131090.k   The 

complexity of the BN shown in Figure 10 is 50k   (thus, four orders of magnitude off!), 
displaying the tremendous difference between the two algorithmic modes. Figure 9 

emphasizes how exhaustive computation can be wasted to no avail, should one attempts to 

learn a BN for optimization purposes without considering the constraints differentially, as 

proposed. While the information weight associated with the System variable remains the same, 
much information weight is reflected among the attributes, increasing the complexity: not 

only would it end up with an extremely complex BN, but also the learned BN might be 

inferior for optimization purposes than the one learned by the Nuclear-family mode. In this 

stage we study the complexity level as a function of 
t  and  ,r

 going from minimum PRIG 

of 0% to some positive small fixed-values. This is preferable for illustration purposes, as it 

smoothes the complexity curve due to its exponential nature. Hence, we set fixed minimum 
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PRIGs of [ 2%]t r   . The resulting complexity of the BN model as a function of t  and 
r  is illustrated in Figure 11. 

 

 
Figure 10. A Bayesian network supply chain of the communication system, as learned by 
the proposed algorithm in a Nuclear-family mode, constraints are set to [ 98%t   and 

25%].r   

 

 
Figure 11. The complexity ( ),k  as a function of 

t  and  ,r  i.e., the MaxPRIE about the 
target variable and MaxPRIE about the rest variables, which are applied through 3C . 
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The dashed diagonal curve on top of the complexity surface designates the ‘traditional’ 
or conventional complexity trade-off, as a one-dimensional measure. The trade-off is 
executed between   and the model complexity (as a scalar that controls the complexity 

without differentiating the target variable from the rest attributes) and creates a limited 

decision line. Along this line, two corresponding BNs are illustrated. Their locations can be 

regarded an outcome of  a strategic decision. In each of these BNs, the bottom node, that is 

the System node, represents the target variable. One can see that along the diagonal curve, the 

BNs tend to be narrow, implying that the information is relatively exploited among all the 

variables, where few nodes are connected to the System node. Similarly, the K2 curve in Figure 

11 demonstrates such limitation. Furthermore, the K2 algorithm does not consider 

information measures for constraining the BN and, therefore, its complexity curve does not 

form an information-based decision line.  

Through the differential outlook, where 
t  and 

r  are displayed orthogonally, the 

trade-off changes significantly, enabling a decision plane, rather than a decision line where all 
the variables are treated equivalently. It is clear from the graph that the complexity can be 

reduced remarkably, while maintaining a considerable level of the maximum target PRIE 

requirement. For example, the BN pointing to [ 100%; 0%]t r    connects four LRU 

nodes to the System node, providing the maximal possible information for optimization with a 

complexity value of 39. This point is the end point of the [ 0%]r   curve, referred to as the 

“Best Target” curve. In addition, three more curves with fixed 
r  values are displayed: the 

[ 30%]r   curve; the [ 35%]r   curve; and the [ 40%]r   curve.  

To illustrate the outcomes that can be learned from a BN, Figure 12 demonstrates some 

optimization considerations based on the trained network, with its stock controllable 

variables set to {1, 3,1, 7}.  This BN was learned by the Extended-family algorithmic mode 

enabling to represent the indirect influence of the Stock variables. To avoid a complex BN 

structure, such as the one shown in Figure 9, the minimum PRIGs were set to comply with 

2%;t   and 5%.r   

 

 
Figure 12. Two assignments of a Bayesian network of a communication system supply 
chain, learned by the proposed algorithm in an Extended-Family mode, constrained to 
[ 2%t   and 5%]r  . The left-hand assignment shows the distribution of each variable, 
given that the System variable is in state “ 1x ” (an “available” state of the system). The 
right-hand assignment shows the distribution of each variable, given that the System is in 
state “ 0x ” (an “unavailable” state of the system).  
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Having learnt this BN, one can firstly notice that the dominant LRU variables affecting 

the target System variable are LRU1, LRU7, LRU10 and LRU11. Also, that LRU1 as well as 

LRU7 depend on Stock1, where LRU10 and LRU11 depend on Stock4. The average system 

availability with this setting is about 99%. Given that the system is unavailable, the dominant 

parent LRUs (i.e., LRU10 and LRU11) are failed, with a conditional probability of 54% and 

65% respectively (taking the state “ 0x ” in Figure 12). Given the conditional state distribution 

of LRU10 and LRU11, the distribution of Stock4 changes such that there is a shortage of spare 

parts with a probability of 78% compared with a conditional probability of 5% when the 

system is available. This observation can suggest on increasing the number of spare parts in 

stock number 4. Indeed, running a simulation study with a stock setting of {1, 3,1, 8},  

increases the average availability to nearly 99.9%. Note that the cost of the added spare part is 

the cheapest among other parts in this example. Although we do not discuss here the 

optimization trade-off between unavailability costs and stock costs, this example displays the 

means by which such a desired optimization can be processed, as the above BN incorporates 

all the sufficient information for carrying it out.  

6. Summary 

Bayesian networks are predominant modeling methods when dealing with large systems 

that involve and can supply large amounts of data. The drawback of modeling based on large 

datasets is often the required modeling complexity. There exist several methods that tackle 

this issue. This paper continues a line of previous works, as it suggests a practical approach, 
for better a complexity control, by distinguishing between the target variable versus other 

variables in the system. This enables the distinction of the required complexity for 

understanding what affects a target variable, as opposed to general complexity measures that 

are irrelevant to the target variable.  

In this work, we present a new algorithmic approach, which efficiently tackles the 

complexity issue. Accordingly, the algorithm aims at maximizing the information between 

the target variable and the relevant domain variables (attributes) and subsequently it 

maximizes the information weights among these variables.  

Through a realistic example, it was illustrated, how the proposed algorithm handles well 
the trade-off between information measures and complexity when learning a BN from a large 

dataset that was generated by computer experiments. In particular, measuring the complexity 

differentially is suggested, stressing the ability to reduce the complexity remarkably while 

maintaining most of the essential information for performing the desired optimization. 

Note that the proposed algorithm is not limited to data bases related to systems 
engineering, and can potentially address various types of  applications with different 
objectives. 
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