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In this paper, an information theoretic approach is applied to analyze the performance of a decentralized control system. The
control system plays the role of a correcting device which decreases the uncertainties associated with state variables of a production
line by applying an appropriate ``correcting signal'' for each deviation from the target. In particular, a distributed feedback control
policy is considered to govern a transfer production line, which consists of machines and bu�ers and processes a single part type in
response to a stochastic demand. It is shown how the uncertainty of the demand propagates dynamically into the production
system, causing uncertainties associated with bu�er levels and machine production rates. The paper proposes upper estimates for
these uncertainties as functions of the demand variance, parameters of the distributed controllers and some physical properties of
the production line. The bounds are based on dynamic entropy measures of the system state and the control variables. Some
practical implications into the area of decentralized controller design are proposed, an information-economical analysis is pre-
sented and a numerical study is performed.

1. Control, cybernetics and information theory

The complexity of a system is often measured by the va-
riety of its state variables, that is, the cardinality of its state
space and the transition process from state to state. A
common performance measure of production systems, at
a given point in time, is the di�erence between the output
target and the actual system output, which is often sto-
chastic due to noise e�ects. Controlling such systems over
a period of time means to enforce certain rules and con-
straints on their state variables in order to minimize the
variance of this di�erence. An alternative related objective
of the control system is to meet the output target exactly
(assuming the system has enough production capacity),
while minimizing the variety of the system state variables
in order to decrease costs associated with state uncer-
tainty. For example, consider a production line which
consists of machines and bu�ers. State variables and
control variables are de®ned, respectively, to be the bu�er
levels and the machine production rates. Accordingly, the
line complexity is measured by the cardinality of its bu�er
states, and the control system complexity is measured by
the cardinality of states related to machine production
rates. The objective of the controllers in a pull system
might be to meet the demand exactly, while maintaining a
constant work-in-process in the bu�ers.
A well known principle in cybernetics is the law of

requisite variety (Wiener, 1961), stating (in its simplest

form) that for a system with given variety (complexity) V ,
one can decrease the variety of the system output, V0, by
increasing the variety of the control system Vc, as

V0 � V
Vc
: �1�

This interesting and somewhat paradoxical statement
points out that reduction of complexity in one system
depends on increase of complexity in the other system.
Levitin (1994) further develops the above principle by

using concepts of information theory. He considers a
controlled system with a random state variable X and a
control variable U that are under the e�ect of perturba-
tion (noise). Suppose that the controller objective is to
maintain X at a constant level X � x0. Then, an adequate
performance measure of the controller can be character-
ized by the entropy of the state variable H�X �. Shannon
(1948) proposed the entropy as a measure of uncertainty
and de®ned the di�erential entropy for a continuous state
space as:

H�X � � ÿ
Z
fxg

fX �x� log fX �x�dx; �2�

where fX �x� is the probability density function (pdf) of
random variable (r.v.) X . Unlike the discrete entropy,
the di�erential entropy is not an intuitive measure of
uncertainty and can even carry a negative value.
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However, the properties of the discrete case can be
maintained by using the di�erential entropy as a rela-
tive quantity, measuring the di�erences of uncertainties,
as done in this paper. Levitin (1994) notes that if a
perfect controller can naturalize all the noise e�ects, the
uncertainty of the system state is equal to zero since
H�x0� � 0. However, in the presence of an a�ecting
noise, Z, the state variable ¯uctuates and its entropy
H�X � � H�X �Z�� 6� 0. Applying a control e�ort to the
system can decrease the uncertainty associated with the
controlled state variable X U � uj , which can be mea-
sured by the conditional entropy,

H�X Uj � � ÿ
Z
fug

fU �u�H�X U � uj �du

� ÿ
Z
fug

Z
fxg

fU ;X �u; x� log fX Uj �x uj �ÿ �
dxdu; �3�

where fU ;X �u; x� and fX Uj �x uj � are, respectively, the joint
pdf of X and U , and the conditional pdf of X given
U � u. It is well known (Cover and Thomas, 1991) that
for any pair of random variables H�X Uj � � H�X �,
where equality is obtained only if X and U are mutually
independent. Thus, applying a control e�ort to the
system can not increase the uncertainty associated with
the controlled state variable. The di�erence between
these quantities is called (mutual) information (Shannon,
1948), a known positive and symmetric measure, given
by

I�X ; U� � H�X � ÿH�X Uj � � H�U� ÿH�U Xj � � I�U ; X �:
�4�

It is seen that

H�X Uj � � H�X � ÿ H�U� � H�U Xj �: �5�
Expression (5) shows that reducing the uncertainty of the
controlled state variable H�X Uj � is achieved by increas-
ing the variety of the control variable measured by H�U�,
as stated above by the law of requisite variety (1). At-
taining the equality H�X � � H�U� means that the control
system can apply an appropriate correcting signal for
each possible value of X whenever a deviation from the
target occurs. Moreover, note from (5) that further re-
duction of H�X Uj � is achieved by decreasing H�U Xj �,
which measures the uncertainty associated with the
functional relation between state and control variables.
H�U Xj � implies the importance of ensuring maximum
adequacy of the control action, i.e., that a deterministic
control system generates an exact value of U which is
required to correct the deviation of X . H�U Xj � � 0
means that the state variable X uniquely determines the
control variable U . In practice, one can eliminate the
uncertainty e�ects of H�U Xj � by de®ning a feedback

control policy that associates a single control action with
each of the system states.
A di�erent information-theoretic approach was used in

Saridis (1988) and Valavanis and Saridis (1988). There, a
probabilistic control paradigm was posed by assigning a
distribution function representing the uncertainty of se-
lecting the appropriate control law over the space of
admissible controls. Entropy was used as a measure of
uncertainty to develop a design procedure for intelligent
control systems. The procedure was applied to the design
of intelligent robotic systems, as opposed to the produc-
tion lines considered here.
In this paper, we extend the ideas stated above in two

directions. First, we formulate and analyze the uncer-
tainties of control systems with time dependence. In such
systems, the continuous state of the system at a certain
point of time, X �t�, generates a control action
U�t� � U�X �t�� by a given control policy. The control
action, in turn, a�ects the new system state X �t � dt�, etc.
Second, we apply the above analysis into a framework of
decentralized production control systems. In particular, a
transfer line with deterministic decentralized controllers is
considered. Each controller determines the production
rate of a machine by mapping the state space of the
downstream bu�er into the control action space. The
motivation to analyze the uncertainties in transfer pro-
duction lines was stated by Gershwin (1994): ``There is an
important gap in research literature. There are almost no
published papers on the variability performance of transfer
lines. Although the analytic decomposition is extremely
accurate in predicting mean performance, it has nothing to
say about the variance of the number of parts produced,..,
or the variance of bu�er levels''.
The paper is organized as follows. A description of a

transfer production line with a decentralized control
system is given in Section 2. Section 3 derives analytic
expressions that represent the uncertainty associated with
the system states ± re¯ected by bu�er levels, and the
uncertainty associated with the system controllers ± re-
¯ected by machine production rates. Such expressions
enable us to analyze the system uncertainties with respect
to time, demand rates and some physical properties of the
production line. Section 4 includes a discussion related to
allocation policy of controllers to machines, deviation
from demand targets and an information-economical
analysis of the tradeo� between uncertainty costs and
system costs. Section 5 provides a numerical analysis of a
large-scale transfer line with discrete states and discrete
time index. Section 6 summarizes the paper.

2. System description

Consider a K-machine serial production system, depicted
in Fig. 1, which is similar to the transfer line as described
by Gershwin (1994). It is a linear network of reliable
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service-stations or machines (MK ;MKÿ1; . . . ;M1) separat-
ed by bu�er storages (BK ;BKÿ1; . . . ;B2) with a ®nite ca-
pacity and equipped with an input bu�er (BK�1) which is
an in®nite source and an output bu�er (B1) with a ®nite
capacity. The serial production system processes a single
part type, which requires one operation at each machine.
Bu�ers carry the parts between two consecutive opera-
tions.
The output bu�er (B1) is depleted at a demand rate

D�t�, which is modeled as a stochastic process, thus, at
each point of time D�t� is a random variable representing
the uncertainty in the demand rate. Such uncertainty is
expressed by a dynamic distribution function FD�d; t� �
Pr D�t� � d� �, giving the probability of the event that the
demand rate at time t is not higher than d. Hence, the
probability density function of D�t� is de®ned as

fD�d; t� � @

@d
FD�d; t�: �6�

Denote the kth bu�er state at time t by Xk�t� where
Xk�t� � fÿ1; xmax

k g. Then, the dynamics of the produc-
tion process can be described by the following di�erential
equations:

_X1�t� � U1�t� ÿ D�t�; X1�0� � x01;

_Xk�t� � Uk�t� ÿ Ukÿ1�t�; Xk�0� � x0k ; k � 2; . . . ;K;

�7�
where _Xk�t� is the rate of increase or decrease of the kth
bu�er level; x0k is the initial level of the corresponding
bu�er; and Uk�t� is the controllable production rate of the
corresponding machine. It is assumed that the production
rates can be set arbitrarily within the capacity limits of the
machines, i.e.,

0 � Uk�t� � umax
k : �8�

The described production system can be controlled by
applying di�erent control policies. In this paper, we are
interested in decentralized control paradigms and con-
sider distributed proportional feedback controllers. Such
a form of the control is selected to facilitate the derivation
of analytical expressions from di�erential equations (7)
which become linear. In particular, we consider the fol-
lowing form:

Thus, if the previous �k � 1�th bu�er is not empty, the kth
machine operates according to the following rules:
(i) when the current bu�er level Xk�t� is lower than a
certain point (®rst line in (9)), the machine produces at
the full capacity (full production regime); (ii) when, on
the contrary, the current bu�er level Xk�t� is higher than
another certain point (third line in (9)), the machine is idle
(no-production regime); ®nally, (iii) when the current
bu�er level Xk�t� is intermediate (second line in (9)), the
machine produces at an intermediate rate proportional to
the current deviation from the maximum bu�er level
(proportional production regime). The proportionality
coe�cient Gk re¯ects sensitivity of the control action to
the deviation. For example, when Gk � umax

k =xmax
k the

production rate decreases in a linear rate within the range
Xk�t� 2 �0; xmax

k �.

3. Uncertainty measures of the system

Let us consider the case of: (i) equal production capacities
of the machines, umax

k � umax 8 k; (ii) identical bu�er ca-
pacities, xmax

k � xmax 8 k; and (iii) identical proportionality
coe�cients Gk � umax=xmax 8 k. Then, the proportional
production turns out to be the unique regime along the
production run time. When the kth bu�er level reaches
the maximum value xmax, the production at the kth ma-
chine stops and Xk�t� depletes according to (7), therefore,
the no-production regime never occurs. On the other
hand, when Xk�t� drops to zero, Uk�t� � umax and since
Ukÿ1�t� � umax, we conclude from (7) that _Xk�t� � 0,
meaning that the full production regime never occurs as
well. The dynamic equations for the bu�ers at the pro-
portional production regime take the following form by
applying (9) to (7):

_X1�t� � G�xmax ÿ X1�t�� ÿ D�t�; X1�0� � 0;

_Xk�t� � G�xmax ÿ Xk�t�� ÿ Ukÿ1�t�;
Xk�0� � 0; k � 2; . . . ;K: �10�

The solution of these equations is:

X1�t� � xmax 1ÿ eÿGtÿ �ÿ eÿGt
Z t

0

eGsD�s�ds;

Xk�t� � xmax 1ÿ eÿGtÿ �ÿ eÿGt
Z t

0

eGsUkÿ1�s�ds: �11�

Fig. 1. The transfer line.

Uk�Xk�t�� �
umax

k ; if Xk�t� < xmax
k ÿ umax

k

Gk
and Xk�1�t� > 0,

Gk�xmax
k ÿ Xk�t��; if xmax

k ÿ umax
k

Gk
� Xk�t� � xmax

k and Xk�1�t� > 0,

0; if Xk�t� > xmax
k or Xk�1�t� � 0.

8>>>><>>>>: �9�
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To analyze the statistics of the state and control
variables, we assume that D�t� is a stationary sto-
chastic process with expected value EfD�t�g � umax and
autocovariance Cov Df g�t1; t2� � r2. Thus, the demand
is modeled by an identical random variable at any
point of time, D�t� � D�t0� 8 t; t0. In many cases, the
autocovariance of a stochastic process is given by

Cov Df g�t1; t2� � r2eÿc t1ÿt2j j:

For these cases, it is assumed that the exponent constant
c! 0, or that the production run time is such that
t1 ÿ t2j j � 1=c.

Lemma 1. Let D�t� be a stationary stochastic process with
expected value EfD�t�g � l and autocovariance Cov Df g
�t1; t2� � r2. Then, the distribution parameters of the bu�er
states and control e�orts are given by

EfXk�t�g � xmax ÿ l
G

� �
eÿGtFk�Gt�;

EfUk�t�g � umax ÿ umax ÿ l� �eÿGtFk�Gt�; �12�
and

CovfXkg�t1; t2� � r
G

h i2
eÿG�t1�t2�Fk�Gt1�Fk�Gt2�;

VarfXk�t�g � reÿGtFk�Gt�
G

� �2
;

CovfUkg�t1; t2� � r2eÿG�t1�t2�Fk�Gt1�Fk�Gt2�;

VarfUk�t�g � reÿGtFk�Gt�� �2
; �13�

where functions

Fk�z� �
X1
i�k

zi

i!
; k � 0; 1; . . . ;1:

That is, Fk�z� is a Taylor expansion of ez dropping the ®rst
k terms.

Proof. The proof is by induction. Initially, we determine
the statistics of the ®rst machine variables. From (11) we
®nd:

EfX1�t�g � xmax 1ÿ eÿGtÿ �ÿ eÿGtE
Z t

0

eGsD�s�ds

8<:
9=;

� xmax 1ÿ eÿGtÿ �ÿ eÿGt�eGt ÿ 1�l
G

� xmax ÿ l
G

� �
eÿGtF1�Gt�; �14�

and

CovfX1g�t1; t2� � eÿG�t1�t2�Cov
Z t

0

eGtD�s�ds

8<:
9=;

� eÿG�t1�t2�
Zt1

0

Zt2

0

eG�s1�s2�CovfDg�s1; s2�ds1 ds2

� r
G

h i2
eÿG�t1�t2�F1�Gt1�F1�Gt2�: �15�

By equating t1 and t2 in the last expression, we obtain the
variance of X1�t� at point t:

VarfX1�t�g � reÿGtF1�Gt�
G

� �2
: �16�

Having determined the statistics of X1�t�, we ®nd the
statistics of U1�t� from the proportional production re-
gime of the feedback control policy (9):

EfU1�t�g � Gxmax ÿ GEfX1�t�g
� umax ÿ umax ÿ l� �eÿGtF1�Gt�;

CovfU1g�t1; t2� � G2CovfX1g�t1; t2�
� r2eÿG�t1�t2�F1�Gt1�F1�Gt2�;

VarfU1�t�g � G2VarfX1�t�g � reÿGtF1�Gt�� �2
: �17�

By using the induction hypothesis that the lemma is true
for a �k ÿ 1�th production stage, we derive the statistics of
the kth stage as follows.

EfXk�t�g � xmax 1ÿ eÿGtÿ �ÿ eÿGtE
Z t

0

eGsUkÿ1�s�ds

8<:
9=;

� xmax 1ÿ eÿGtÿ �ÿ eÿGt

�
Z t

0

eGsGxmax ÿ Gxmax ÿ l� �Fkÿ1�Gs�ÿ �
ds

� Gxmax ÿ l� �eÿGt
Z t

0

Fkÿ1�Gs�ds

� xmax ÿ l
G

� �
eÿGtFk�Gt�; �18�

and

CovfXkg�t1; t2�

� eÿG�t1�t2�
Zt1

0

Zt2

0

eG�s1�s2�CovfUkÿ1g�s1; s2�ds1 ds2

� eÿG�t1�t2�
Zt1

0

Zt2

0

r2Fkÿ1�Gs1�Fkÿ1�Gs2�ds1 ds2

� r
G

h i2
eÿG�t1�t2�Fk�Gt1�Fk�Gt2�: �19�
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By equating t1 and t2 in the last expression, we obtain the
variance of Xk�t� at point t:

VarfXk�t�g � reÿGtFk�Gt�
G

� �2
: �20�

Having determined the statistics of Xk�t�, we ®nd the
statistics of Uk�t� from the feedback control policy (9):

EfUk�t�g � Gxmax ÿ GEfXk�t�g
� umax ÿ umax ÿ l� �eÿGtFk�Gt�;

CovfUkg�t1; t2� � G2CovfXkg�t1; t2�
� r2eÿG�t1�t2�Fk�Gt1�Fk�Gt2�;

VarfUk�t�g � G2VarfXk�t�g � reÿGtFk�Gt�� �2
: �21�j

In order to ®nd exact analytical expressions for the un-
certainty associated with the state of the system and the
control e�orts, one needs to determine the probability
distribution of Xk�t� and Uk�t�. However, since Xk�t� are
integrals of stochastic processes, which are assumed to
exist in the Riemann sense for every integrable realization
of the demand process, the determination of the distri-
bution function of Xk�t� is in general ``hopelessly com-
plicated'', as stated by Papoulis (1991). For this reason,
we determine an upper bound on the uncertainty asso-
ciated with the system states and controllers by using only
the ®rst two moments of Xk�t� and Uk�t� as found in
Lemma 1. To do so, two additional lemmas are required.

Lemma 2. Of all distributions with the same variance, the
normal distribution maximizes the entropy.

Proof. The proof can be found in Cover and Thomas
(1991). j

It follows from Lemma 2 that the entropy of the normal
distribution gives an upper bound on the uncertainty
associated with a random variable in terms of its vari-
ance.

Lemma 3. Let K be a normal r.v. with pdf fK�k� and
variance r2. Then the di�erential entropy of K is given by
the expression

H K� � � ÿ
Z

fK�k� log fK�k�dk � 1

2
log 2per2 bits: �22�

Proof. The proof can be found in Cover and Thomas
(1991). j

Now, the main theorem can be obtained.

Theorem 1. The uncertainty associated with the kth bu�er
state at time t, for the system considered above, is upper-
bounded by the following expression:

~H Xk�t�� � � 1

2
log 2pe� � � log

reÿGtFk�Gt�
G

� �
: �23�

Similarly, the uncertainty associated with the kth controller
(the controller of the kth machine) at time t is upper-
bounded by the following expression

~H Uk�t�� � � 1

2
log 2pe� � � log reÿGtFk�Gt�� �

: �24�

Proof. The proof is immediately obtained by applying
Lemma 2 and Lemma 3 to Lemma 1. j

4. Discussion

Theorem 1 enables us to express the uncertainty associ-
ated with the system states and decentralized controllers
as a function of time, demand variance and location
along the transfer line. Moreover, it lights an important
phenomenon related to the design of decentralized con-
trollers in transfer lines. Note from (24) that prior to the
steady state, uncertainty decreases with the machine in-
dex. This is due to the fact that the logarithm is a
monotone function and that Fk�t� decreases with k for a
given t, as exempli®ed in Fig. 2 for a 10 machine transfer
line. This phenomenon derives a general design principle
in the area of decentralized control, as follows.

Observation 1. Consider a transfer production line of the
type described above and a set of machine controllers
with di�erent complexities. Then, it is reasonable to sort
the controllers by their complexity and apply them in a
descending order starting with the most complex con-
troller at the ®rst (most downstream) machine and the
less complex controller at the last (most upstream) ma-
chine. Such an allocation allows a more accurate control
of the downstream machines, which behavior is more
stochastic.

Fig. 2. Behavior of Fk�t� as a function of k for t � 2 (bold line),
t � 2:5 (thin line) and t � 3 (dashed line).
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A similar conclusion can be stated in terms of bu�er
capacities. That is, in general, downstream bu�ers should
have a larger capacity than upstream bu�ers.

Observation 2. Assume that the production line has en-
ough capacity with respect to the expected demand, i.e.,
l < umax. Then, it is of interest to measure the variability
(and the related uncertainty) of the di�erence between
production and demand rates as a function of time,
measured by VarfU1�t� ÿ D�t�g. Decrease of the variance
(uncertainty), leads to a more stable and more predictable
process of delivering the goods to the customers. Low
variance (uncertainty) of the di�erence between the pro-
duction rates of adjacent machines, measured by
VarfUk�t� ÿ Ukÿ1�t�g, is also an important measure from
reasons of line balancing and production stability. In the
next lemma we calculate the above-mentioned measures
on the basis of the results presented in Lemma 1.

Lemma 4.

VarfU1�t� ÿ D�t�g � r2 2ÿ eÿGtÿ �2
;

VarfUk�t� ÿ Ukÿ1�t�g � r2 eÿGt�Fk�Gt� � Fkÿ1�Gt��ÿ �2
;

k � 2; . . . ;K: �25�

Proof. From Lemma 1 and the system dynamics, it fol-
lows that: (i) for the last production stage

VarfU1�t� ÿ D�t�g � VarfU1�t�g � VarfD�t�g
� 2Cov�U1�t�;D�t��
� r2 eÿGtF1�Gt�� �2�r2

� r2 1� eÿGtF1�Gt�ÿ �2h i
: �26�

(ii) for the intermediate production stages

VarfUk�t� ÿ Ukÿ1�t�g
� VarfUk�t�g � VarfUkÿ1�t�g � 2Cov�Uk�t�;Ukÿ1�t��
� r2 eÿGtFk�Gt�� �2�r2 eÿGtFkÿ1�Gt�� �2
� r2eÿ2Gt Fk�Gt�� �2� Fkÿ1�Gt�� �2

h i
: �27�j

Theorem 2. The uncertainty of the di�erence between the
production and demand rates as well as the uncertainty
between the production rates of adjacent machines are
upper-bounded by:

~H �U1�t�ÿD�t�� � 1

2
log�2pe� � log r

�����������������������������������
1� eÿGtF1�Gt�� �2

q� �
;

~H �Uk�t� ÿUkÿ1�t��

� 1

2
log�2pe� � log reÿGt

����������������������������������������������
Fk�Gt�� �2� Fkÿ1�Gt�� �2

q� �
:

�28�

Proof. The proof is immediately obtained from Lemmas
2, 3 and 4. j

Observation 3. This observation concerns the determi-
nation of maximum production capacity, umax, that
minimizes an economic criterion for the steady state to
which the system asymptotically converges. Note from
(12) and (13) that when t tends to in®nity, the mean and
the variance of the work-in-process in the kth bu�er tend
to their limit values given by

lim
t!1EfXk�t�g � xmax 1ÿ l

umax

� �
;

lim
t!1VarfXk�t�g � r2

G2
; for all k: �29�

Let the economic criterion include three costs: carry-
ing inventory, deviation of inventory and production
capacity, i.e.

J umax� �

� lim
t!1 p1

X
k

EfXk�t�g � p2
X

k

VarfXk�t�g
" #

� p3umax;

�30�
where p1; p2, and p3 are, respectively, the coe�cients of
the above mentioned costs (in this case, we associate cost
terms directly with the variance instead of entropy since
one is linearly dependent on the other).
By taking into account (29), the limit form of the cri-

terion is given by

J umax� � � p1Kxmax 1ÿ l
umax

� �
� p2Kr2 xmax

umax

� �2

� p3umax:

�31�
Since the second derivative of J umax� � changes sign only
once (from positive to negative) and since J umax� � tends
to a linear function for umax !1, it has a unique ex-
tremum (minimum) point. The minimum is found by
using the ®rst derivative:

@J umax� �
@umax

� p1Kl
xmax

umax� �2 ÿ 2p2Kr2 xmax� �2
umax� �3 � p3 � 0:

�32�
Solving (32) and taking into account the capacity con-
straint, umax > l, we obtain the optimal value of the
production capacity, denoted by ûmax, as

ûmax � max l;
KC
9

� �1=3 xmax

p3

� �1=2
(

ÿlp1
K2

3C

� �1=3
xmax

p3

� �1=2
)
; �33�

where
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C � 9p2r2
�������������
p3xmax

p �
���������������������������������������������������
3 Kp31l

3 � 27p22p3xmaxr4
ÿ �q

:

It is seen that ûmax increases monotonously as a function
of r2 as exempli®ed by Fig. 3. Note that for a large value
of r2, one obtains ûmax r2

ÿ � � O r2=3
ÿ �

.

5. Numerical example of a discrete transfer line

In the following, we present a numerical study of a
transfer line that operates under the suggested control
policy with discrete state space and discrete time index. It
is of interest to examine whether the general behavior of
the continuous transfer line, as obtained analytically, is
similar for this case.

The simulation model is written using the Siman V
simulation language. The model consists of 100 machines
separated by bu�ers with an in®nite source and an output
bu�er depleted at a random demand rate. The model is
executed for a horizon of 100 000 time units with a warm
up period of 5000 time units (steady state is obtained for
various simulation-runs with di�erent seeds).
The deterministic machine controllers operate using

a proportional feedback control paradigm, as pre-
sented in (9), with the following parameters: umax

k �
1=2 parts=time unit� �, xmax

k � 20�parts�, Gk � 1=40
1=time unit� �, 8 k = 1; . . . ; 100. In the discrete case, each
time that a part arrives to a machine, the machines'
production rate is updated based on the discrete number
of parts in the downstream bu�er. The machines' pro-
duction rate remains ®xed for the whole production in-
terval, thus, until a new part arrives. The initial bu�er
levels are set to 10 parts and the demand rate is distrib-
uted exponentially with mean of 1=3 parts=time unit� �.
Table 1 summarizes the statistics of more than 65 500
data points in di�erent bu�ers along the line. It presents
the distribution of parts in these bu�ers at steady state,
the sample parameters, the discrete entropies and the
continuous entropies. Unlike the continuous transfer
line, the distribution of parts (and accordingly the buf-
fer-level variance) in the discrete case depends on the
machine index not only at transition time but also at
steady state. Such phenomenon implies more importance
of Observation 1 for the discrete transfer line. The dis-
crete entropy is a measure of the bu�er level uncer-
tainty. It is calculated by ÿPi di log di, where di is the
frequency of the ith bu�er level. The continuous entropy

Fig. 3. Optimal production capacity as a function of demand
variance for p1 � 2, p2 � 0:5, p3 � 3, k � 30, xmax � 12 and
l � 1.

Table 1. Parts distribution in di�erent bu�ers at steady state, the sample parameters, the discrete and the continuous entropies

Bu�er level X1(¥) (%) X10(¥) (%) X50(¥) (%) X90(¥) (%) X100(¥) (%)

Empty 1.140
1 part 3.377 ± ± ± ±
2 parts 5.808 ± ± ± ±
3 parts 8.858 0.32 ± ± ±
4 parts 11.957 5.01 ± ± ±
5 parts 14.345 21.70 17.21 16.99 16.85
6 parts 15.088 36.60 49.05 49.79 49.94
7 parts 13.738 27.22 32.79 33.01 33.15
8 parts 10.857 8.38 0.95 0.21 0.06
9 parts 7.465 0.76 ± ± ±
10 parts 4.366 ± ± ± ±
11 parts 2.034 ± ± ± ±
12 parts 0.752 ± ± ± ±
13 parts 0.182 ± ± ± ±
14 parts 0.032 ± ± ± ±
15 parts 0.003 ± ± ± ±

Sample mean 5.798 6.135 6.174 6.164 6.164
Sample variance 6.395 1.103 0.507 0.481 0.475
Discrete entropy 3.372 2.116 1.532 1.482 1.467
Continuous entropy (Normal dist.) 3.385 2.118 1.557 1.519 1.510
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is calculated by applying (22), i.e., by using the entropy
upper bound based on a normal distribution with the
indicated sample variance. Note from Table 1 that the
continuous entropy gives a good estimate for the dis-
crete entropy.
The normal distribution is selected by the software as

the best continuous distribution that ®ts the data of
downstream bu�ers. The software sorts various appli-
cable distributions, from best to worst, based upon the
values of the respective square errors and selects the
best ®t. Table 2 presents the values of the square errors
of various distributions with respect to the ®rst bu�er
(k � 1). The histogram plot of this bu�er is presented
in Fig. 4. These observations a�rm the use of the
normal distribution to obtain the uncertainty upper
bound, as done in previous sections.

6. Conclusions

In this paper, the uncertainties associated with a transfer
production line, caused by a stochastic demand, have
been studied. A decentralized feedback control has been

used to govern the ¯ow of a single part type through
machines and bu�ers making up the line. Upper estimates
of the uncertainties in the system have been found and a
general rule for distributed controller design has been
suggested. A natural extension to this work is the un-
certainty analysis of di�erent production systems and
di�erent control policies. This includes the investigation
of the e�ects of machine starvation on the dynamic
propagation of uncertainties into the production line.
Not only the proportional feedback control paradigm,
but also more complex feedback control policies (such as
the bang/bang, polynomial, sigmoid etc) can be investi-
gated by the proposed methodology. The di�erence be-
tween uncertainty measures of continuous and discrete
transfer lines can also be studied.
A di�erent research direction is the investigation of

control ``centralization e�ects'' on the resulting uncer-
tainties in the system. For example, one can think about
two controllers, where �Uk�t� = �Uk�X �m�t�;X �m�1�t�; . . . ;
X�nÿ1�t�;X�n�t��, �m � k � �n, is considered more ``central-
ized'' than controller Ûk�t� � Ûk�X ~m�t�;Xm̂�1�t�; . . . ;
Xn̂ÿ1�t�;Xn̂�t��, m̂ � k � n̂, if �m � m̂ and �n � n̂. Then,
the best ``degree of centralization'' can be determined
for a speci®c production line as the set of controllers
which minimizes the upper bound of the total un-
certainty in the system, ~H�Uk�t��, as obtained in
Theorem 1.
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