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A Risk-Scoring Feedback Model for Webpages and Web Users
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It has been claimed that many security breaches are often caused by vulnerable (naı̈ve) employees within the
organization [Ponemon Institute LLC 2015a]. Thus, the weakest link in security is often not the technology
itself but rather the people who use it [Schneier 2003]. In this article, we propose a machine learning scheme
for detecting risky webpages and risky browsing behavior, performed by naı̈ve users in the organization.
The scheme analyzes the interaction between two modules: one represents naı̈ve users, while the other
represents risky webpages. It implements a feedback loop between these modules such that if a webpage is
exposed to a lot of traffic from risky users, its “risk score” increases, while in a similar manner, as the user
is exposed to risky webpages (with a high “risk score”), his own “risk score” increases. The proposed scheme
is tested on a real-world dataset of HTTP logs provided by a large American toolbar company. The results
suggest that a feedback learning process involving webpages and users can improve the scoring accuracy
and lead to the detection of unknown malicious webpages.
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1. INTRODUCTION

The battle against cyber security threats, in general, and malicious webpages, in par-
ticular, is becoming increasingly difficult as attackers develop extremely sophisticated
techniques to overcome traditional security measures [Perdisci et al. 2010]. The human
factor makes this battle even more complex, as the weakest link in security is often
not the technology used but rather the users [Schneier 2003]. It has been claimed that
most security breaches come from within the organization [Ponemon Institute LLC
2015a]; in some cases, such breaches are caused by malicious employees, yet, in many
cases, they are caused by vulnerable (naı̈ve) employees. In recognition of the growing
risk due to these users, endpoint security is currently becoming an important prior-
ity for organizations [Ponemon Institute LLC 2015a]. The risky behavior of users is
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likely to emerge in cases where the users do not fully understand the potential risk
consequences of their actions, such as browsing risky webpages. Downloading a file,
playing a video [Pot 2015], or even viewing a PDF document [Anon 2014; Selvaraj and
Gutierrez 2010] from seemingly safe websites can result in malicious software being
downloaded unintentionally. This can lead to great damage to the organization. For ex-
ample, Ponemon Institute claims in their 2015 report that the average 10,000-employee
company spends $3.7 million a year dealing with phishing attacks [Ponemon Institute
LLC 2015b]. In another report, also from 2015, 703 IT experts were interviewed, and
80% of them reported that drive-by download attacks are frequently seen in their orga-
nization’s IT networks [Ponemon Institute LLC 2015a]. A potential security solution of
managing security permissions based on the employee’s position/expertise was found
to partially address the risk: CloudLock research [CloudLock 2015] reveals that 52,000
instances of third-party cloud applications were installed in the organization cloud
by highly privileged users. Such a scenario is particularly troublesome, given the fact
that privileged accounts are highly coveted by cybercriminals. Taking all the above
into account, nowadays, organizations are required to put in more effort towards the
prevention of threats and risk exposures caused by naı̈ve users. Accordingly, new secu-
rity solutions are expected to be adaptive and personalized, such that they learn and
capture the user’s behavior over time.

This article proposes a machine learning scheme for personalized security solutions
that focus on learning the browsing behavior of users in the organization. A major
contribution in this work is a proposed feedback scheme between two modules – the
scoring module for users and scoring module for webpages. The proposed approach aims
at preventing vulnerable users in the organization from accessing risky webpages.
The presented scheme provides the following advantages over existing conventional
security measures: (i) Behavioral Analysis: Today’s malware developers generate a
large number of polymorphic variants of the same malware (e.g., by using executable
packing or other code obfuscation techniques) [Perdisci et al. 2010]. As a consequence,
anti-virus products (AVs) are challenged to remain up-to-date, and their scanners
often generate a high number of false alerts. While malware can change rapidly, user
behavior is often more stable and predictable. Accordingly, the proposed method tracks
naı̈ve users who can lead to newly recognized risky webpages, without the need for
examining the properties, signature or content of the pages. As a result, the proposed
scheme is more robust against evolved malware techniques and is relevant for the
detection of a large variety of malware types; (ii) Performance: Risk scoring of webpages
using conventional tools is usually obtained by executing and analyzing the webpage
source code, which often requires high computational efforts. On the other hand, the
proposed method uses users’ behavioral meta-data only, and therefore, performance
obstacles can be reduced significantly; (iii) Accessible Data: The proposed scheme uses
only raw HTTP logs as its input, which in most cases can be easily accessed by the
organization’s administrator. This overcomes the need for cookie-based information or
any other prior knowledge tag on the user’s vulnerability/level of expertise.

The proposed approach contains two types of learned entities, web users and web-
pages. For each of the entities, the model maintains a “risk score” that represents the
risk exposure to the organization by that entity. These risk scores are generated by
two modules: (i) the user module that can be considered as a security-related profiling
that learns the user’s browsing behavior and (ii) the webpage module, which is a risk
scoring framework for webpages. Finally, a feedback loop is proposed to represent the
interaction between users and webpages.

The main premise is that a user who is more exposed to malicious webpages is more
likely to be less “security-aware” and put the organization at higher risk. In a similar
manner, it is assumed that a webpage that obtains a lot of traffic from risky users,
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e.g., phishing sites, is suspected of being more risky. A dynamic simulator using a
real dataset is performed to examine this premise. The experiment shows that the
interaction between the user module and webpage improves the scoring accuracy.

The rest of the article is organized as follows: Section 2 briefly reviews some relevant
literature. Section 3 states the proposed approach more formally. Section 4 describes
the webpage learning module. Section 5 describes the user learning module. Section 6
presents some experimental results based on a real dataset of an American toolbar
company. Section 7 summarizes the main conclusions and discusses some directions
for further research.

2. RELATED WORK

Malware detection based on user behavior and personalized security systems is a rela-
tively new research area that is not well-categorized in the literature. Risky webpages
are defined in this article as pages that contain phishing scams, downloaded unau-
thorized software/content (e.g., videos or PDF files), hidden malware code or drive-by
downloads. Webpages that fetch malicious ads are considered to belong to a different
category, which is not targeted by the proposed scheme, as display ads are not neces-
sarily embedded in the webpage itself and often are controlled by Real Time Bidding.
In drive-by downloads, the user is lured to a malicious webpage that contains code,
typically written in JavaScript, which exploits vulnerabilities in the victim’s browser or
in the browser’s plugins. If successful, malware is downloaded on the victim’s machine,
which, as a consequence, often becomes a member of a botnet. Many of the drive-by
download detection tools apply dynamic analysis methods, which execute the page con-
tent and monitor the processes for malicious activities [Canali et al. 2011]. While these
tools are often precise, their analysis is costly. Moreover, human expert assistance is
usually required for the final classification of the malware. On the other hand, static
analysis approaches rely on static factors of the webpage, such as its textual content,
features of its HTML and JavaScript code, and characteristics of the associated URL.
These techniques are much faster but less accurate than the dynamic methods [Canali
et al. 2011].

Drive-by download attacks are very popular among malicious webpages [Provos et al.
2007]. However, there are many other malicious threats to organizations, such as (man-
ually) downloaded Trojan horses and viruses, among others. These threats can often
be found in webspam pages. The term webspam refers to pages on the World Wide Web
that are created with the intention of misleading search engines. Webspam detection al-
gorithms are categorized into three main groups [Spirin and Han 2012]: analysis of the
page’s content features, such as word counts, language models and content duplication.
Another group of algorithms utilizes link-based information [Page et al. 1999; Gyöngyi
et al. 2004; Krishnan and Raj 2006; Sobek 2002; Kleinberg 1999; Lempel and Moran
2000], such as neighbor graph connectivity, link-based trust and distrust propagation,
link pruning, graph-based label smoothing and link-based anomalies. The third group
includes algorithms that exploit click stream data and user behavior data [Yuting Liu
et al. 2008; Miller et al. 2001; Yiqun Liu et al. 2008; Webb et al. 2008], such as query
popularity information and HTTP session information.

Many of the research studies concentrate on the webpage content/characteristics,
while only few of them consider aspects of user behavior. The few that do address it
(and are categorized as the third group of webspam detection methods) perform their
analysis based on user access logs, as this work does. Two known user-based ranking
algorithms that apply link-based techniques are BrowseRank and usage of weighted
input to HITS. The BrowseRank [Yuting Liu et al. 2008] computes the page importance
by constructing a user browsing graph, which is based on user browsing history. In
the user browsing graph, webpages are represented by vertices, while the transitions
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among the pages are represented by edges. A continuous-time Markov process defined
over the user browsing graph, with respect to the time spent in a webpage, and its
stationary probability distribution reflect the page’s importance. In a similar manner,
in the usage of weighted input to HITS [Miller et al. 2001], the web server logs are used
for graph construction. The authors propose a modification to the adjacency matrix as
an input to the HITS algorithm, such that the most frequently followed links play the
largest role in determining new authority weights.

Unlike the above-mentioned webspam detection studies, which are mainly based
on identifying webspam pages (that are not necessarily harmful to the organization),
the suggested approach aims to detect webpages that may put the organization at
risk, specifically through naı̈ve users. This is the reason why the proposed approach
learns the interaction of users and risky webpages and assesses the risk factors as-
sociated with both. This objective is fulfilled by proposing a specific graph that rep-
resents the interaction between users and webpages, as described in Section 4. Next,
webpages in the proposed graph are scored by well-established link-based algorithms,
such as PageRank [Page et al. 1999], Inverse PageRank [Krishnan and Raj 2006], HITS
[Kleinberg 1999] and SALSA [Lempel and Moran 2000].

To the best of our knowledge, non-comprehensive work has been conducted on per-
sonalized security systems. These systems should analyze human behavior factors and
human browsing characteristics for the purpose of malware detection. To date, an
extensive body of literature exists on the analysis of malicious behavior detection.
However, most of these studies concentrate on detecting malware writers/users, also
referred to as black hats, hackers, or crackers. They analyze the behavior of a program,
a computer system or a webpage, rather than analyzing the behavior of the users who
consume the content. For example, the assumption that email spammers operate as a
global, organized, virtual social network of spammers was explored in Xu et al. [2009].
The method of spectral clustering, which is used here, was applied to a set of spam
messages collected under the Honey Pot project for defining and tracking these spam-
mers’ social networks. However, this work [Xu et al. 2009], similar to many others, did
not considered naı̈ve users as factors, which can improve the malware detection task.

Personalized security systems take relevant human factors into account, including
the user profile. User profiling is obtained by modeling users based on their network
browsing behavior. The profiling can often be categorized into three user feedback
types: implicit (non-invasive), pseudo-feedback, and the explicit feedback.

Commercialized security profiling schemes have to be non-invasive by relying only
on implicit feedback, without disrupting user productivity. In a study conducted by
Microsoft [Leontjeva et al. 2013], a holistic approach was presented for the security
classification of Skype users, relying only on implicit feedback. Similar to the approach
in this work, the authors combined information from diverse sources, such as static
users’ profiles, time series that represent user activities, and related social connections.
As the results demonstrate, fraud classification improves as more of these sources are
added. This concept of combining information from diverse sources is applied in this
work, but in contrary to focusing on detecting fraudulent Skype users, we aim to detect
naı̈ve users over the web and assess their risk.

Although relatively new to cyber security, the integration between behavioral risk
scores and system performance was already considered in other fields (e.g., see Kenett
et al. [2009] and Bai et al. [2012]). For example, in Bai et al. [2012], the authors
proposed a risk-based approach that aims to detect risks associated with a semantic
web service with the highest impact on users. The authors analyzed two factors of risk
estimation: failure probability and importance. A Bayesian network was constructed
to model the complex relationship ontology classes. Kenett et al. [2009] proposed a
framework that aims to detect user interface (UI) problems of web services (by tracking
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Fig. 1. Proposed feedback loop scheme.

service usability) and to define when an intervention is needed in the system in order
to improve its usability. The article presents a framework for identifying user errors
due to changes in the service context, and for mitigating such risks. Usability tracking
was performed by applying Statistical Process Control and the intervention time was
defined by a Dynamic Linear Model. Although we use different tools and have different
system objectives, few of the concepts in the above works were adopted to the proposed
approach.

Following all the above-mentioned methods, this work outlines the foundation for
a personalized security system which is based on two modules. First, a non-invasive
user profiling module learns the user’s behavior and generates a risk score for the user.
Second, the webpage learning module scores relevant webpages by also relying on the
users’ score. Next, once a user wishes to access a webpage, the security system uses
behavioral historical data to approximate the potential risk of that specific transaction
and react accordingly. More details on each of these modules as well as the integration
between them are described in the following sections.

3. PROPOSED APPROACH

The proposed approach considers two types of entities: users and webpages. The model
maintains for each of the entities a “risk score” that represents the risk exposure to
the organization related to that entity. The main premise is that a user who has more
entries to malicious webpages is more likely to be naı̈ve or less “security-aware.” This
user will probably visit more malicious pages in the future and, therefore, might put
the organization at a higher risk, and his risk score should be increased accordingly.
On the other hand, tracking his browsing paths can lead to other unknown malicious
webpages. These new webpages may help in revealing additional risky users and so on.
In a similar manner, it is assumed that a webpage that obtains a lot of traffic from risky
users (e.g., phishing sites) has a risk score that should increase as well. This mutual
information trading can be seen as a feedback-loop model, as described in Figure 1.

Based on these assumptions, a general scheme is proposed for deriving the person-
alized risk scores of users and webpages by modeling and analyzing the interactions
between them. Figure 1 shows the proposed feedback loop scheme that integrates the
two modules: one models the users, while the other models the webpages. Each of these
modules generates a “risk score” that is used by the other module. The first module
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generates a user risk score, which is based on the user’s browsing behavior. The sec-
ond module generates a webpage risk score, which is derived by learning the visited
webpages and their non-standard linkage characteristics. The two modules share in-
formation with each other to improve the overall scoring performance. The proposed
scheme produces two types of scores.

User Profiling Score ui. This module applies an automated identification of security-
related profiles and detects the risky users. The proposed approach implements unsu-
pervised machine learning techniques for identifying communities that share “similar
behavior” over the cyberspace. Risk patterns associated with naı̈ve users may be evi-
dent in different parts of the data. Therefore, a method is proposed for fusing multiple
information sources into different feature categories and a technique for the construc-
tion of a holistic similarity graph. Next, the users are clustered over this similarity
graph based on the Normalized Spectral Clustering method proposed by Ng et al.
[2002] and the K-medoids algorithm proposed by Kaufman et al. [1987]. The proposed
procedure is as follows:

ALGORITHM 1: Users’ Scoring Module
Input: HTTP logs, blacklists, webpages’ risk score (r1, . . . , rd).
Output: users’ risk score (u1, . . . , un).

1. Process HTTP logs
2. Data model:

i. Initialization: initialize the users’ risk profile with respect to known risky webpages
ii. Construct the similarity matrix F using the user’s aggregated features

iii. Construct the similarity matrix G using the user-webpage graph
iv. Construct a holistic similarity matrix A

i. Features weighting: solve the linear programming problem to find the optimal
weights

A = ω1 · F + ω2 · G

3. Learning model:
i. Cluster the users

4. Users’ risk score := users’ profile

Webpage score rj . This module scores the webpages based on their potential mali-
cious reputation while using link-based methods with a specialized browsing graph.
Several well-established algorithms are compared for this task: PageRank [Page et al.
1999], Inverse PageRank [Krishnan and Raj 2006], HITS [Kleinberg 1999] and SALSA
[Lempel and Moran 2000]. The proposed procedure is as follows:

ALGORITHM 2: Webpage Scoring Module
Input: HTTP logs, blacklists, users’ risk score (u1, . . . , un).
Output: webpages’ risk score (r1, . . . , rd).

1. Process HTTP logs
2. Data Model: Construct the browsing graph G (V, E)

i. V webpages’ initial risk score
ii. E edges weighted by the transitions of risky users

3. Learning model:
iii. Rank webpages using the link-base algorithm

4. Webpages’ risk score := webpages’ rank
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The next two sections separately detail each of the autonomous modules without
considering the feedback between them at this stage. Each module includes a data
model and a learning model. Based on the experimental results, the suggested method
is compared to a baseline method. Then, in Section 6, we describe and analyze the
results of the feedback loop model. Once these modules are integrated, an improvement
in the scoring accuracy is demonstrated.

4. WEBPAGE MODULE: A RISK SCORING FRAMEWORK

4.1. Data Model

The proposed directed Browsing Graph consists of vertices representing webpages
and edges representing the transitions of users from one webpage to another. An
edge reflects various types of transitions such as clicking a hyperlink or a bookmark,
redirection of the user to another page automatically or simply writing a new URL
manually in the address bar. The browsing graph follows the concept used in previous
works for webspam detection [Xue et al. 2003; Miller et al. 2001; Yuting Liu et al. 2008].
Multiple edges from one vertex to another collapse into a single edge, implying that it
is not a multigraph. The main difference in the proposed graph versus that described
in earlier works is the proposed edge weighting (described below) as well as the use of
the graph for risk scoring instead of spam ranking. In particular, weights are computed
in two ways:

(i) Without Reference to Users – The weights of all edges are either 1 if there was
a transition between the corresponding webpages or 0 if there was no transition
between the corresponding webpages.

(ii) With Reference to Users – the edge’s weight corresponds to the transitions and the
risk scores of the users who transitioned between the vertices.

More formally, let G = (V, E) be a browsing graph, where V is the set of vertices and
E is the set of edges. Let Ui, j be the set of users who transitioned over the edge (i, j).
Denote by k ∈ Ui, j a user k who transitioned from vertex i to vertex j. Let uk denote
the risk score of user k, such that:

uk =
{

1, if user k is risky
0, otherwise

Note that the index i, j in k and the indicator function uk are omitted for the purpose
of simplicity of exposition. The risk potential τi, j of edge (i, j) is defined as follows:

τi, j =

⎧⎪⎪⎨
⎪⎪⎩

∑
k∈Ui, j

uk∣∣Ui, j
∣∣ , if

∑
k∈Ui, j

uk > 0

ε, otherwise

such that edges with transitions of non-risky users have a minor effect (ε). Note that
the above calculation is relevant for the second considered case with reference to users’
risk score. When the users’ risk score is not used, we use τi, j = 1,∀ (i, j) ∈ E. Let
IisLink (i, j) be an index that indicates whether the edge (i, j) is a hyperlink, i.e.,

IisLink (i, j) =
{

1, if ∃ k ∈ Ui, j who transitioned by hyperlink f rom i to j
0, otherwise

where an edge in which at least one user transitioned by a hyperlink is denoted as a
hyperlink. Let α be a predefined weight for hyperlink, α ∈ [

0, 1
]
. Then, the weight of

edge (i, j) is defined by:

ρ (i, j) = τi, j ((1 − α) + αIisLink (i, j)) .
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When α = 1, a Hyperlink Graph is obtained: it is a graph where the edges represent
physical hyperlinks that are used to transition from one vertex to another. Note that the
main difference between this hyperlink graph and the Web graph, which is commonly
used in the literature [Page et al. 1999], is that the edges in the former exist if at
least one user used the hyperlink, whereas the edges in the latter are not generated
with respect to the user’s usage, that is, an edge can exist even if no user used the
hyperlink. It is well known that links can be created by web developers to mislead
search engines [Garcia-molina and Gyöngyi 2005; Spirin and Han 2012]: most of these
links are not used and exist in order to maximize the page’s score with respect to link-
based algorithms. Link farms, honey pots and spam link exchange are all means for
manipulating the Web graph to delude these algorithms. Incorporating only the used
hyperlinks makes the model less sensitive to such issues. For instance, Yiqun Liu et al.
[2008] used the proportion of the used hyperlinks in a page as one of their features
for detecting spam webpages. They show that a page in which most of the hyperlinks
were not actually used by users is more likely to be spam. This graph structure is used
as the baseline data model in this work. It is analyzed under the same two conditions
mentioned earlier, that is, with and without reference to the users’ risk score.

4.2. Learning Model

Previous studies [Zhen-quan et al. 2010; Huang et al. 2013; François et al. 2011;
Kamvar et al. 2003; Wang et al. 2010] showed that link-based webspam algorithms,
mainly PageRank [Page et al. 1999], are useful for detecting malicious entities, e.g.,
pears in P2P networks or botnets. These studies motivate the implementation of such
type of algorithms in this work. This section describes a few well-established link-based
ranking algorithms that are further examined in later sections.

4.2.1. PageRank. Generally, PageRank [Page et al. 1999] has been used to evaluate
the importance of crawled pages over the web. A relevant interpretation of this rank
is the probability of staying/entering a webpage during a random walk. In this work,
the algorithm is used to find the most risky pages among the “crawled” ones, which are
the webpages accessed by the users. Such an approach was used in previous studies
[Yuting Liu et al. 2008; Xue et al. 2003].

4.2.2. Inverse PageRank. This method has been used to detect new (unknown) spam
pages by the Anti-Trust Rank [Krishnan and Raj 2006] and BadRank [Sobek 2002]
algorithms. The Inverse PageRank is executed by applying the PageRank algorithm
to a graph with reversed edge directions. Reverse edge directions are based on the
intuition that it is very unlikely for spam pages to be pointed to by reliable pages
(see Gyöngyi et al. [2004]). The equivalent implication in this work is to use the same
approach for detecting new risky pages.

4.2.3. HITS. The algorithm evaluates the importance of webpages using two charac-
teristics: (i) Authority—A webpage is considered an authority page if it contributes
towards providing information about a specific topic, and (ii) Hub—A webpage is con-
sidered a hub page if it directs to authority pages on a specific topic. The algorithm is
based on the following observation: a good hub points to good authorities, and a good au-
thority is pointed to by good hubs. HITS assigns two scores to each webpage; therefore,
the algorithm generates two vectors of scores (an authority vector and a hub vector).
In this work, we learn each of the vectors using a different learning method: HITS
auth. and HITS hub, respectively. HITS is usually used to evaluate the importance
of webpages that are related to a specific query/topic (typically 1,000–5,000 webpages
[Farahat et al. 2006]). However, previous studies use implementations on a larger graph
that covers several queries/topics (see Miller et al. [2001] and Xue et al. [2003]). In this
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work, the graph is constructed based on some batches of HTTP logs for the detection
of risky webpages that are not necessarily related to a specific topic. In addition, the
standard adjacency matrix (where 1 represents a link, 0 otherwise) was replaced with
a weighted adjacency matrix, in which the entries are defined by the edge’s weights,
ρ (i, j), as described in the previous section. The use of a non-standard adjacency matrix
was presented in earlier studies, such as [Miller et al. 2001; Wang 2002].

4.2.4. SALSA. This algorithm is often considered as an improvement or enhancement
of HITS [Kleinberg 1999]. It is a combination of the hub and authority concept of
HITS and the random walk of PageRank. The implementation of SALSA in this work
is based on the same modifications that were used for the HITS algorithm. While
a few previous works used similar browsing graphs for the detection of webspam by
implementing PageRank and HITS [Yuting Liu et al. 2008; Xue et al. 2003; Miller et al.
2001; Poblete et al. 2008]), no other work, to the best of our knowledge, used SALSA
for this purpose.

Each of the above link-based methods provides a webpage risk score within the range
of 0 to 1. In order to compare the performance of the different methods, one can analyze
the relative order of a given score rather than the magnitude of the score. Accordingly,
each score is transformed to a lower percentile rank. Thus, each webpage’s risk score
is mapped to the percentage of webpages that have lower or equal scores. Although
information may be lost in such a procedure, it is used here for validation purposes and
provides a solid comparison of the outputs of several scoring methods, as seen in the
following sections.

4.3. Experimental Results

In this section, a naı̈ve procedure was used to define the users’ risk score based on
the visited webpages (further improvement of the AUC measure was achieved later by
applying a feedback loop between the user and the webpage modules, as detailed in
Section 6). In addition, due to memory limitations, in all the experiments (Sections 4.3,
5.3, 6), the granularity level of the vertices is a domain (aggregating webpages to their
registered domains). Therefore, any reference to “webpage” in these sections is related
to “domain.” In addition, all experiments include a random selected subset of http logs
data that were gathered from an American toolbar company.

A major challenge faced when analyzing a browsing dataset and determining the
webpages’ risk score is that the true risk level (ground truth) of the webpages is un-
known. The problem can be defined as a semi-supervised learning problem in the
context of a few blacklists of known/suspected webpages, which we use in this work.
Note, however, that only 1% of the webpages in this study appeared in the known black-
lists. Accordingly, webpages’ scores were defined over a [0,1] range, where 0 represents
a non-malicious webpage and 1 represents a page suspected of being malicious. The
initial weights of the webpages that were not included in the blacklists (i.e., 99% of the
webpages) were set to zero, although there is no real guarantee that these webpages
are truly non-risky. Based on the data model graphs (i.e., the hyperlink and the brows-
ing graphs with or without the reference to users’ risk scores), the above-mentioned
algorithms were used to evaluate the webpages’ risk scores. The evaluation phase con-
sisted of two aspects: analyzing the known risky webpages and manually analyzing
the top 100 scored webpages, as described below:

(i) Analyzing Webpages that Are Known as Risky (i.e., appear in known blacklists). A
shuffled stratified 10-fold cross validation procedure was applied for this task. In
each iteration, the risky webpages of the test set were “hidden,” that is, their risk
value was assigned to zero, and a graph was reconstructed according to the labeled
webpages of only the training set. Next, each of the above-mentioned algorithms
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Table I. Average AUC in the Browsing Graph with Reference to Users’ Risk Scores versus the
Baseline Data Model (Hyperlink Graph without Reference to Users’ Risk Scores)

Hyperlink Browsing
Reference to users’ risk scores

Scoring method w/o with Lift
SALSA auth.∗∗∗ 0.524 0.685 0.161
SALSA hub∗∗∗ 0.561 0.677 0.116
HITS auth.∗ 0.533 0.628 0.095
HITS hub∗∗ 0.553 0.637 0.084
Inverse PageRank∗ 0.550 0.628 0.078
PageRank 0.496 0.562 0.066

was executed separately over this graph. The AUC (area under the ROC curve) of
the test set was measured for each algorithm. The relative score (lower percentile
rank, as discussed in Section 4.2) of the “hidden” risky webpages in a descending
ordered test set of webpages was examined. The average AUC of all the 10-folds
was used as a performance measure for each of the examined algorithms. Note that
the evaluation is conservative in the sense that unlabeled risky webpages in the
test set with a zero score reduced the AUC performance, even though the algorithm
could separate those from the others well.

(ii) Analyzing Webpages that Are not Known to be Risky. This task was performed
manually by visually examining the first 100 high-score webpages using the best
scoring methods. A webpage was visually verified as suspicious if it belonged to
one of the following classes: free porn/sex chat/gaming/hacking (mainly breaking
phone’s OS) or other visually suspicious characteristics (e.g., phishing site).

The tested graph consisted of ∼15,000 webpages (vertices). The following data model
hypotheses were analyzed in this Section:

—Reference to the users’ risk scores improves the scoring accuracy of the learning
models compared to models that do not refer to users’ risk scores.

—A browsing graph structure (i.e., not limited to hyperlinks) improves the model
accuracy compared to a hyperlink graph.

—An interaction of both factors, a browsing graph and a reference to users’ risk scores,
further improves the scoring accuracy compared to a baseline-hyperlink graph that
does not refer to users’ scores.

The conducted experiment confirmed that an interaction does exist between the
graph structure and the users’ scores factors. Thus, when applying both factors to-
gether, they improved the scoring accuracy of all the learning methods (see Table I).
The improvement in five out of six scoring methods was found to be statistically sig-
nificant. For comparison, when applying only one of the considered factors (either the
browsing graph or the references to the users’ risk scores), only two scoring methods
yield better scores, and those that were improved obtained a lower significance level.

Table I presents the lift achieved when using a data model that contains a browsing
graph with reference to the users’ risk score. Columns represent the used data model,
and the best result for each type is shown in bold. Each row represents the scoring
method used, and the table entries show the average AUC of the scoring method with
the data model type. Statistical significance levels of the data models are provided for
each scoring method and are marked as follows: ∗ for the 0.05 level, ∗∗ for the 0.01 level,
and ∗∗∗ for the 0.001 level. In addition, “with” stands for “with reference to users’ risk
score,” and “w/o” stands for “without reference to users’ risk score.”

One can observe from Table I that the suggested data model significantly improve
almost all scoring methods (excluding PageRank, which seems to be less efficient for
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Table II. A Comparison of the SALSA Authority Scoring Based on a Browsing Graph with Reference
to Users’ Risk Score with Respect to Other Data Model and Learning Method Combinations

T-test version Paired T-test Welch’ T-test
Graph Browsing Browsing Hyperlink Hyperlink
Reference to users’ risk scores with w/o with w/o
SALSA auth. - 0.003 0.067 0.000
SALSA hub 0.639 0.039 0.015 0.001
HITS auth. 0.010 0.001 0.002 0.001
HITS hub 0.031 0.011 0.007 0.000
Inverse PageRank 0.028 0.009 0.001 0.000
PageRank 0.000 0.000 0.000 0.000

the considered scoring task). Note that the SALSA authority score utilizes the pro-
posed data model most efficiently, with the largest lift and the highest average AUC
value. Accordingly, this method is selected as the benchmark for all other cases. Ta-
ble II describes the improvement in the P-value of the SALSA authority score based
on the suggested data model (browsing graph with reference to users’ risk score) com-
pared to all the other combinations of data model and scoring method. The only two
non-significant combinations are the SALSA hub scores based on the suggested data
model and the SALSA authority scores when using the hyperlink graph with reference
to users’ risk scores (bolded in Table II). All other data model and scoring method
combinations are found to significantly underperform the SALSA authority case when
applied to the suggested data model. First, all methods were compared to the SALSA
authority on browsing graph with reference to users score. A paired t-test was used
since each method was applied on the same folds (samples) in the cross validation pro-
cess. On the other hand, for the comparison of different graph structures, we used the
Welch’s t-test for independent (unpaired) samples and unequal variances. The sam-
ples are considered independent since the shuffle step was performed before the cross
validation process. Our objective was to detect the improvement of the suggested data
model; hence we used the two-tailed test.

A similar test was performed over a larger graph that consisted of ∼36,000 webpages.
Due to memory limitations, the SALSA algorithm could not be applied. However, simi-
lar results were obtained for all the other algorithms, and they supported the strength
of the suggested data model.

Next, the top 100 webpages with the best scoring methods were visually evaluated to
find suspicious webpages. The SALSA authority scores yielded 46 suspicious webpages,
and 27 of them were free porn sites. The SALSA hub yielded 34 suspicious webpages,
and at the top list of the HITS hub, there were 31 suspicious webpages. The three scor-
ing methods were chosen based on their high performance in the previous experiments.
As a simple naive comparison, a random selection of webpages resulted only in 7 out
of 100 webpages that seemed to be suspicious. Thus, all three scoring methods yielded
higher results than the random test, and the most substantial advantage was provided
by the SALSA authority method.

In summary, the suggested data model, which is based on a browsing graph enriched
by the users’ risk score, was found to significantly improve the model accuracy. Among
the scoring methods, the SALSA authority method provided the best results.

5. USER MODULE: SECURITY–RELATED USER PROFILING

5.1. Data Model

The previous section addressed the risk scoring webpage task that is partially based
on users’ risk scores. This Section presents an automatic method to generate the users’
risk scores based on their browsing behavior. To model the users’ behavior, the proposed
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method considers several categories of behavior. One such category is the interaction
of users with webpages they access, which is represented by a data structure of an
incidence matrix (as described in Section 5.1.1). Another category focuses on the inter-
action of users with risky webpages. A third category examines the browsing behavioral
characteristics of users. These browsing characteristics are represented by the vector
space of the features. This behavioral model is used to identify communities of users
that share similar behaviors over a holistic similarity graph. The holistic graph is con-
structed by fusing multiple feature categories, where each category is represented by
its own matrix. A linear combination of these matrices is obtained by solving a linear
programming problem to find the optimal weights of each matrix, resulting in a holistic
similarity matrix. As will be described in Section 5.2, a clustering algorithm is then
applied over the similarity graph to detect users’ communities. The procedure that
determines the weights, such that the clustering represents the communities well, is
described in Section 5.1.4.

5.1.1. User-Page Incidence Graphs. Users who pose a query to a web search engine or
directly access a URL often require specific information needs. Users access webpages
that seem to be closely relevant to their intended information needs. Hence, it is reason-
able to assume that a frequently clicked set of pages by a user reflects the information
that the user finds interesting or relevant. Further, it is observed that users with
similar information needs click on a similar set of pages. This behavior forms a click-
through bipartite graph. Such a data structure is extremely large and sparse and can
be used for collaborative filtering.

Let X0 be a binary incidence matrix that represents the interaction between n users
and d webpages, whereby x0

i, j = 1 if user i visited webpage j; otherwise, x0
i, j = 0.

In the same manner, let X1 be an incidence matrix that represents the interaction
between n users and d̂ known risky webpages, where the matrix entries x1

i, j are the
webpage risk score rj generated by a risk scoring framework as described in Section 4.
Namely, consider two user-webpage matrices X0, X1 with the same number of rows nbut
different number of columns (“features”), d and d̂, respectively, where d̂ � d. Finally,
note that if several categories of webpages exist, the proposed scheme detailed below
can be extended to more than two incidence matrices in a straightforward manner.

5.1.2. Browsing Behavior Features. Each web user can be represented by a behavioral
profile reflecting facts such as geographic location, activities on social networks, fa-
vorite browser, favorite music genre, IP, mobile phone browsing activity, distribution of
browsing activities by time, total time spent on the web, total number of sessions per
period, total number of transactions, percentage of browsing volume over weekends,
and whether the user uses several browsers, among others. Thus, the user’s browsing
behavior can be modeled by m aggregated behavioral features f1, . . . , fm. In addition,
some special engineered aggregated behavioral features can be added, such as the Trx-
Magnitude, which is the magnitude of transactions the user executes on average in a
session, and CybernautsMeasure, which measures the centrality of internet activities
in the user’s life. Beyond these features that represent the overall behavioral profile
of a user, the proposed scheme also measures some security-related features. For ex-
ample, it measures the “morning risky activity percentage,” reflecting the percentage
of the user’s morning activities in known risky webpages; the “number of distinct IPs,”
reflecting if the user is frequently changing his IP (which may point to some criminal
activities run in the background); and some self-explanatory features such as “percent-
age of transactions made from toolbar,” “percentage of transactions with missing CUA,”
and “bot transaction percentage.”
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As indicated, the above scheme generates a feature extraction process that eventually
yields m aggregated features. Let Yn×m be a scaled user-feature matrix, where each
feature { fi}m

i=1 ∈ R, 0 ≤ fi ≤ 1. The proposed scheme further divides the m features
into p categories, such that each category contains a group of features with a similar
meaning or with some common ground. In particular and without loss of generality,
the implemented scheme divides the features into two categories: a general features
matrix, denoted by Y0, and a risky features matrix, denoted by Y1.

5.1.3. User Holistic Similarity Graph. The next step in the proposed procedure is to op-
erate symmetric and nonnegative similarity functions and kernels on X0, X1, Y0, and
Y1 in order to map them to proximity matrices F0, F1, G0, and G1, respectively. Note
that following such a mapping, matrices X0, X1, Y0, and Y1 (that are of different di-
mension) are all mapped to square (n × n) symmetric matrices. Such a mapping pro-
cedure takes care of the sparsity difference between the matrices because X0 and
X1 (in which columns represent webpages) are very sparse matrices by nature, while
Y0 and Y1 (in which columns represent behavioral features) are often more dense and
of lower dimensions. Next, the proposed scheme produces a holistic similarity matrix
A by a linear combination of the proximity matrices, while multiplying each matrix
by its corresponding weight (constant). More formally, denote the weight of features
category p by ωp; then, the holistic similarity matrix is computed simply using a linear
combination of the corresponding matrices

A = ω1 · F0 + ω2 · F1 + ω3 · G0 + ω4 · G1,

where the method for automatically determining the weights is given in Section 5.1.4.
Now, given a set of n data points and some notion of similarity wa,b ≥ 0 between all the
pairs of data points a and b, the similarity graph G (V, E) can be defined. Each vertex
va in this graph represents user a. The users are clustered over this similarity graph
based on known clustering algorithms, as described in Section 5.2.

5.1.4. Feature Weighting. In this section, a method for automatically determining the
weights ω1, . . . , ωp is described. A weight ωp represents the relative impact (impor-
tance) of the p-th feature category on detection. A simple linear programming problem
is solved to obtain the optimal weights. Optimality is obtained when the clustering
algorithm represents the communities over the similarity graph well. Following Shi
and Malik [2000], the quality of clustering is measured by the Normalized Cut (“Ncut”)
measure, which computes the cut cost as a fraction of the total edge connections to all
the vertices in the graph [Shi and Malik 2000]. Note that each feature category is a
disjoint subset of all the features extracted from different information sources. Thus,
this process can be seen as Feature Subset Weighting - a process that examines how
the partitioning (clustering) is affected under different weights and selects the optimal
weights. For example, a subset of features is held out (ωi = 0, i ∈ [1, . . . , p]) and does not
participate in the clustering, or different values are assigned to the weights of different
feature categories. For each given combination of weights (e.g., ω1 = ω2 = · · · = ωp = 1

p ),
the performance of the clustering is evaluated.

An additional procedure is proposed to visualize the effect of weights ω1, . . . , ωp by
Eigenspace investigation, i.e., visualization of the K first eigenvectors of the Laplacian
matrix under different values of ω1, . . . , ωp. Thus, let A be the holistic similarity matrix
(representing the users-graph G (V, E)), and let D denote the degree matrix (a diago-
nal matrix which contains the degree of each vertex in G). Calculate the symmetric
normalized Laplacian matrix Lsym = I − D− 1

2 · A · D− 1
2 , where I is the identity matrix.

Note that the first K eigenvectors of Lsym form K “tight” clusters on the surface on the
K-sphere [Ng et al. 2001]. Thus, to project K clusters over the similarity matrix A, one
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Fig. 2. Investigate the Eigenspace by tuning the ωp weights. The upper-left plot is obtained by the optimal
weights ω = (0.74, 0.01, 0.01, 0.24), for which the best partition of points is achieved (NCut measure = 0.29).
Note that for a uniform weight vector ω = (0.25, 0.25, 0.25, 0.25), in the lower-left plot, the NCut measure is
higher (0.58), and as the plot illustrates, a good partitioning is not achieved.

can consider only the first K eigenvectors of Lsym and cluster by rows. The proposed
procedure performs a simple search over ω1, . . . , ωp and selects the values that follow-
ing the clustering of Lsym’s rows yield the tightest (smallest distortion) clusters. Since
K is smaller than the number of columns in A (K < n), this dimensionality reduction
allows us to visualize the eigenvectors in a plot and view the obtained clusters. For the
case of two clusters of users, risky and non-risky users (K = 2), consider the first two
eigenvectors of Lsym (i.e., those that belong to the two smallest non-zero eigenvalues)
and plot them on a 2-D axis. Repeat this process with different possible values of ωp,
and investigate how the change in one or more of the weights impacts the separation of
the Laplacian eigenvectors. For an example of the visualized eigenvectors for different
values of ωp, see Figure 2.

The intuition behind this method is provided by the Rayleigh-Ritz theorem. The
clustering objective function can be seen as a relaxed optimization (minimization)
problem. Using the Rayleigh-Ritz theorem, it can be shown that the solution of this
problem is given by the vector v for which the eigenvector corresponds to the second
smallest eigenvalue of Lsym. Another approach for finding the optimal weights in the
case of K > 3 is obtained by solving the Normalized Min-Cut optimization problem
to find those weights that minimize the Ncut internal validity measure. Thus, solving
a constrained nonlinear multivariate problem where, at each iteration, the clustering
algorithm is performed based on the holistic similarity matrix A that contains the
decision variables (the weights ωp) and K clusters is as follows:

Min Ncut (C1, . . . , CK) =
K∑

i=1

cut (Ci)
vol (Ci)

Subject T o :
(1) A = ω1 F0 + ω2 F1 + ω3 G0 + ω4 G1

(2) ω1, ω2, ω3, ω4 ≥ 0
(3) ω1 + ω2 + ω3 + ω4 = 1
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Recall that wi, j is the similarity between node i to j. The weight between two clusters
is defined as W (Cl, Cm) = ∑

i∈Cl, j∈Cm
wi, j . The cut of a partition is defined as cut(C) =

1
2 W(Ci, C̄i). Let consider the cluster “size” as vol (C) = ∑

i∈C deg (i) where a degree
of node i is computed as deg (i) = ∑n

j=1 wi, j . The optimization process is stopped by a
simple convergence rule: when the lowest Ncut is obtained and no further improvement
is achieved in the next iteration. This analysis can be enhanced by evaluating each
iteration with additional well-known internal validity measures, such as the Silhouette
coefficient and the Dunn index (as performed in the experimental results in Section 5.3).
While data fusion can enrich the clustering by revealing hidden patterns that may
be evident in different parts of the data, the proposed feature subset weighting also
enhances the generalization by reducing overfitting.

5.2. Learning Model

Given a similarity graph G (V, E), where the vertices represent users and edges repre-
sent some proximity between the users, a Community Detection problem can be solved.
Clustering algorithms can be employed to identify groups of users with high behav-
ioral similarity. In this Section, the Spectral Clustering (SC) [Von Luxburg 2007] and
the K-medoids [Zhang and Couloigner 2005] algorithms are examined. This work fo-
cuses on the Normalized Spectral Clustering method, proposed by Ng et al. [2002],
because it is closely related to the well-known graph-partitioning problem. The sim-
plest and most direct way of constructing a partition of the graph G is to solve the
minimum normalized cut problem. The normalized version is proposed here because
it constrains the “community” sizes and avoids trivial solutions. Unfortunately, intro-
ducing the normalization condition results in an NP-complete problem. However, as
shown in Von Luxburg [2007], the SC algorithm can be used to solve a relaxed version
of this problem (relaxing Ncut leads to normalized Spectral Clustering). Additionally,
the SC algorithm obtains data representations in a low-dimensional space and is used
to reduce errors from noise factors or outliers.

5.2.1. Determining the Number of Clusters. As with most other clustering algorithms, the
optimal number of clusters, K, is unknown. Following the general clustering problem,
there are as many clusters as one requires, with no real optimal solution. One practical
heuristic suited for selecting K in SC problems is the Eigen gap heuristic, which is
based on Spectral Graph Theory [Chung 1997]. This heuristic is presented and justified
in Von Luxburg [2007]. By analyzing the decay of the eigenvalues of the Laplacian
matrix, the Eigen gap (also called a spectral gap) can reveal the number of natural
clusters that exist in the data. The Eigen gap is defined as the difference between two
consecutive eigenvalues. One can search for a significant increase in the Eigen gap of
the eigenvalues, arranged in increasing order. The applied rule is simple: select the
number K such that all the eigenvalues λ1, . . . , λK are very small but λK+1 is relatively
large. Additional ways of exploring the natural grouping of the data include analyzing
the number of connected components and the spectrum of the Laplacian matrix. The
number of Laplacian eigenvalues of magnitude zero should be equal to the number of
connected components in the Laplacian graph. This implies that one could estimate
K simply by counting the number of eigenvalues equal or close to zero. This criterion
works when the clusters are well separated and provide a good measure of the natural
structure of the data. An additional common heuristic is setting some well-known
internal validity index ϕ (e.g., Silhouette coefficient) as an optimization criterion and
searching for the value of K that optimizes ϕ, which, in our case, involves performing
clustering and checking the value of ϕ under different values of K. The shortcoming of
this heuristic is that most indexes ϕ scale with the number of clusters, while the Eigen
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gap heuristic is independent of the final partitions that resulted from the clustering.
In our case, all heuristics revealed that the best number of clusters is K = 2.

5.3. Experimental Results

In this section, static blacklists of known malicious webpages were used to construct the
risky features matrix Y1 as well as construct the users-risky webpages incidence matrix
X1. Note that all risky webpages share a score of 1, which remains fixed throughout the
analysis. In this section, we analyze the autonomous user module without integrating
it with the webpage scoring framework, i.e., without the proposed feedback scheme
presented in Section 6.

For the experimental evaluation of the proposed approach, a random sample of
200,000 web transactions that consist of 2,341 distinct users is considered. First, a
pre-processing phase is performed to obtain the (n × n) proximity matrices as described
in Section 5.1.3: F0 represents the similarity between users according to the general
features matrix, F1 is set according to the risky features matrix, G0 is set according
to the user-webpage binary incidence matrix, and G1 is set according to the user-risky
webpage binary incidence matrix (consisting of risky webpages only). Note that G1

here is a binary matrix because all risky webpages share the same risk score (as there
is no feedback from the scoring framework). The evaluation scheme is executed in
three parts. First, it finds the number of clusters, K. Section 5.2.1 presented several
heuristics that aim to find an appropriate number of clusters K and reveals that the
optimal number is K = 2. Second, it finds the optimal weights ω1, ω2, ω3, ω4 to quantify
the impact of each of the different feature categories, as presented in Section 5.1.4.
Finally, it compares two clustering methods, namely the K-medoids algorithm and the
Spectral Clustering algorithm. For each weight assignment, K value and a cluster-
ing method, the resulting clustering was evaluated using known clustering metrics:
the Silhouette coefficient, the Connectivity score, the Ncut measure and the Dunn in-
dex. The Ncut measure was discussed in Section 5.1.4: a lower value implies a better
cluster configuration [Shi and Malik 2000]. The Silhouette coefficient combines ideas
of both tightness (intra-cluster distance) and separation (intra-cluster distance), as
introduced in Rousseeuw [1987]: a higher value represents a better cluster configu-
ration. The Dunn index has been introduced in Dunn [1974]: if a data set contains
well-separated clusters, the distances among the clusters are usually large, and the
diameters of the clusters are expected to be small. Therefore, a higher value implies
a better cluster configuration. The Connectivity score validates whether the clusters
capture the local neighborhood structure of users in the graph. A higher connectivity
value implies a better capturing of locality.

Different assignments and configurations of the examined algorithm as well as the
assigned weights were carried out. Table III presents the most informative configura-
tions or the ones that achieved the best results, while others are omitted due to focus
and space limitation. One can see from Table III that in addition to the dimensional-
ity reduction that the Spectral Clustering (SC) algorithm obtains, it performs better
than the K-medoids algorithm in terms of all the internal validity measure (Silhouette,
Connectivity, Ncut, and Dunn). Arrow signs represent the desired direction for each
validity measures.

Figure 3 presents a detailed view on the performance of the SC algorithm under dif-
ferent weights combinations. One can see that combination no. 6, with ω = (0, 0, 0, 1),
achieves the lowest Ncut value (Ncut = 0.168), yet at the same time produces the worst
silhouette score (0.007) and a poor Dunn index (1). In terms of all the internal validity
measures, the best weights combination is given by ω = (0.74, 0.01, 0.01, 0.24), imply-
ing that the best partition is achieved in the case of proper fusion of behavioral features
with the user-webpage graph. Additionally, it is seen that the impact of each one of the
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Table III. User Module - Clustering Evaluation

Weights
Combination ω1 ω2 ω3 ω4 Algo. Silhouette ↑ Connectivity ↑ Ncut ↓ Dunn ↑

1 0.74 0.01 0.01 0.24 SC 0.285 1.000 0.350 1.394
0.74 0.01 0.01 0.24 K-medoids 0.284 0.998 0.352 1.392

2 0 0 1 0 SC 0.253 0.739 0.495 0.951
0 0 1 0 K-medoids 0.225 0.697 0.479 0.977

3 0.5 0.5 0 0 SC 0.215 0.913 0.555 1.268
0.5 0.5 0 0 K-medoids 0.201 0.886 0.564 1.251

4 0.25 0.25 0.25 0.25 SC 0.123 0.843 0.550 1.104
0.25 0.25 0.25 0.25 K-medoids 0.095 0.906 0.570 1.102

5 0 0 0.5 0.5 SC 0.120 0.729 0.495 0.977
0 0 0.5 0.5 K-medoids 0.076 0.690 0.541 0.977

6 0 0 0 1 K-medoids 0.009 0.998 0.101 1.000
0 0 0 1 SC 0.007 0.989 0.168 1.000

Fig. 3. Spectral clustering performance—the usefulness of the different feature categories.

different sources of information is maximal when combining them to construct a single
similarity graph that represents the users’ behavior for various feature categories.

The analysis shows the usefulness of the different feature categories, particularly the
importance of the general features matrix (F0) with a relatively high weight (ω1 = 0.74).
This fact indicates that in order to better score the users, one should analyze their
overall browsing behavior and not only focus on their activity in webpages known to
be risky.

6. FEEDBACK LEARNING MODEL EXPERIMENTAL RESULTS

This section describes the experimental results of the entire scheme, integrating the
users’ scoring module and the webpages’ scoring module by a feedback scheme. To
test such feedback and risk mitigation over time, a dynamic simulation was performed
based on the real HTTP logs dataset provided by a leading American toolbar company,
which represents a “real-life” scenario. The simulation was constructed such that new
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Table IV. Integration Evaluation (AUC)

Scoring method Baseline Iteration 1 Iteration 2 Iteration 3
HITS auth. 0.545 0.55 0.565 0.654
HITS hub 0.549 0.571 0.574 0.64
Inverse PageRank 0.545 0.552 0.57 0.61
PageRank 0.509 0.514 0.524 0.577

information (batch of data) was consistently added to the analysis at each iteration.
For each such iteration, the users’ scoring module learned the users’ behavior and gen-
erated the updated scores according to the procedure mentioned in Section 5. Then, the
webpages’ scoring module scored all webpages using these users’ risk scores according
to the procedure mentioned in Section 4.

Table IV presents an analysis for which the baseline is a hyperlink graph with
no reference to the users’ risk score. The baseline graph is constructed for each of the
scoring methods based only on the first batch of logs. To evaluate the proposed approach,
a browsing graph with reference to users’ risk score was then constructed at each
iteration and for each of the scoring methods (bold numbers denote the highest accuracy
in each iteration). The experimental results in Table IV shows that the feedback scheme
improves the model accuracy (using the AUC measure) with each new batch of data
that is added. Note that such an improvement, although consistent in this study, is
not guaranteed in general and can result in over-fitting and a decrease in accuracy.
A common phenomenon in continual streaming systems is that historical data can
become obsolete over time for a learning algorithm in dynamic environments. In such a
scenario, at some point, the learned model is less accurate, especially if it is exposed to
accumulated noisy data and less informative signals. Although we support an adaptive
learning scheme, the exact definition of the amount of historical data that has to be
learned is case-specific and subject to future research.

Let us note that, in this study, three iterations obtained a consistent improvement
for all considered scoring methods. Moreover, all these methods, except the Inverse
PageRank, obtained better results than those found by the autonomous webpage scor-
ing module experiment (Table I). For example, the HITS authority obtained an AUC of
0.654 compared to 0.628 obtained by the autonomous webpages’ scoring module. The
experiment does not include the SALSA algorithm and stops after three iterations due
to memory limitations (we used a conventional 32GB server). As mentioned earlier,
most of the webpages in the dataset were unlabeled, which can result in deteriorated
AUC values. This is particularly the case when many risky webpages are unlabeled as
risky (i.e., their initial risk score is set to zero), but their predicted risk score is higher.
Given a threshold, all unlabeled risky webpages that were ranked above that thresh-
old will count as a “false positive” (type I error), resulting in a decreased AUC value.
Finally, the AUC lift is examined with an additional analysis. At each iteration, we
constructed a new baseline, which learned both the current batch as well as the former
ones (data from previous iterations). Similar to the former analysis, the baseline was
defined as a hyperlink graph without reference to the users’ risk score. In addition,
with each new batch of data, we constructed a browsing graph with reference to the
users’ risk scores. This procedure was repeated for the four scoring methods presented
above. Then, the suggested accumulated data model was compared to the accumulated
baseline graph from the same iteration.

Figure 4 shows the percentage of the AUC lift achieved by the suggested feedback
scheme.

Except for the HITS auth. method in the second iteration, for all scoring methods, the
lift increases with the number of iterations. In particular, the consistent improvement
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Fig. 4. Improvement percentage of the average AUC lift achieved by the proposed feedback scheme using a
browsing graph with reference to the users’ risk score.

of the HITS hub method lift is substantial. After three iterations, all scoring methods
improved by more than 10% with respect to their initial average AUC; especially, the
HITS hub method obtained an improvement of 18% with respect to the baseline AUC
value and also yielded the best accuracy in each iteration. In summary, the use of a
feedback-learning scheme that uses accumulated data and scores of both risky users
and risky webpages is shown to yield the best results in this case study for almost all
the considered scoring methods.

7. CONCLUSIONS AND FUTURE WORK

This article proposes an approach for personalized security solutions using machine
learning methods. The proposed approach focuses on user behavior aspects to better
address cyber threats; it is particularly appealing for analyzing naı̈ve users (employ-
ees) within the organization. A feedback scheme is designed for deriving personalized
risk scores of users and webpages. These scores are obtained by two modules that
interact with each other. First, a user profiling module is proposed, in which implicit
feedback from the user is learned, mainly users’ behavioral patterns, to assign a cor-
responding risk score to each user. The second proposed module scores the webpages
by their potential malicious reputation using link-based methods while relying on the
users’ risk scores. The entire scheme operates by monitoring HTTP logs, which can
be easily accessed by the organization administrator without further requirement of
other resources. Each of the modules can be executed autonomously, but a significance
improvement in the model accuracy is obtained once both learning frameworks are in-
tegrated with each other. Specifically, a higher malware detection accuracy is obtained
when information on “risky” users is used to estimate the webpages’ risk scores, and
vice versa. A series of experiments that evaluate the suggested scheme was designed
and carried out with a real HTTP logs dataset taken from a toolbar company. It was
shown that the use of a feedback-learning scheme that relies on accumulated data as
well as risk scores of both users and webpages yield the best results in this case study
for almost all the considered models.

There are several future research directions to be considered. First, it is beneficial
to test the procedure on a large-scale dataset that is partially labeled. Another direc-
tion is to profile users by also using browser-fingerprinting techniques. This task will
require an enhanced HTTP logs dataset. Accurate tagging of users in a supervised
dataset can significantly improve the model performance, if such tagging is available.
Another direction for obtaining a more general performance analysis with respect to
the different algorithmic parameters can be obtained by applying an experimental de-
sign methodology. An interesting direction for risk mitigation evaluation is the use of
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the proposed feedback-loop where risky websites above certain thresholds are blocked.
In such a case, a scheme which is similar to the outgoing quality limit (AQL) procedure
might be applied to bound the risk. Finally, for practical consideration, it is advised to
design and implement an incremental update functionality of the data and learning
models such that there is no need to repeat the entire learning process over the entire
graph whenever new information is available.
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Zoltán Gyöngyi, Hector Garcia-molina, and Jan Pedersen. 2004. Combating web spam with trustrank. In
Proceedings of the 30th International Conference on Very Large Data Bases (VLDB’04), Volume 30.
576–587.

Junxian Huang, Yinglian Xie, Fang Yu, Qifa Ke, Martı́n Abadi, Eliot Gillum, and Z. Morley Mao. 2013.
SocialWatch: Detection of online service abuse via large-scale social graphs. In Proceedings of the 8th
ACM SIGSAC Symposium on Information, Computer and Communications Security (ASIA CCS’13).
143–148. DOI:http://dx.doi.org/10.1145/2484313.2484330

Sepandar D. Kamvar, Mario T. Schlosser, and Hector Garcia-Molina. 2003. The eigentrust algorithm for
reputation management in P2P networks. In Proceedings of the 12th International Conference on World
Wide Web (WWW’03). 640–651. DOI:http://dx.doi.org/10.1145/775240.775242

Ron S. Kenett, Avi Harel, and Fabrizio Ruggeri. 2009. Controlling the usability of web services. Int. J. Softw.
Eng. Knowl. Eng. 19, 5, 2009, 627–651. DOI:http://dx.doi.org/10.1142/S0218194009004362

Jon M. Kleinberg. 1999. Authoritative sources in a hyperlinked environment. J. ACM 46, 5, 1999, 604–632.
DOI:http://dx.doi.org/10.1145/324133.324140

Vijay Krishnan and Rashmi Raj. 2006. Web spam detection with anti-trust rank. In Proceedings of the 2nd
International Workshop on Adversarial Information Retrieval on the Web – AIRWeb 2006. 37–40.

Ronny Lempel and Shlomo Moran. 2000. The stochastic approach for link-structure analysis (SALSA) and
the TKC effect. Comput. Networks 33, 1–6 (June 2000), 387–401. DOI:http://dx.doi.org/10.1016/S1389-
1286(00)00034-7

Anna Leontjeva, Moises Goldszmidt, Yinglian Xie, Fang Yu, and Martı́n Abadi. 2013. Early security clas-
sification of skype users via machine learning. In Proceedings of the 2013 ACM Workshop on Artificial
Intelligence and Security (AISec’13). 35–44. DOI:http://dx.doi.org/10.1145/2517312.2517322

Yiqun Liu, Rongwei Cen, Min Zhang, Shaoping Ma, and Liyun Ru. 2008. Identifying web spam with user
behavior analysis. In Proceedings of the 4th International Workshop on Adversarial Information Retrieval
on the web (AIRWeb’08). 9–16. DOI:http://dx.doi.org/10.1145/1451983.1451986

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 4, Article 53, Publication date: May 2017.



A Risk-Scoring Feedback Model for Webpages and Web Users Based on Browsing Behavior 53:21

Yuting Liu et al. 2008. Browserank: Letting web users vote for page importance. In Proceedings of the 31st
Annual International ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR’08). 451–458. DOI:http://dx.doi.org/10.1145/1390334.1390412

Joel C. Miller, Gregory Rae, Fred Schaefer, Lesley a. Ward, Thomas LoFaro, and Ayman Farahat. 2001. Modi-
fications of kleinberg’s HITS algorithm using matrix exponentiation and web log records. In Proceedings
of the 24th Annual International ACM SIGIR Conference on Research and Development in Information
Retrieval (SIGIR’01). 444–445. DOI:http://dx.doi.org/10.1145/383952.384086

Andrew Y. Ng, Michael I. Jordan, and Yair Weiss. 2001. On spectral clustering: Analysis and an algorithm.
Adv. Neural Inf. Process. Syst. 2001, 849–856.

Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. 1999. The pagerank citation ranking:
Bringing order to the web. 1999. http://ilpubs.stanford.edu:8090/422.

Roberto Perdisci, Wenke Lee, and Nick Feamster. 2010. Behavioral clustering of HTTP-based malware and
signature generation using malicious network traces. In Proceedings of the 7th USENIX Conference on
Networked Systems Design and Implementation (NSDI’10).

Barbara Poblete, Carlos Castillo, and Aristides Gionis. 2008. Dr: Searcher and Mr. Browser: A Unified
Hyperlink-Click Graph. In Proceedings of the 17th ACM Conference on Information and Knowledge
Management (CIKM’08). 1123–1132. DOI:http://dx.doi.org/10.1145/1458082.1458231

Ponemon Institute LLC. 2015a. 2015 State of the Endpoint Report: User-Centric Risk. 2015.
http://www.ponemon.org/local/upload/file/2015 State of Endpoint Risk FINAL.pdf.

Ponemon Institute LLC. 2015b. The cost of phishing and value of employee training. 2015. https://info.
wombatsecurity.com/cost-of-phishing.

Justin Pot. 2015. How to avoid malware when viewing videos on youtube. 2015. http://www.makeuseof.
com/tag/youtube-major-source-malware/.

Niels Provos, Dean Mcnamee, Panayiotis Mavrommatis, Ke Wang, and Nagendra Modadugu. 2007. The ghost
in the browser analysis of web-based malware. In Proceedings of the First Conference on 1st Workshop
on Hot Topics in Understanding Botnets (HotBots’07).

Peter J. Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis.
J. Comput. Appl. Math. 20 (1987), 53–65. DOI:http://dx.doi.org/10.1016/0377-0427(87)90125-7

Bruce Schneier. 2003. Beyond Fear: Thinking Sensibly About Security in an Uncertain World, Copernicus.
Karthik Selvaraj and Nino Fred Gutierrez. 2010. The rise of pdf malware. 2010. https://www.symantec.

com/content/en/us/enterprise/media/security_response/whitepapers/the_rise_of_pdf_malware.pdf.
Jianbo Shi and Jitendra Malik. 2000. Normalized cuts and image segmentation. IEEE Trans. Pattern Anal.

Mach. Intell. 22, 8, 2000, 888–905. DOI:http://dx.doi.org/10.1109/34.868688
Markus Sobek. 2002. Pr0 - google’s pagerank 0 penalty. BadRank. 2002. http://pr.efactory.de/e-pr0.shtml.
Nikita Spirin and Jiawei Han. 2012. Survey on web spam detection: Principles and algorithms. ACM SIGKDD

Explor. Newsl. 13, 2, 2012, 50–64. DOI:http://dx.doi.org/10.1145/2207243.2207252
Ulrike Von Luxburg. 2007. A tutorial on spectral clustering. Stat. Comput. 17, 4, 2007, 395–416. DOI:http://

dx.doi.org/10.1007/s11222-007-9033-z
Minhua Wang. 2002. A Significant improvement to clever algorithm in hyperlinked environment. 2002.
Yufeng Wang, Akihiro Nakao, and Athanasios V. Vasilakos. 2010. Doubleface: Robust reputation ranking

based on link analysis in P2P networks. Cybern. Syst. 41, 2, 2010, 167–189. DOI:http://dx.doi.org/10.1080/
01969720903584365

Steve Webb, James Caverlee, and Calton Pu. 2008. Predicting web spam with HTTP session information.
In Proceedings of the 17th ACM Conference on Information and Knowledge Management (CIKM’08).
339–348. DOI:http://dx.doi.org/10.1145/1458082.1458129

Kevin S. Xu, Mark Kliger, Yilun Chen, Peter J. Woolf, and Alfred O. Hero. 2009. Revealing social networks
of spammers through spectral clustering. In Proceedings of the IEEE International Conference on Com-
munications 1–6. DOI:http://dx.doi.org/10.1109/ICC.2009.5199418

Gui-Rong Xue, Hua-Jun Zeng, Zheng Chen, Wei-Ying Ma, and Hong-Jiang Zhang. 2003. User access pattern
enhanced small web search. Microsoft Res. 2003.

Qiaoping Zhang and Isabelle Couloigner. 2005. A new and efficient k-medoid algorithm for spatial clustering.
In Computational Science and Its Applications–ICCSA 2005. Springer Berlin Heidelberg, 181–189.
DOI:http://dx.doi.org/10.1007/11424857_20

Qin Zhen-quan, LI Kai-bin, and LI Ming-chu. 2010. Webpage security evaluation model based on pagerank
and system calls. J. Chinese Comput. Syst. 2010

Received January 2016; revised March 2016; accepted April 2016

ACM Transactions on Intelligent Systems and Technology, Vol. 8, No. 4, Article 53, Publication date: May 2017.


