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We suggest an experimentation strategy for the robust design of empirically fitted models. The suggested approach is used to design
experiments that minimize the variance of the optimal robust solution. The new design-of-experiment optimality criterion, termed
Vs-optimal, prioritizes the estimation of a model’s coefficients, such that the variance of the optimal solution is minimized by the
performed experiments. It is discussed how the proposed criterion is related to known optimality criteria. We present an analytical
formulation of the suggested approach for linear models and a numerical procedure for higher-order or nonpolynomial models. In
comparison with conventional robust-design methods, our approach provides more information on the robust solution by numerically
generating its multidimensional distribution. Moreover, in a case study, the proposed approach results in a better robust solution in
comparison with these standard methods.

1. Introduction

In the last three decades, the Taguchi method of robust
design has been widely applied to the design of various
systems. In many cases, the exact underlying relationship
between the design factors and the system response is un-
known. Hence, there is a need to design and conduct ex-
periments to gain information. The manner in which these
experiments are performed clearly affects the obtained so-
lution for the robust-design problem. Yet, there is no stan-
dard method by which to conduct these experiments. As
a result, various experimentation strategies are being used
that depend on the applied methodologies.

The Taguchi method proposes a set of experimental
design matrices (“orthogonal arrays”) to estimate the ef-
fects of the design factors and select the combination that
yields the highest Signal-to-Noise (S/N) ratio (Taguchi,
1978, 1986; Phadke, 1989). Later approaches use a stan-
dard canonical approach, in which the experimenter im-
plements the following two-step procedure. First, the ex-
perimenter estimates an empirical response model for the
unknown system by using conventional experimental matri-
ces, such as factorial designs. These matrices are often based
on known Design Of Experiment (DOE) optimality crite-
ria, such as D-optimal designs (e.g., as in Myers and Mont-
gomery (1995)). Second, he/she minimizes a loss function
that is based on the estimated model and obtains its opti-
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mal solution. The canonical approach is, thus, problematic
as long as the estimated model deviates from the “real”
unknown model. If the estimated model is noisy, different
“optimal” solutions will be obtained for each set of experi-
mental results. We aim to address this problem already at the
experimental stage and combine the above two-step proce-
dure in a unified DOE protocol. In particular, we suggest a
DOE optimality criterion, termed Vs-optimal, that seeks to
minimize the variance of the optimal solution rather than,
for example, minimizing the variance of the regression co-
efficients as done by the D-optimal criterion. The proposed
criterion minimizes the variance of the solution by prior-
itizing the estimation of various model coefficients. Thus,
at each experimental stage, it indicates which coefficients
should be estimated more accurately with respect to others
to obtain a consistent solution.

The area of robust optimization (Kouvelis and Yu, 1997;
Xu and Albin, 2003) addresses the above problem caused
by canonical approach. Similar to the proposed approach,
in robust optimization the coefficients of the response
model are considered to be unknown and therefore are
estimated and treated as random variables. However, the
objective of robust optimization is to identify solutions
that are insensitive to the estimation errors. A specific ob-
jective function is defined for loss minimization by the
minimax criterion (Ben-Tal and Nemirovski, 1998). It re-
quires the obtained solution to be small in the worst
case, namely over a family of response models for which
the coefficients are chosen from predefined confidence
intervals.
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The main difference between the proposed approach and
robust optimization is that the former focuses on the exper-
imental stage, whereas the latter focuses on the optimization
stage. The robust-optimization approach uses conventional
design matrices (e.g., factorial designs in Xu and Albin
(2003)) for the estimation of the model coefficients. Then,
based on these estimates, an optimization problem is solved
and the output is the robust optimal solution. In compari-
son, a main output of the proposed approach is an experi-
mental design matrix that minimizes the variance of the op-
timal solution and often diverges from conventional design
matrices. Xu and Albin (2003) indicate that their robust-
optimization approach can be contrasted with a sensitivity
analysis in which the impact of the estimated objective func-
tion on the optimal solution is examined. In this work, we
make one-step forward and try to measure the impact of the
coefficients’ estimates on the variance of the optimal solu-
tion. In particular, the proposed DOE optimality criterion
can indicate which of the estimates has the highest impact
on the optimal solution and can be used to observe how this
impact changes over time, as new information is gathered
through experiments. Although we do not apply the min-
imax criterion, we aim to reduce the dispersion of the op-
timal solution. Our numerical approach, which is applica-
ble also for non-polynomial or high-order models, uses the
first two moments of the estimated coefficients for a Monte
Carlo simulation (or a parametric bootstrap) to generate a
sample of optimal solutions, as exemplified in Section 5.

The rest of this paper is organized as follows. Section
2 presents a review of the related literature. Section 3 pro-
vides an example that motivates the use of the proposed ap-
proach. Section 4 presents an analytical implementation of
the suggested approach for a linear-response model. Section
5 presents a numerical implementation of this approach for
nonlinear models. It also compares the suggested approach
to conventional robust-design methods. Section 6 suggests
a practical framework for an iterative implementation of
the suggested approach. Section 7 concludes the paper.

2. Literature review

Following is a literature review on conventional robust-
design methods and related DOE optimality criteria.

2.1. Robust-design methods

Taguchi (1978) distinguishes between two types of factors:
(i) control factors that can be freely selected by the designer;
and (ii) noise factors that represent the uncontrollable fac-
tors, such as environmental conditions. His objective is
to design systems that are insensitive to the noise factors
(Taguchi, 1986; Phadke, 1989). Taguchi’s “nominal-the-
best” criterion, which we follow here, seeks for the system’s
output to be equal to a given target value. The correspond-
ing loss function, L(Y ) = C(Y − T)2, implies a quadratic

loss whenever there is a deviation of the response, Y , from
the given target value, T , where C is a predetermined cost
constant. Taguchi’s two-step procedure is based on the as-
sumption that the control factors can be divided into differ-
ent sets, depending on their effects on the response’s mean
and on the response’s variance (see, e.g., Hunter (1985) and
Anderson and Kraber (2002)). The first step is to maximize
the S/N ratio. The second step is to adjust the mean value of
the response to the given target value by using the so-called
“location” factors.

Taguchi’s work has been widely analyzed and extended
during the last decades. Box and Meyer (1986) suggest a
method to estimate the variance of the response and iden-
tify the factors that affect it with small nonreplicated de-
signs. Leon et al. (1987) introduce the concept of PerMIA,
a performance measure independent of adjustments. This
measure is suggested as a generalization of Taguchi’s S/N
ratios during the analysis stage. Box (1988) claims that the
statistical tools that are used by Taguchi are inefficient and
unnecessarily complicated, and suggests working with two
ratios based on the response mean and on the response vari-
ance independently. Pignatiello (1993) deals with multiple-
characteristic functions and introduces priority-based ap-
proaches to be used when several quality characteristics are
considered.

Other methods for robust design implement the canon-
ical approach, which is often based on the Response Sur-
face Methodology (RSM) (see, e.g., Box and Draper (1987)
and Myers and Montgomery (1995)). A fitted empirical
model enables an experimenter to find the optimal solution
by means of traditional optimization techniques. In early
RSM-based methods for robust design, the empirical mod-
els contained only the control factors (see, e.g., Nair and
Pregibon (1988)). Later publications also model the noise
factors explicitly, often by polynomial terms that represent
random variables. For example, Steinberg and Bursztyn
(1994, 1998) conduct a comparative study and demonstrate
the importance of modeling the noise factors explicitly. We
follow their approach and represent the noise factors by
random variables in the model. McCaskey and Tsui (1997)
analyze the Taguchi method under various response mod-
els and develop a robust-design procedure for dynamic sys-
tems with an additive response model. Tsui (1999) further
investigates the response-model approach and related loss
functions for the dynamic robust-design problem.

The popular dual-response methodology solves the
robust-design problem by using two response models: one
for the response’s mean and one for the response’s variance
(see, e.g., Cho et al. (2000)). The analysis is performed in two
stages. First, each model is optimized independently. The
respective objective functions require a mean close to the
target and a minimum variance. Second, the trade-off be-
tween the two independent optimal solutions is addressed
to obtain the final solution. Myers and Montgomery (1995)
suggest two strategies to deal with the introduced trade-off:
(i) combining the two models into a single expected loss
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function; or (ii) solving a constrained optimization prob-
lem that is aimed at minimizing the variance model, subject
to constraining the mean to be close enough to the tar-
get value. Obviously, if location factors (that affect only
the response’s mean) exist, an experimenter can concen-
trate solely on minimizing the variance response model. In
Section 5 we compare the proposed approach to the dual-
response methodology. Kenett and Zacks (1998) approxi-
mate the mean and the variance of a nonlinear response
model via Taylor series. Then, they find the robust solu-
tion analytically and compare it to solutions that are found
by numerical Monte Carlo sampling. In this paper, we im-
plement similar approximation and numerical procedures
to address additional experimental design issues. Note that
certain statistical aspects should be addressed when imple-
menting response methods in a framework of computer
experiments, as indicated in Sacks et al. (1989), Sanchez
(2000) and Williams et al. (2000).

2.2. Related optimal DOE criteria

The Taguchi method implements experimental design by
using tables of orthogonal arrays, such as the popular L8
or the L16 (Taguchi, 1986). Over the years, these designs
have been heavily criticized as being statistically inefficient
with respect to known optimality criteria (see, e.g., Leon
et al. (1987), Box (1988), and Cho et al. (2000)). Opti-
mal DOE criteria are often considered in relation to the
RSM-based approaches. These criteria aim at minimizing
variance-related measures of the response model or of its
coefficients (see, e.g., Feodorov (1972), Silvey (1980), and
Chang (1994)). Known alphabetic optimal criteria are the
A-, Q-, G-, V - and the most popular D-optimality crite-
rion, which minimizes the variance of the estimated coeffi-
cients of the empirical model. Sebastiani and Settimi (1998)
present locally D-optimal experimental designs for a variety
of nonlinear models. Atkinson and Donev (1992) discuss
the linear-optimality, c-optimality and the Ds-optimality
criteria that are related to our proposed criterion and are
further justified by the suggested objective. All these opti-
mality criteria are discussed in Section 5. To the best of our
knowledge, the proposed DOE optimality criterion, which
is to minimize the variance of the robust solution, has not
been suggested explicitly in the literature.

3. Motivating example

We now demonstrate how a sequential estimation of the
coefficients of a “real-world” engineering model affects the
canonical optimal solution. The example is based on a prob-
lem presented by Kenett and Zacks (1998) that deals with a
robust design of an RL electrical circuit. The objective is to
select the control factors (in this case specifying the resis-
tance (R) and inductance (L) values) such that the current
in the circuit (I) is kept at a given target of T = 10 Amperes.

The noise factors are the input voltage (V ) and frequency
(f ) that are modeled by Gaussian random variables, where
V ∼ N(100, 3) and f ∼ N(55, 5/3). Kenett and Zacks (1998)
consider the following known response model:

I(R, L, f, V ) = V√
R2 + 4π2(fL)2

. (1)

Let us assume, for illustration purposes, that the response
model is known a priori, yet, some of its coefficients have
to be estimated empirically. In particular, we consider the
following response model with two unknown coefficients,
a and b, and a noise term ε with a zero mean and a finite
variance σ 2

ε :

I(R, L, f, V ) = V√
bR2 + a(f L)2 + ε

, (2)

Note that in following the canonical approach, the experi-
menter will take the following steps: (i) estimate a and b
through experiments; (ii) plug the estimates into the re-
sponse model of Equation (2) and then estimate the first
two moments of I to formulate the loss function E(Î − T)2;
(iii) find the optimal values R∗ and L∗ that are functions
of the estimates and therefore are random variables; and
(iv) obtain the loss associated with the estimated optimal
solution, Loss(R∗, L∗). The estimated loss in step (ii) is
approximated here by a second-order Taylor series expan-
sion. The function itself is too long to be shown here (it
does, however, appear in Ginsburg (2003)). It is a nonlinear
function, whose arguments are the design factors and the
first two moments of the noise factors and the coefficients,
i.e.:

Loss(Î) = E(Î − T)2 = (µ̂I − T)2 + σ̂ 2
I

≈ g(µ̂a, σ̂a, µ̂b, σ̂b, µV , σV , µf , σf , R, L),

where µ̂I and σ̂I are the approximated mean and standard
deviation of I , the first four arguments in the function
g( ) denote the estimated means and standard deviations
of the unknown coefficients, the next four arguments de-
note the given means and standard deviations of the noise
factors and the last two arguments denote the control fac-
tors. Given this function, one can investigate how the un-
certainties regarding the values of the coefficients a and
b, as represented by σ̂a and σ̂b, affect the estimation of the
optimal solution (R∗, L∗) that is obtained by solving si-
multaneously the equations R∗ = argminR{E(Î − T)2} and
L∗ = argminL{E(Î − T)2}.

For illustration purposes, let us address a simplified
problem by assuming that the experimenter considers a re-
sistance of R∗ = 6 �. Given the deterministic model Equa-
tion (1), the first-order optimality condition yields an op-
timal value for the inductor in units of Henrys of L∗

D =
0.023 H, where the subscript “D” denotes “Deterministic”.
Figure 1 presents the Taylor approximation of L∗ (σ̂ a, σ̂b),
the optimal solution for the inductor, as a function of the
standard deviations of the estimated coefficients, σ̂a and σ̂b,
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Fig. 1. The optimal solution for the RL circuit, L∗(σ̂ a, σ̂b) for a fixed R = 6 � as a function of σ̂a and σ̂b in two regions of the parameter
uncertainty.

in the vicinity of R*= 6 �. The right-hand graph shows
the value of L∗ for one section of the experimental region,
in which the values of the estimated standard deviations
are relatively large. It shows a given solution, L∗ ≈ 0.03H,
that is obtained for σ̂a = 6.5 and σ̂b = 8. Note that a re-
duction of one unit in σ̂b while holding σ̂a fixed results in a
better optimal solution, L∗, which is closer to the determin-
istic solution. However, a reduction of one unit in σ̂a while
holding σ̂b fixed does not change the value of the optimal
solution. In general, for relatively large values of standard
deviations, changes in σ̂a do not result in a value change of
L∗, whereas changes in σ̂b do affect the optimal robust solu-
tion (Ginsburg, 2003). Thus, in order to reduce the variance
of the estimated robust solution, V (L∗) in this case, the ex-
perimenter should focus on estimating b as accurately as
possible, rather than investing in a better estimation of a.
The left-hand graph shows another section of the experi-
mental region, in which the values of the estimated standard
deviations are smaller. In this region the opposite situa-
tion occurs: to reduce the variance of L∗, the experimenter
should focus on estimating a as accurately as possible rather
than on estimating b. This phenomenon is also true for
R∗, which is not presented here. Note that these conclu-
sions cannot be anticipated a priori from the loss function
itself.

This example shows that the optimal solution might de-
pend on various coefficients’ estimates in a manner that is
not necessarily uniform or consistent. As new information
is gathered through experiments, some of the model coef-
ficients become more influential for a robust estimation of
the optimal solution. On this ground, we formulate the sug-
gested Vs-optimality criterion that takes into account the
optimal solution for both linear and nonlinear models, as
presented in the next sections.

4. A linear-response model

In this section we formulate the Vs-optimality criterion by
implementing the suggested approach to a linear model
given by:

Y (x, Z) = β0 + β′x + α′Z + x′ΓZ + ε, (3)

where Y is the unknown response, x is a (k × 1) vector of the
coded significant control factors, i.e., x′ = (x1, x2, . . . , xk),
Z is an (m × 1) vector of the significant noise factors, coded
such that E[Zi] = 0, i = 1, . . . , m, β0 is a scalar, β′ is a
(1 × k) row vector of the control-factor’s coefficients; α′ is
a (1 × m) vector of the noise-factor’s coefficients; Γ is a (k ×
m) matrix of the control-factor-by-noise-factor interactions
that link the two types of factors and enable a reduction in
the noise-factors’ effects, and ε is a noise term with a mean
of zero and a finite variance σ 2

ε . Such a linear model can be
obtained by traditional experimental designs. In most cases,
we denote random variables by capital letters and use the
bold font to represent vectors or matrices.

Given the response model, we now express the first-order
optimality condition explicitly and then formulate the Vs-
optimality criterion.

4.1. Optimization

The optimization stage of the robust-design problem is
performed with respect to the introduced loss function,
L(Y ) = E(Y − T)2, which depends on the mean and the
variance of Y :

E(Y (x, Z)) = β0 + β′x;
V (Y (x, Z)) = (α′ + x′Γ)Σ(α + Γ′x) + σ 2

ε , (4)
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where Σ is assumed to be the known (m × m) variance-
covariance matrix of Z. Accordingly, the expected loss func-
tion is given by:

L(Y ) = E(Y − T)2 = V (Y ) + (E(Y ) − T)2

= V (Y ) + E(Y )2 − 2TE(Y ) + T2

= α′Σα + α′ΣΓ′x + x′ΓΣα + x′ΓΣΓ′x
+ (β0 + β′x)′(β0 + β′x) − 2T(β0 + β′x) + T2. (5)

The first-order optimality condition for Equation (5)
yields the optimal robust solution:

⇒ x∗ = (ΓΣΓ′ + ββ′)−1 · [β(T − β0) − ΓΣα]. (6)

Since the coefficients of the response model are empirically
estimated, x∗ is a random function, x∗ = g(θ̂L), where g( )
is a (k × 1) vector function of the set of the Linear-model’s
estimates, θ̂L = {β̂0,α̂, β̂, Γ̂} and, thus, x∗ is a random vari-
able itself. Using a Taylor series expansion around the co-
efficients’ estimates, one obtains an approximated robust
solution for the system:

x∗ = g(θ̂L) ≈ g(θL) +
[
∂(g(θL))

∂θL

]
· (θ̂L − θL)

= g(θL) + J · (θ̂L − θL), (7)

where J is the (k × p) Jacobian matrix of x∗, which is esti-
mated by ∂(g(θ̂L))/∂θL, and p = (k + 1)(m + 1) is the num-
ber of coefficients in the model.

4.2. The Vs-optimality criterion

At this stage, the proposed DOE criterion can be for-
mulated explicitly. This DOE stage involves two sub-
problems: (i) defining the appropriate design region; and
(ii) selecting the optimal design matrix F∗ that sat-
isfies F∗ = arg min{F}{V (x∗)} within the selected design
region.

The new design region in which the control factors are
selected can be defined as a confidence region around the
estimated optimal solution x∗. Such a definition is con-
sistent with x∗ being a random vector, whose realizations
lie within a confidence region. This approach is in agree-
ment with the common robust-optimization approach (see,
e.g., Ben-Tal and Nemirovski (1998)). The design region
can be either spherical, such as x ∈ x∗ ± 3 · √

V(x∗), or
a hypercube, such as −1 ≤ Ik+m u ≤ 1, where Ik+m is an
identity matrix with dimensions (k + m) × (k + m) and u
is a vector representing the k control and the m noise
factors.

Our next step is to search in the design region for the op-
timal design matrix, F∗, that minimizes the variance of the
optimal solution, V (x∗). The required design matrix has
dimensions of (n × p), where p is the number of parame-
ters and n ≥ p is the number of experiments. Taking the
variance of the expression in Equation (7) yields the fol-
lowing (k × k) variance-covariance matrix that we aim to

minimize:

V (x∗) ≈
[
∂(g(θ̂L))

∂θL

]
V (θ̂L)

[
∂(g(θ̂L))

∂θL

]′

= J
(
(F′F)−1σ 2

ε

)
J′. (8)

This is a fundamental result of our proposed criterion that
can be obtained analytically only for linear response models
when Equation (7) exists in a closed form.

4.3. An illustrative example

Let us look at a simplified linear model that contains a
single control factor (k = 1), a single noise factor (m = 1)
and a single interaction term:

Y (x, Z) = β0 + b1x + a1Z + xγ Z + ε. (9)

Following Equation (6), the optimal solution is given by:

x∗ = b1(T − β0) − γ a1

γ 2 + b2
1

. (10)

The Jacobian matrix of x∗ in this case, with respect to θ̂L =
{β0, b1, a1,γ }, is the following (1 × p) row vector:

J =
[
− b1

γ 2 + b2
1

,
T − β0

γ 2 + b2
1

− 2b1(b1(T − β0) − a1γ )(
γ 2 + b2

1

)2 ,

− γ

γ 2 + b2
1

, − a1

γ 2 + b2
1

− 2γ (b1(T − β0) − a1γ )(
γ 2 + b2

1

)2

]
.

(11)

Let us further simplify this vector by considering an on-
target product, β0 = T , an equal effect of the control and
the noise factors, b1 = a1, and a respectively 50% effect of
the interaction, e.g., γ = a1/2 = b1/2. Now, the Jacobian
matrix of x∗ is further simplified to:

J =
[
− 4

5a1
,

16
25a1

, − 2
5a1

, − 12
25a1

]

=
[

2t, −8t
5

, t,
6t
5

]
, (12)

where t ≡ −2/5a1. Note that the partial derivatives (the
components in the Jacobian, matrix) are substantially dif-
ferent, e.g., the following square ratios of the partial deriva-
tives in Equation (12) are [4, 2.56, 1, 1.44]. Such a vector im-
plies that when designing the next experiment, one should
invest four times more effort in estimating β0 than in esti-
mating a1. This makes sense due to our assumption that the
system is on-target. The next-in-importance parameters are
(in descending order) the control factor’s coefficient, b1, the
interaction coefficient, γ , and the noise factor’s coefficient,
a1.

4.4. Designing the next experiment

The optimal design matrix can now be found by standard
nonlinear programming methods: via Equation (8) aiming
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at:

F∗ = min
F

{V (x∗)} = min
F

{
det

[
J
((

F′F)−1σ 2
ε

)
J′]}.

The variables are the n (k + m) independent elements of the
design matrix that represent the values of the control and
the noise factors; the optimization is constrained within
the design region, which is proportional to V (x∗). Formu-
lating the first-order optimality condition for Equation (8),
yields a set of high-degree equations that often cannot be
solved analytically. For example, even the simple model in
Equation (9) yields a set of fourth-degree equations that
needs to be solved simultaneously to obtain the optimal
solution. We implement a Matlab-based numerical opti-
mization procedure, which is based on a standard library
of quasi-Newton routines (with polynomial complexity).
Since this optimization problem is not necessarily convex,
the obtained solutions are often local minima that depend
on the starting point of the search. Therefore, we use several
starting points for the search to try to avoid local minima.
In this example, we start with 100 designs (a larger number
of starting points did not result in a different solution) that
are randomly chosen (by a uniform distribution) within a
hypercube design region, plus another starting point set at a
D-optimal design. The best solution is then chosen among
all the obtained results. The search algorithm has a polyno-
mial complexity, which implies that it can be used to solve
larger problems in general. If the number of variables is
large, one can also use a simpler objective function, such
as minimizing the trace of F′F instead of its determinant,
thus, following the A-optimality criterion.

To illustrate the difference between our optimal design,
F∗, and the conventional D-optimal design, denoted here by
D∗, let us consider the model in Equation (9) with β0 = 8,
b1 = 0.18, a1 = −0.1, γ = 0.5 and a target T = 3. Execut-
ing the numerical optimization routine with the smallest
n > p results in the optimal design matrix:

F∗ =




1 1 −1 −1
1 1 −0.75 −0.75
1 −1 −1 1
1 −1 −0.94 0.94
1 1 −0.17 −0.17




. (13)

The values are coded between (−1) and (+1) and rounded
to two digits after the decimal point. A comparative D-
optimal design with a similar number of experiments (n =
5) is composed of four factorial points and one replication,
e.g.:

D∗ =




1 −1 −1 1
1 −1 1 −1
1 1 −1 −1
1 1 1 1
1 1 1 1


 . (14)

As expected by the definitions of the criteria, the vari-
ance of the robust solution which is based on the D-
optimal design is larger (almost twice in this case) than
the variance of the robust solution which is based on the
Vs-optimality criterion, i.e., V (x∗|D∗) = 78.42 σ 2

ε whereas
V (x∗|F∗) = 39.42 σ 2

ε .
Further numerical studies (Ginsburg, 2003) indicate

that the Vs-optimality criterion often yields a design
matrix which differs from traditionally used D-optimal
designs.

5. A second-order (or a higher-order) model

In this section we consider nonlinear response models. In
RSM, such models are often fitted iteratively, at a stage
when the linear model cannot capture the curvature infor-
mation in the vicinity of the optimal solution (Myers and
Montgomery, 1995).

Consider a second-order response model of the following
form:

Y (x, Z) = β0 + β′x + x′Bx + α′Z + x′ΓZ + ε, (15)

where B is a (k × k) matrix of the control factors’ quadratic
terms and interactions. Apply the first-order condition for
optimality to the approximated loss function:

∂E(Y − T)2

∂x
= 0,

⇒ [ΓΣα + β0β − Tβ] + [ΓΣΓ′ + ββ′ + 2β0B − 2TB]x
+ 3xβ′Bx + 2Bxx′Bx = 0, (16)

which represents a system of k equations of a third-order
degree that, in general, cannot be solved analytically. Since
there is no closed form for x∗, as for Equation (7) in the
linear case, we apply a numerical approach to obtain the
Vs-optimal design. The new experimental region is a con-
fidence region around the optimal solution x∗ = g(θ̂Q),
where θ̂Q is the set of the estimates of the Quadratic-model
coefficients, θ̂Q = {β̂0, α̂, β̂, B̂, Γ̂}. However, since the vec-
tor function x∗ = g(θ̂Q) for quadratic or higher-order mod-
els is unknown analytically, one should use numerical meth-
ods to estimate the optimal solution and its variance. Here,
we implement a Monte Carlo sampling or parametric boot-
strap (Efron, 1979) to generate several sets of the model’s
coefficients, assuming that they are normally distributed.
Then, we numerically calculate this optimal solution, x∗,
for each generated set of the estimated coefficients. The pro-
cedure repeats itself to provide many solutions and yield an
empirical distribution of the optimal solution. For illustra-
tion purposes, let us now present the suggested procedure,
which can be implemented in a similar manner to that for
higher-order models.
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5.1. The unknown (“real”) model

Let us consider the following response model which repre-
sents a “real” and unknown (to the experimenter) system.
It contains two control factors (x1 and x2) and two noise
factors (z1 and z2), all coded between (−1) and (+1):

Y = β0 + [β1 β2]
[x1

x2

]
+ [α1 α2]

[z1

z2

]

+ [x1 x2]
[B11 B12

B21 B22

][x1

x2

]
+ [x1 x2]

[
	11 	12

	21 	22

][z1

z2

]

+ ε

= 5 + [−2 4]
[x1

x2

]
+ [1 −5]

[z1

z2

]

+ [x1 x2]
[ 1 −7
−7 2

][x1

x2

]
+ [x1 x2]

[−10 18
−15 14

][z1

z2

]

+ε. (17)

The noise factors are assumed to be controllable during the
experiments and independent, having an identity covari-

Fig. 2. (a) The response’s mean; (b) the response’s variance; and (c) the associated loss function of the “real” system with respect to
the control factors x1 and x2 and the target value of T = −10. Noise factors are set to their mean values that are equal to zero.

ance matrix. The underlying model enables us to measure
how close is the “real” optimal solution, which is derived
from Equations (16) and (17), to the solution of the pro-
posed approach, as well as to solutions of other traditional
methods. Otherwise, the model in Equation (17) is only used
to generate the simulated experiments.

Figure 2(a–c) plots the response model of Equation (17)
as a function of the two control factors, x1 and x2. The noise
factors are set to their mean values that are equal to zero.
Figure 2(a) shows the mean value of the response function.
The dashed lines in the upper-right and lower-left corners
show the desired target which is T = −10. Note that within
the region of interest (indicated by the inner square) there
is no point at which the expected value of the response is
equal to the target value. In order for the response to ap-
proach this target value, the control factors should be set
at the edges of the region of interest, i.e., around (−1, −1)
or (+1, +1); Fig. 2(b) shows the variance of the response
function, which is minimized along the upper-left to the
lower-right diagonal (dashed); Fig. 2(c) shows the associ-
ated loss function that balances the response’s mean and
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variance. The loss reaches its minimum close to the center
of the interest region at xa

∗ = (0.318, −0.076) (where the
subscript “a” stands for “accurate”) with an associated loss
value of 211.77.

5.2. Numerical procedure steps

Given the underlying function, we outline the proposed nu-
merical procedure. The procedure is further exemplified in
the next section.

Step 1. Estimate the unknown model by replicated exper-
iments (in this example the underlying model of
Equation (17) is used to generate the experimental
observations); estimate the means and the variances
of the model’s coefficients based on the replicated
observations.

Step 2. Generate new sets of the model’s coefficients via
Monte Carlo sampling or parametric bootstrap.

Step 3. Compute the optimal solution(s) numerically for
each generated set of the model’s coefficients.

Step 4. Plot the robust solution(s) as a function(s) of the
control factors. For nonlinear models, several ro-
bust solutions might exist, thus, cluster them. The
center of each cluster represents one optimal solu-
tion.

Step 5. Compute the variance of each solution from its
cluster numerically.

Step 6. Design the next experiment to minimize the vari-
ance of the optimal solution(s). This step is further
addressed below.

Next, the procedure steps are illustrated by a running
example.

5.3. Estimating the model and the coefficients’ moments
by replicated experiments

In this step, we create an initial data reservoir based on
the coefficients’ estimates that are obtained from w replica-

Table 1. The coefficients’ estimates, sample means and sample standard deviations estimated from the 50-treatment experiment

Estimated values

Coefficient β0 β1 β2 α1 α2 B11 B22 B12 Γ11 Γ12 Γ21 Γ22

1 5.918 −1.55 4.314 0.865 −5.248 1.835 0 −14.133 −9.804 17.967 −15.097 14.337
2 6.263 −1.519 4.197 0.536 −5.494 1.663 0 −14.027 −10.609 18.043 −15.019 13.625
3 5.087 −1.592 3.872 1.307 −4.687 1.314 1.771 −13.987 −10.037 18.184 −15.177 14.312
4 6.18 −2.532 4.321 1.386 −5.544 0 1.795 −14.069 −9.916 18.098 −14.958 13.725
5 5.163 −2.095 3.7 0.972 −5.222 0 2.563 −13.902 −10.406 17.641 −14.976 13.986
6 4.997 −1.839 3.894 0.93 −4.784 0 2.64 −13.951 −10.767 18.28 −15.8 14.56
7 6.702 −1.318 3.56 0.995 −5.515 0 0 −14.035 −10.713 18.456 −14.631 13.953
8 5.713 −2.198 4.2 0.638 −4.704 0 2.233 −14.494 −10.391 18.412 −14.625 13.751
9 4.223 −2.467 4.587 0.864 −4.744 1.256 2.943 −13.875 −9.625 17.048 −14.735 12.962

10 4.89 −1.987 3.969 1.049 −5.267 0 2.881 −13.88 −9.684 17.889 −14.687 13.8
Average 5.514 −1.91 4.061 0.954 −5.121 1.517 2.404 −14.035 −10.195 18.002 −14.971 13.901
Stdv 0.764 0.416 0.316 0.261 0.356 0.278 0.483 0.182 0.434 0.415 0.353 0.45

tions of an r -treatment experiment. Practically, we choose
w = 10 and r = 50, thus, we replicate a 50-treatment exper-
iment for ten times (the optimal selection of w and r will
be a subject of future research). The design is presented in
the Appendix. The purpose of the replicated experiment is
to estimate the means and the standard deviations of the
model’s coefficients. These estimates are used in later steps
to generate new sets of coefficients. Table 1 presents the coef-
ficients’ estimates for each of the ten replicated experiments,
as well as their sample mean-values and sample standard
deviations.

5.4. Generating new sets of coefficients via
Monte Carlo sampling

Once the initial reservoir set is obtained, we re-generate new
sets of the model’s coefficients by Monte Carlo sampling (or
a parametric bootstrap). In particular, we use the inverse
transform method for a Gaussian random variable with the
estimated means and standard deviations as its arguments
to generate an additional, say 100 sets of coefficients (one
simple way to generate these values is by the “NORMINV”
function in Excel). Table 2 presents ten of the 100 gener-
ated sets of coefficients (each set in a row). The genera-
tion is immediate and one can easily generate more sets of
parameters.

5.5. Computing the optimal solutions

For each of the generated sets of coefficients, we compute
the optimal solution, x∗. The solutions are derived nu-
merically by solving the set of equations given by Equa-
tion (16). The solutions for 15 (out of the 100) sets of
coefficients are presented in Table 3. We calculate the
loss values for each solution, L(x∗), as shown in the last
column. Once again, using Matlab procedures requires
a polynomial time to numerically solve these nonlinear
equations.
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Table 2. Ten out of the 100 generated sets of the model’s coefficients based on the sample estimates

Generated values

Run β0 β1 β2 α1 α2 B11 B22 B12 Γ11 Γ12 Γ21 Γ22

1 5.133 −1.961 3.972 1.658 −5.184 1.573 2.267 −13.85 −10.086 17.498 −14.701 14.86
2 5.76 −1.822 3.863 0.964 −5.284 2.18 2.471 −13.678 −10.974 17.438 −14.72 14.02
3 6.786 −1.848 4.132 0.941 −5.586 1.819 2.48 −13.991 −10.357 18.417 −14.792 14.143
4 5.35 −1.852 3.429 0.896 −5.511 1.267 2.816 −13.964 −9.842 18.454 −15.021 14.623
5 5.197 −2.189 3.997 0.52 −5.011 1.694 2.835 −13.76 −10.592 18.543 −15.944 14.345
6 5.529 −1.523 3.862 1.016 −5.538 1.703 2.353 −14.093 −9.901 17.934 −14.858 12.649
7 4.721 −1.82 4.141 1.006 −4.382 1.37 2.083 −14.222 −9.693 17.548 −15.325 14.124
8 6.136 −1.974 3.958 1.128 −5.784 1.332 1.636 −13.911 −10.846 17.81 −15.377 13.905
9 6.726 −1.533 4.304 1.009 −5.502 1.676 1.889 −14.052 −10.458 17.747 −15.14 14.272
...

...
...

...
...

...
...

...
...

...
...

...
...

100 6.062 −1.638 3.959 1.221 −5.023 1.466 2.979 −14.02 −10.067 17.537 −14.907 14.167

5.6. Plotting and clustering the optimal solutions

When it is unknown how many optimal solutions might
exist for Equation (16), one can draw a scatter plot of the
solutions to estimate how many optimal x∗ solutions po-
tentially exist by using the number of blobs (clusters). We
plot only 90% of the solutions in order to neutralize out-
liers’ effects that can result from the randomized sampling.
In this example, we choose those solutions with the lowest
loss values although alternative criteria, such as the dis-
tance of a solution from the center of each blob, can be
also applied. If the partition for blobs is not trivial, one
can use known clustering methods (e.g., see Duda et al.
(2001)) to assign solutions to the blobs. An optimal solu-
tion is defined as the center of gravity of each blob. Since
all the solutions are equally weighted in this case, the center
of gravity is obtained by simply averaging all the solutions’
coordinates.

Table 3. Fifteen out of the 100 simulation-based optimal solutions

Run X1
∗ X2

∗ Loss value

1 0.320 −0.045 216.735
2 0.288 −0.056 241.011
3 0.305 −0.062 271.667
4 0.309 −0.042 225.698
5 0.299 −0.089 218.954
6 0.297 −0.046 234.646
7 0.289 −0.076 205.584
8 0.332 −0.061 248.537
9 0.302 −0.064 272.114

10 0.297 −0.050 248.531
11 0.266 −0.050 244.912
12 0.270 −0.070 220.806
13 0.265 −0.065 229.662
14 0.308 −0.070 284.773
15 0.309 −0.089 206.068

5.7. Computing the variance of each optimal solution

Finally, we numerically compute the variance, V (x∗), for
each of the blobs. The diagonal elements of V (x∗) are calcu-
lated by the variance of each column’s numbers, and the off-
diagonal elements are calculated by the covariance terms
between pairs of columns in Table 3.

Figure 3 presents a scatter plot on the control-factors’
plane. It shows the 90% of the optimal solutions with the
lowest loss values. The scatter plot presents a single blob,
implying that there is a single x∗ solution for the system,
as expected from the quadratic unknown function in Equa-
tion (17). The center of gravity of this blob, which is equal to
(0.305, −0.071), is our recommended solution at this stage,
with an associated loss value of 211.83. The accurate opti-
mal solution xa

∗ = (0.318, −0.076) with a loss of 211.77,
which is based on the “real” (unknown to the experimenter)
model of Equation (17), is denoted by the × sign. Note that
the accurate solution is located within the blob and is close
to its center, implying that the proposed procedure provides
a good solution in this case.

5.8. A comparison with traditional methods

The above robust-design problem was also solved by the
following traditional methods (see the literature review in
Section 2):

(i) Taguchi’s (original) method: picking the control fac-
tors’ combination that yields the largest S/N ratio.

(ii) a variation of Taguchi’s two-step procedure which is
based on both the S/N ratios and the expected val-
ues. Practically, since the “real” function does not in-
clude location factors, we chose a solution that yields
the highest S/N ratio, unless there exists an alternative
solution, where for a unit loss of the S/N ratio, the
expected value is closer to the target in two units or
more.
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Fig. 3. The 90% of the x∗ solutions with the lowest loss values, as
obtained by the Monte Carlo sampling procedure. The “×” sign
shows the location of the “real” (unknown) optimal solution.

(iii) a mean response approach: identifying within the de-
sign region those solutions whose expected value is as
close as possible to the given target value (i.e., either
solutions whose expected value equals the target value
or solutions that are at the edges of the design region)
and among them choosing the solution that yields the
smallest variance.

(iv) a variance response approach: finding the solution that
minimizes the variance response model.

(v) an extended mean response approach: a similar
method to (iii), with the distinction that the expected
value must be equal to the target value, even if this
implies picking solutions that lie beyond the interest
region.

(vi) a dual-response method: constructing a response
model for the loss function, which is based on both
the expected value of the response and its variance
and optimizing this model explicitly (Myers and Mont-
gomery, 1995).

Table 4 demonstrates the proposed solutions. It compares
the “real” optimal solution (had the model in Equation (17)
been known) to the solutions of the suggested approach
and of the traditional methods. The “real” optimal solu-

Table 4. Comparative study of robust solutions and their associated loss values, as obtained by the different robust-design methods

Method

Taguchi’s methods Response methods

“Real” (i) (ii) (iii) (iv) (v) Extended (vi)
unknown Proposed Original Two Mean Variance mean Loss

Value solution approach one-step steps model model model model

x1
∗ 0.318 0.305 −1 0 1 0.496 −1.009 0.304

x2
∗ −0.076 −0.071 1 0 1 −0.274 −1.247 −0.069

Loss value 211.77 211.83 1541 251 1341 231.436 2539.74 211.844
Percentage of “real” solution (%) 100 100.03 727.69 118.53 633.24 109.29 1199.31 100.04

tion is presented in column 2; the proposed approach is
presented in column 3; and the above-mentioned methods
are presented in columns 4–9 (labeled by (i)–(vi) respec-
tively). In order to maintain a fair comparison, in each of
the investigated methods we use the same coefficients’ esti-
mates, as obtained from the ten replicated experiments. For
each method we present the best obtained solution (x∗

1 and
x∗

2 in the second and third rows) along with their associated
loss values (fourth row). In the last row, the “real” loss value
of 211.77 (second column) is considered as a reference loss
and therefore obtains a score of 100%. The loss values of
the other methods are scored as a percentage of the “real”
loss and are higher than 100%.

Note from Table 4, that the suggested approach yields
a solution which is very close to the “real” optimal solu-
tion. Moreover, it obtains the smallest loss among all other
traditional methods (with a score of 100.03%). The dual
response method of Myers and Montgomery (in the last
column), that minimizes the loss model explicitly, yields
a similar solution to the proposed one (with a score of
100.04% which is an insignificant difference). Note, how-
ever, that the optimal solution in this case is a point-estimate
for x∗ and it does not include additional information on
the spread of x∗, as obtained by the cluster of the 90%
of the calculated solutions with the lowest loss values ob-
tained by the suggested approach (in Fig. 3). The vari-
ance response method results in a slightly larger loss value
(109.29%), in contrast to the mean-response model that
results in a significantly higher loss (633.24%). This ob-
servation depends, of course, on the specific-model’s char-
acteristics; in systems with an on-target value within the
region of interest the mean response model might obtain
better results than the variance response method. With re-
gard to Taguchi’s methods, the variation of the two-step ap-
proach yields a relatively small loss value (118.53%), which
results in a much larger loss (727.69%). This observation
is in agreement with Steinberg and Bursztyn (1994). The
extended mean model yields the largest loss (1199.31%) in
this case. Note from Fig. 2 that the expected value is equal
to the target only outside the region of interest (upper-
right and lower-left dashed contour lines). However, the
feasible solutions on these contour lines have very large
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variances that result in a large loss, as can be seen in Fig.
2(b) and Fig. 2(c).

5.9. Designing the next experiment

Following the same arguments as in the linear case, the
next design region can be defined by a confidence region
around the optimal solution. The new DOE criterion aims
at minimizing the variance of the optimal solution, V (x∗),
which depends on the estimators of the Jacobian matrix’s
terms. Since a numerical procedure is used to obtain x∗
for nonlinear models, the relations between the Jacobian
terms and the variance of the optimal solution cannot be
expressed by a closed-form equation, as for the linear case
in Equation (8). Therefore, the search for the coefficients’
estimates with the largest effects on V (x∗) is also derived
numerically.

We suggest the following procedure to locate those co-
efficients with the largest effect on the optimal solution.
Namely, at each stage of this procedure, the experimenter
picks one (or a combination) of the coefficients’ estimators
and reduces its (their) estimated standard deviation(s) by
one-half or by any other selected ratio. The selected ratio
can depend on the current variance of the estimator, as well
as on the required number of experiments to reduce the so-
lution’s variance. Then, the experimenter repeats the Monte
Carlo sampling procedure (that is presented in Table 2) to
obtain additional x∗ solutions. Consider the following illus-
trative example; the standard deviation of β0 in Table 1 is
reduced by one-half from 0.764 to 0.382. Since the random
generation of the coefficients’ values is based on their sam-
ple standard deviations, such a reduction implies that the

Table 5. The reductions in the variance components of V (x∗) resulting from the reductions in the standard deviations of the coefficients’
estimators

Absolute values

V(x1
∗) V(x2

∗) Cov(x1
∗, x2

∗)
As percentage of the original values

Reduction x1
∗ x2

∗ (×103) (×103) (×103) V(x1
∗) V(x2

∗) Cov(x1
∗, x2

∗)

No reduction 0.305 −0.071 0.476 0.235 −0.035
β0 (50%) 0.305 −0.072 0.473 0.232 −0.030 0.993 0.987 0.870
β1 (50%) 0.304 −0.071 0.297 0.226 0.012 0.625 0.960 −0.354
β2 (50%) 0.305 −0.070 0.473 0.150 −0.013 0.993 0.640 0.361
α1 (50%) 0.305 −0.071 0.467 0.201 −0.053 0.981 0.856 1.526
α2 (50%) 0.305 −0.071 0.372 0.219 −0.077 0.781 0.933 2.208
B11 (50%) 0.305 −0.071 0.419 0.229 −0.017 0.881 0.976 0.475
B22 (50%) 0.305 −0.071 0.479 0.229 −0.037 1.006 0.973 1.066
B12 (50%) 0.305 −0.071 0.472 0.237 −0.032 0.992 1.010 0.927
Γ11 (50%) 0.305 −0.071 0.472 0.224 −0.043 0.990 0.951 1.234
Γ12 (50%) 0.305 −0.071 0.463 0.232 −0.041 0.973 0.986 1.168
Γ21 (50%) 0.305 −0.071 0.474 0.234 −0.034 0.996 0.995 0.981
Γ22 (50%) 0.305 −0.071 0.477 0.238 −0.030 1.002 1.012 0.858
β1, β2 (2 × 50%) 0.304 −0.070 0.288 0.135 0.043 0.606 0.576 −1.218
β1, β2 (2 × 25%) 0.305 −0.071 0.368 0.176 0.011 0.773 0.751 −0.304
β2, α1 (2 × 25%) 0.305 −0.071 0.468 0.166 −0.031 0.983 0.705 0.881

generated coefficients will be closer to their mean values.
This procedure leads to a reduced variance of the optimal
solutions, denoted by V r(x∗), in comparison with the orig-
inal variance of the optimal solution, V (x∗), which was ob-
tained prior to the reduction. At the end of this procedure,
the experimenter obtains a set of new V r(x∗) values, each
of which is associated with one (or with a combination) of
the coefficients’ estimates. A comparison among these val-
ues with respect to the original V (x∗) can indicate which of
the coefficients’ estimates has the largest influence on the
variance of the optimal solution.

Table 5 illustrates the above procedure. It presents the
obtained optimal solutions, x∗

1 and x∗
2 , and their esti-

mated variance-covariance components: V (x∗
1 ), V (x∗

2 ) and
Cov(x∗

1 ,x∗
2 ) (all multiplied by a factor of 103). The first row

presents the original values prior to any reduction in the
standard deviations of the coefficients. The next 12 rows
present the optimal solutions and their variances following
a 50% reduction in the standard deviation of each corre-
sponding coefficient. For example, the second row presents
the obtained values for the case where the standard devi-
ation of β0 is reduced by one-half. The last three rows in
Table 5 present the optimal solutions and their reduced
variance components following a simultaneous reduction
in the standard deviations of some combinations of coeffi-
cients. Row 14 presents a simultaneous reduction of 50% in
the variances of the two most influential estimators, β1 and
β2. Row 15 repeats the same simulated experiment when
reducing 25% rather than 50% of the variances of β1 and
β2. Finally, row 16 repeats the analysis following a simul-
taneous reduction of 25% in the variances of β2 and α1.
The left part of the table presents the absolute values of the
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variance components of the optimal solutions, whereas the
right part of the table presents these values as percentages of
the original V (x∗) value. For example, the most influential
(single) estimator when aiming to reduce the variance of x∗

1
is β1, since a reduction of 50% in the standard deviation
of β1 results in a reduction of 37.5% in V (x∗

1 ) (the reduced
variance of x∗

1 is equal to 0.297 × 10−3 which equals 62.5%
of the original value). Similarly, a reduction of 50% in the
standard deviation of β2 results in a reduction of 36% in
V (x∗

2 ). These results are expected, yet, note that the next-in-
importance coefficients are α2 for x∗

1 and α1 for x∗
2 and not

the interaction coefficients, as could have been theoretically
anticipated. A simultaneous reduction of 50% in the vari-
ances of β1 and β2 (row 14) results in the most significant
reduction in the solution’s variances (around 40%) with a
negative correlation between x∗

1 and x∗
2 (–1.218). A smaller

reduction of 25% in the variances of these estimators (row
15), which is probably cheaper in practice, yields a smaller
reduction in the solution’s variances (around 25%), yet with
a lower correlation between x∗

1 and x∗
2 . A simultaneous re-

duction of 25% in the variances of β2 and α1 (last row) is
presented to illustrate the flexibility of the simulated proce-
dure in the selection of experiments. The proposed numeri-
cal procedure is computationally tractable similar to other
Monte Carlo simulations. It can be further extended by ap-
plying simple factorial experiments to analyze the effects
of single or combined reductions in the estimators’ vari-
ances. Note that some entries in the right part are larger
than 100% as a result of the randomization effects in the
simulations.

Once the relations between the variance of the coeffi-
cients’ estimators and the variance of the optimal solution
have been evaluated numerically, the next design matrix can
be constructed. Note again, that in the linear case these rela-
tions are expressed by the closed-form expression of Equa-
tion (8), which enables us to design the next experiment
by direct optimization methods, as the design in Equation
(13). Instead, in the nonlinear case, we suggest the use of
the information gathered by the Monte Carlo simulations
and associate it with known DOE-optimality criteria. Three
such implementations are suggested next and include the
linear-optimality, the c-optimality and the Ds-optimality
criteria. These criteria are related to the Vs-optimality cri-
terion and can fit well the suggested sequential framework
that is proposed in Section 6. Moreover, known procedures
for obtaining (locally) linear-, c-, and Ds-optimal designs
for nonlinear models exist in the literature and can be used,
as discussed next.

The linear-optimality criterion seeks to minimize a
weighted average of the variances of the coefficients’ es-
timates. Thus, the known A-optimality criterion is a special
case of the linear-optimality criterion that assigns equal
weights to all the variance estimates (Atkinson and Donev,
1992). Numerical experiments, such as the one in Table 5,
provide ways to assign unequal weights to different vari-
ance’s estimates. One way to obtain these weights is to nor-

malize the variance of the optimal solutions (using the last
3 columns in Table 5) by the maximum simulated value, and
then define the weights as being inversely proportional to
these normalized values. Thus, coefficients’ estimates that
contribute more to the variance of the optimal solution will
obtain higher weights implying larger efforts to estimate
them in the next experiment.

The objective according to the c-optimality criterion is
to estimate a linear combination of the model’s coefficients,
c′θ, with a minimum variance. Thus, the c-optimality crite-
rion minimizes V [c′θ̂] ∝ V [c′M−1(ξ )c], where c is a (p × 1)
vector and M(ξ ) = F′F/n is the information matrix of the
chosen design, ξ . If c is taken to be f (x0) (the response
at a specific design point x0) this criterion is reduced to
minimizing the variance of the prediction of the response
at x0. In this work, we are interested in x0 = x∗, which is
the optimal solution of the model. If the location of x∗
is known prior to the experiment, one can minimize this
prediction by repeatedly performing all the folllowing ex-
periments at x∗. This procedure often results in a singu-
lar optimum design, which is noninformative about all the
other aspects of the model and the design region (Atkinson
and Donev, 1992). In the sequential framework of the pro-
posed approach (presented in Section 6), the coefficients,
and therefore x∗, are approximated in each experimental
stage. Thus, at each stage one can use c = f (x∗) to ob-
tain a locally c-optimal design. Locally c-optimum experi-
ments for both linear and nonlinear models are discussed
in the literature (Atkinson and Donev, 1992; Atkinson et
al., 1992; Kitsos et al., 1988). Extended procedures are
proposed in the case of nonlinear models and in the case
where the objective is to minimize the variance of a non-
linear combination of the model’s coefficients. The non-
linear function is often expanded to a Taylor series in a
manner which is similar to our proposed procedures. Since
c-optimal designs might be singular, we propose to regu-
larize the information matrix through additions of small
multiples of the identity matrix as in Atkinson and Donev
(1992).

Another related DOE optimality criterion is the Ds-
optimality, which is often used for model selection when
the interest is in estimating a subset s of the coefficients
as precisely as possible (Feodorov, 1972). In our case, the
experimenter can use the Ds-optimality criterion with re-
spect to the s most influential coefficients on the variance
of the optimal solutions, thus, avoiding the heuristics that
are required by the linear-optimality criterion to obtain the
weights of the coefficients’ estimates. For example, let us
consider the control factors in model Equation (17) and
the experimental results in Table 5. These experiments re-
veal that the most influential estimators, with respect to the
variance of the optimal solution, are β1 and β2. Thus, these
are the two coefficients of interest in the next Ds-optimal
experiment. Accordingly, we follow the procedure in Atkin-
son and Donev (1992) to obtain the required Ds-optimal
experiment. First, the control factors in Equation (17) are



DOE for robust optimization 457

divided into two groups:

E(Y ) = f ′(x)β =
f ′
1(x)β1︷ ︸︸ ︷

β1x1 + β2x2

+
f ′
2(x)β2︷ ︸︸ ︷

β0 + B11x2
1 + B12x1x2 + B22x2

2 , (18)

with corresponding rows in the design matrix of f ′
1(x) =

(x1, x2), f ′
2(x) = (1, x2

1 , x1x2, x2
2 ). The information matrix

of a design ξ with n experiments, M = F′F/n, is divided
respectively:

M (ξ ) =
(

M11(ξ ) M12(ξ )
M′

12(ξ ) M22(ξ )

)
. (19)

The covariance matrix for the least-squares estimates of
β1 (or β2) is M−1

11 (or, respectively, M−1
22 ) which is the

(s×s) left upper (or respectively, (p − s) × (p − s) right-
lower) submatrix of M−1. Finally, the scaled standard-
ized variance of a Ds-optimal design ξ ∗ should satisfy the
equation:

f ′(x)M−1(ξ ∗) − f ′
2(x)M−1

22 (ξ ∗)f2(x) ≤ s, (20)

with equality at the points of support of the design. Ap-
plying this criterion to the control factors in Equation (17)
with β1 and β2 being the two coefficients of interest, and,
for example, n = 8, results in the following optimal design:

D∗
s =




+1 +1 +1 +1 +1 +1
−1 +1 +1 +1 −1 +1
−1 −1 +1 +1 +1 +1
+1 −1 +1 +1 −1 +1
+1 +1 +1 +1 +1 +1
−1 +1 +1 +1 −1 +1
+1 −1 +1 +1 −1 +1
−1 −1 +1 +1 +1 +1




.

Further mathematical procedures can be used to improve
the Ds-optimal design, as discussed in Silvey (1980) and
Pazman (1986).

6. A suggested experimental framework

In this section we propose a sequential procedure, which is
not necessarily optimal, for the implementation of the sug-
gested approach. The procedure fits other DOE schemes
that are suggested when the optimal design depends on the
unknown coefficients of the model. An example for such a
general scheme is given in Atkinson and Donev (1992): (i)
start with a preliminary estimate based on past knowledge
or experiments: either the prior point estimate, θ0, or a prior
distribution for θ ; (ii) linearize the model by a Taylor series
expansion; (iii) find the optimum design for the linearized

model; and (iv) execute several trials of the optimum design
for the linearized model. If the new estimate of θ is suffi-
ciently accurate, stop the process. Otherwise, repeat step (ii)
for the new estimate.

Note that the optimality of a sequential experimentations
scheme depends on a precise selection of the number of ex-
periments, n, in each stage. This problem, however, is left
open despite the vast literature on experimental design. Sev-
eral heuristic approaches have been suggested to select the
number of the experiments in a sequential design scheme.
For example, Box et al. (1978) give a general recommenda-
tion, known as the “25% rule of the thumb”, according to
which, not more than one-quarter of the experimental bud-
get should be used in the first design stages. Atkinson and
Donev (1992) follow the same approach, while using

√
n

experiments in the first stage, when n is the total number of
predetermined experiments. Other approaches determine n
by defining required confidence intervals for the estimates of
the model at each stage. The optimal solution to this prob-
lem has to address the trade-off between the costs of future
experiments versus the expected value of the information to
be obtained. An example for such an optimal scheme is sug-
gested in Ben-Gal and Caramanis (2002). There, the gain in
information obtained through experiments, is measured by
the reduction in the entropy of the estimators of the coeffi-
cients. The optimal experimentation strategy is obtained by
a stochastic dynamic-programming scheme. In this paper,
we do not attempt to solve this problem and rely on known
approaches to determine the number of experiments in the
various stages.

The proposed sequential scheme contains six stages that
enable us to divide a given experimental budget and to refine
the computed solution. These stages are presented in Fig. 4
and described next.

Stage 0: Definition of the system. The experimenter ob-
tains the inputs for the procedure: (i) a general description
of the system, its response and target; (ii) candidate control
and noise factors (types, ranges of variation, levels); (iii) the
objective function (e.g., minimizing a loss function, as con-
sidered in this paper); and (iv) other relevant information.
The experimenter determines the stopping condition, which
can be based, for example, on the marginal changes in the
loss function, on the number of conducted iterations, or on
budget-related criteria.

Stage 1: Screening experiment. A screening experiment
is conducted over the region of interest in order to iden-
tify the significant control and noise factors and estimate
their effects (the noise factors are assumed to be control-
lable during this experimental phase). Once the significant
factors are identified and if budget permits, a larger initial
design can be carried out, like the one presented in the Ap-
pendix. A linear-response model can be fitted at this stage
and used for further analytical optimization.

Stage 2: Finding an analytical predictive model. A predic-
tive model for the response is obtained by using RSM. The
model is linear following the first step or of a higher-order
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Fig. 4. A proposed sequential scheme for the suggested approach.

following stage 5 that is described below. The noise factors
are modeled as random variables.

Stage 3: Optimization. The optimal robust solution (min-
imizing the objective function) is obtained analytically
(Section 4) or numerically (Section 5).

Stage 4: Checking the stopping condition. The stopping
condition is checked. If it is satisfied, the procedure ends.
Otherwise, a new iteration begins at stage 5.

Stage 5: Designing the next experiment. The Vs-
optimality criterion is used to define a new experiment
within the selected design region. The experiment’s de-
sign matrix is obtained numerically either from a linear
model (Section 4) or from a higher-order model (Section 5)
by associating it with other criteria (linear-optimality, c-
optimality or Ds-optimality, as discussed in Section 5). Fol-
lowing the new experiment, the experimenter updates the
model to include new significant terms and better estimated
coefficients and returns to stage 2.

The number of experiments that are allocated to each
stage is defined by using one of the known methods dis-
cussed above. The computation time to solve the procedure
is polynomial as mentioned in Sections 4 and 5.

7. Conclusions

In this paper we consider the problem of robust design
in empirically fitted models. We suggest the Vs-optimality

DOE criterion, which aims to minimize the variance of the
optimal solution. The suggested criterion prioritizes the es-
timations of various model coefficients in order to obtain
a consistent optimal solution. It is associated with known
optimal design criteria and provides further justifications
for their implementations.

We propose an analytical implementation of the sug-
gested approach for a linear-response model, as well as a
numerical procedure for nonlinear models. Various exam-
ples illustrate some potential advantages of the suggested
approach. One advantage is that it provides a multidimen-
sional distribution of the optimal solution, x∗. This mul-
tidimensional distribution carries important operational
information with respect to a point estimate for the optimal
solution that is obtained from traditional methods. More-
over, most of the obtained information can be gathered
through computer re-samplings that are relatively cheap
and fast. Another advantage is that the suggested approach
enables us to design, in advance, the next experiment and to
estimate more accurately the most influential coefficients in
various models, including high-order ones. Also, the pro-
posed approach can be used to solve various problems that
are considered in the field of robust optimization, with the
proviso that the proposed approach is focused on the ex-
perimental stage rather than on the optimization stage. A
potential research direction is to implement the suggested
Vs-optimality criterion within a robust-optimization frame-
work to ensure that the obtained solutions are not only
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consistent but also immune against inaccuracies in the
model’s estimates. Another challenge is to integrate an
optimal selection of the number of experiments in each
stage of the sequential framework that is proposed in
Section 6.

The suggested approach can be associated with a broader
scientific dilemma regardless of the considered objective
function (a robust design in this case): “should one investi-
gate experimental efforts to learn as much as possible about
the system; including, for example, design regions that are
distant from the optimal solution? or should one concen-
trate on the optimal solution itself and direct the inves-
tigation such that this solution is obtained more consis-
tently?” We believe that the latter approach might be useful
for practitioners who are less interested in the theoretical
investigation of the response model and prefer to focus on
the solution itself.
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Appendix 1

The implemented 50-treatments experiment shown in
Table A1 contains: (i) 36 factorial combinations (three lev-
els of each of the two control factors and two levels of
each of the two noise factors); (ii) a two-level factorial de-
sign of the control factors at each (equal) level of the noise
factors (12 combinations); and (iii) two center points. The
design depends on the experimental budget available at var-
ious stages of the sequential procedure that is presented in
Section 6.
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Table A1. The 50-treatment experimental design that is used to create the input data reservoir (and replicated for ten times)

Factor values

Treatment x1 x2 z1 z2

1 −1 −1 −1 −1
2 −1 −1 −1 1
3 −1 −1 1 −1
4 −1 −1 1 1
5 −1 0 −1 −1
6 −1 0 −1 1
7 −1 0 1 −1
8 −1 0 1 1
9 −1 1 −1 −1

10 −1 1 −1 1
11 −1 1 1 −1
12 −1 1 1 1
13 0 −1 −1 −1
14 0 −1 −1 1
15 0 −1 1 −1
16 0 −1 1 1
17 0 0 −1 −1
18 0 0 −1 1
19 0 0 1 −1
20 0 0 1 1
21 0 1 −1 −1
22 0 1 −1 1
23 0 1 1 −1
24 0 1 1 1
25 1 −1 −1 −1
26 1 −1 −1 1
27 1 −1 1 −1
28 1 −1 1 1
29 1 0 −1 −1
30 1 0 −1 1
31 1 0 1 −1
32 1 0 1 1
33 1 1 −1 −1
34 1 1 −1 1
35 1 1 1 −1
36 1 1 1 1
37 −1 −1 −1 −1
38 −1 1 −1 −1
39 1 −1 −1 −1
40 1 1 −1 −1
41 −1 −1 0 0
42 −1 1 0 0
43 1 −1 0 0
44 1 1 0 0
45 −1 −1 1 1
46 −1 1 1 1
47 1 −1 1 1
48 1 1 1 1
49 0 0 0 0
50 0 0 0 0
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