Using a Compressibility Measure to Distinguish Coding and
Noncoding DNA

Armin Shmilovici'”, Irad Ben-Gal”

:Department of Information Systems Engineering, Ben-Gurion University
P.O.Box 653, Beer-Sheva, Israel, Fax: +972-3-7399155

ADepartmem‘ of Industrial Engineering, Tel-Aviv University,
Tel-Aviv, 69978, Israel

armin@bgumail.bgu.ac.il ~ bengal@eng.tau.ac.il

Abstract: DNA sequences consist of protein coding and noncoding regions.
Recognition of coding regions is an important phase in gene-finding procedures. This

paper presents a new method for distinguishing coding and noncoding DNA regions.

The proposed method implements compressibility measures that results from
Variable Order Markov (VOM) models. In contrast to fixed-order Markov models,
where the model order is identical for all positions and for all contexts, in VOM
models the order may vary — based on a nucleotide position and its contexts. As a

result, VOM models are more flexible with respect to model parameterization.

Preliminary experimental results on benchmark datasets demonstrate that the
proposed methodology classifies coding and noncoding DNA more accurately than

traditional coding measures presented in the literature.

Keywords : DNA Compression, Variable Order Markov Model, Coding and
Noncoding DNA, Context Tree.

'Corresponding Author

1. Motivation and Introduction

The identification of protein-coding DNA regions in the genome is a difficult
problem. As automated sequencing techniques have began to produce a rapidly
growing amount of raw DNA sequences, automating the extraction of information
from these sequences becomes a scientific challenge. Computational methods for
gene identification - detection of protein coding regions in genomic sequences -
typically have two phases: coding region recognition and gene parsing. Currently, it is
estimated that less than 2% of the human genome contain protein-coding information,
and, hence, the identification of protein-coding regions by purely experimental

techniques is expensive and time consuming.

There is not a single standard solution, but rather there is a wealth of different
computational approaches. Current gene finding approaches can be roughly divided

into three categories (Fickett 1996):

Sequence similarity search between the sequence under study and known proteins

libraries.

Lexical analysis involving the identification of special motifs, such as splice

donors and acceptor signals (Liu 2001).

Methods based on statistical patterns in the coding/noncoding regions. These
methods check for the occurrence of statistical properties that are different in coding
and noncoding DNA. The hexanucleotide bias, which was formalized as an
inhomogenous 3-periodic fifth-order Markov chain, is probably the most known
model for this purpose and was incorporated in genefinders such as GENSCAN
(Burge and Karlin 1998). The efficiency of this class depends on the parameterization
of the statistical patterns. One particular example of this class is the use of measures

of DNA compressibility, which is discussed next.

It is well known that DNA sequences are neither chaotic nor random. For
example, it was discovered that DNA sequences, especially in higher eukaryotes,
contain copies of essential genes; it is also believed that there are only about a
thousand basic protein folding patterns. These phenomena support the conjecture that

DNA sequences should be reasonably compressible. However, it is well known that

2

the compression of DNA sequences is a very difficult task (Grumbach and Tahi,
1994). Paradoxically, it was found that the implementation of standard
text-compression algorithms, such as the Unix compress procedure, to DNA

sequences actually expands the sequence file (Chen et al. 2000).

Specially devised algorithms such as Biocompress (Grumbach and Tabhi.
1994), GenCompress (Chen et al. 2000), and Cfact (Rivals et al. 1997) adapted the
framework of Lempel-Ziv’s universal coding (Ziv and Lempel 1997) to DNA
sequences. Universal coding methods have been developed to compress data
sequences without a prior knowledge on the properties of the generating source. The
asymptotic performance of some of these methods is known to converge to that of the
optimal non-universal algorithms in terms of compression, prediction, and decision
making. However, most of the universal coding methods are less effective with short

sequences (Ziv, 2001), such as ESTs.

The first contribution of this work is the use of Rissanen’s context tree
(Rissanen 1983) to model and compress DNA sequences. In contrast to other
universal modeling procedures that are known to have asymptotic convergence, the
context tree also has the best non-asymptotic convergence rate (Ziv 2001). A
modified version of this model — which is called Variable Order Markov model
(VOM), (Buhlmann and Wyner, 1999, Ben-Gal et al. 2000) — is applied here to
compress a benchmark set of relatively short sequences from the human genome. The
VOM algorithm is efficient in terms of its parameterization. Thus, for cases where
only a limited amount of data exists, the VOM model “naturally” generalizes to the
simple Probability Weight Matrix model (Holste et al. 2000). Similarly, if the ideal
memory length (which generates the best bias-variance tradeoff) is identical for all
data points, then the VOM generalizes to the fixed-order Markov model. In particular,
the VOM model is a special generalization of the well-known hexanucleotide bias
fifth-order Markov model. The overall flexibility of the model parameterization
implies that when incorporating it in genefinders, it is expected to be effective for
species-independent discoveries as well. In the rest of the paper we use the term VOM

model and context tree interchangeably.

The second contribution of this work is the use of a compressibility measure to
determine whether a given sequence is coding or noncoding. The underlying idea is to
construct two VOM models from two given training sets: one VOM model from a
training set of coding sequences, and the other VOM model from a training set of
noncoding sequences. Then, in the classification stage, the sequence type is

determined by the VOM model that obtains a higher compression rate.

The rest of this paper is as follows: in section 2, we describe the context tree
model and its use for compression; in section 3, we present some optimization
experiments on a benchmark dataset of short DNA sequences. Section 4 concludes

this paper with some discussion.

2. Introduction to Universal Compression and VOM Models

For a stationary ergodic sequence, the expected time until the recurrence of a fixed
pattern is the inverse of the pattern's probability (Kac 1947). Universal coding is
defined as “any asymptotically optimum method of memoryless coding for sources
with unknown parameters”. Universal coding algorithms measure the frequency of
recurring patterns to construct a model of the system that generated the sequence. The
convergence of a universal algorithm means that for long sequences, the model
provided by the universal source behaves like the “true” system for all tasks we wish
to use the model for, such as coding, prediction, and decision in general. Restricting
this work to coding of finite-alphabet discrete sources, and following Ziv (2001), we
will introduce a universal coding with non-asymptotic convergence - the proof of
convergence does not require an infinite sequence length. Thus, it can be used when
the lengths of the sequences are too “short” for the use of asymptotic methods. This
attribute is beneficial for adapting the algorithm to new DNA sequence.

Following the notation in Ziv (2001) and Buhlmann and Wyner (1999), let us
consider a discrete sequence with N+/ symbols, X(—)N =X_n,X_N41--- X, Where

each symbol X; belongs to an alphabet 4 of cardinality |A , and where the sequence is

emitted by a stationary source.

The estimation problem: given X _0 N> estimate P(X7|X 9 y)» the unknown
conditional probability distribution of any X; given X (_) - To estimate P(X7|X 9 N>
one assigns an arbitrary conditional probability measure Q(X||X 9) for X7, hoping

that it is "close" in some sense to the true P(X] | XE)N) (Ziv 2001).

Consider the class of universal conditional probability measures that count the

recurrence of the longest suffix of X; in X (_) . The suffix — x° termed also
N _Ko (XQN)

as the context — is a subsequence of the past sequence X (_) N Ko(X (_)) 1s an integer

function of the training sequence X 0 » Which represents the depth of the context for

X1. Ziv (2001) proved that for a class of stationary Markov sources of order K, the

suffix depth is bounded as K < O(K 3)

A simple universal estimation algorithm is described next. First, compute K,
as a function of X?N. Second, evaluate the empirical probability measure as the
relative frequency of the appearance of the sub-sequence {X?N,Xl} over all
sub-sequences {X?N,Xi}, X; € A. Finally, define K as the smallest value of
KO(XS)N) for which the sub-sequence {X?N,Xl} appeared at least once in the

sequence XQN , and practically Q(X] | X?KO)= O(X | XEN) .

Example: Let, X (—)6 = ACACGAA and suppose we want to estimate the
likelihood P(C|X (—)6)' Note that the sub-sequence AC is the longest sub-sequence
that start with 4 and it recurs twice in X 96 . Extending the depth of the context of

X1 =C— the symbol to be predicted — by one more symbol results in the
sub-sequence 4A4C that does not appear anywhere within in X 9 6" Thus, for this short

0

sequence, Kq(X 96) =0, implying that the context is given by X 0 (
-6

=A. The
~Kol\X)

sub-sequences AC and AA appear twice and once, respectively, and hence we obtain

0 ~ ~ #(AC) -2 h 4.
Q(C|X_K0(X96))_Q(C|A)_ #(AA)+#(AC)+H#(AG)+#(AT) 1+2+0+0° where 9

denotes the frequency of its argument.

For the problem of universal compression, one has to minimize the
Px11x%))
ox;1x%)

expectation taken with respect to P(X | X(_)) Ziv (2001) presents non-asymptotic

Kullback-Leibler (KL) divergence measure Ep log , Where Ep denotes

lower bounds to the expected compression rate of any universal algorithm that is
sequential and has limited training data. Several universal algorithms are proposed in
the literature that can achieve these bounds. The advantage of the Context Tree
Weighting (CTW) algorithm proposed by Willems et al. (1995) and the similar
context-tree algorithm proposed by Ben-Gal et al. (2003) is that they can approach

these bounds with the most efficient learning rate (defined by Ziv 2001). Practically,

this means that such algorithms can be used for relatively short sequences, as we will

show in the next section.

A VOM construction algorithm, is an algorithm that computes from a given
training sequence the probability estimates for every context. The VOM model is used
to evaluate the probability of any festing sequence to be generated (by the source the
generated the training sequence). Figure 1 presents a VOM tree computed from a set
of DNA motifs. Branches link two nodes and are labeled by the symbol types. A
context is represented by the path of branches starting at the root until it reaches a
specific node. The context order is reversed with respect to the order of observance,
such that deeper nodes correspond to previously observed symbols. The lengths

(depth) of various contexts (branches in the tree) do not need to be equal.

The context-tree algorithm of Ben-Gal et al. (2003) contains two distinct
phases: In the tree growing phase, the counts of all the sub-sequences that are shorter
than a predefined K,,,x are used to update the symbol counters in the nodes. In the
tree pruning phase, probability estimates are computed for every context and pruning
rules keep a descendent node only if the distribution of its symbols is sufficiently
different (in KL measure) from that of the symbols of its parent node. The distribution

of symbols in the nodes of the pruned tree defines the VOM model that is used to
estimate P(X||X ? Ko). The outline of the Context Tree algorithm is as follows:

Tree growing phase:
Step 0. Start with the root as the initial tree, with all symbol counts zero.

Step 1 -counter update: Recursively, having constructed the current tree from the
current sequence, read the next symbol X; in the sequence. Traverse the tree
along the path defined by the context X_Ok and increment the count of the
symbol X; in that node until its deepest node is reached. & is the length of the

current context of the current symbol ;.

Step 2 -tree growth: if the last updated count is at least 1, and the depth & < K, »

create new nodes of depth £+ and initialize all symbol counts to zero except

for the symbol X;, whose count is set to 1.

Tree pruning phase:

Keep only the deepest nodes in the tree with depth Komax < log(N +1)/log(4]) and

Ajeqy (context)2 (4 + 1)log(N +1), Where the logarithms are base 2. The driving principle is

to prune a descendant node having a distribution of counter values similar to that of
the parent node. In particular, calculate Ajqy(context) — the (ideal)
code-length-difference — as the difference between the entropies of the symbol
distributions of parent node and its descendant nodes. C is a pruning constant that can
be tuned to specific accuracy-size trade-off requirements. A too small C may generate
a large context-tree that could over-fit the training sequence. The recommended
default of C = 2 is validated experimentally in the next section. The algorithm is
implemented in the MATLAB scripting language setting K,,,.x =9 - the largest value
in the growing phase that could fit the context tree in the computer memory (a

Pentium I1-400 Megahertz computer equipped with a 256 Megabytes memory).
Note that for a Markov chain model, the order is fixed in advance: Ky =K, -

The Markov chain model suffers from exponential growth of the number of
parameters to be estimated. For small data-sets this results in over-fitting to the
training set and poor variance-bias tradeoff (Buhlmann and Wyner 1999). Optimizing
the order or interpolation between several model orders is a difficult process (Ohler et

al 1999),

Given a context tree obtained as a result of recurring patterns in the data,
compression measures can now be calculated. Each node in the tree is related to a
specific recurring context (sub-sequence). Hence, the original sequence can be
uniquely coded by the sub-sequences in the context tree. Using an arithmetic coder, it

is guaranteed that the redundancy — the difference between theoretical and practical

coding — does not exceed two bits per sequence (Willems et al. 1995). For example,
consider the context tree in Figure 1. Note that the probability of the string "GCTTA",
can be calculated by applying the multiplication chain rule and then parsing the
sequence into identified contexts (see Figure 1): P(GCTTA) =
P(G)-P(C|G)-P(T|GC)-P(T|GCT)-P(A|GCTT) = P(G)-P(C|G)- P(T)-P(T\T)-P(A|CTT)
= 0.16:0.22:0.39-0.36-0.54 = 0.002669 (respectively, by nodes 1, 3, 1, 4, and 6).
Using an arithmetic encoder, the number of bits required to represent this sequence is
approximately —10g2(0.002669)58.55 bits. Simple binary coding of 2 bits per
symbol would require 10 bits to code this sequence of Ilength five.

A sequence that does not belong to the same class of sequences from which
the context tree was generated (trained) is expected to obtain a lower compression
rate when using the context tree probabilities from the training set. The longer the
sequence, the stronger the probability of a lower compression. We further use this

phenomenon in the next section.

/[1*** insert figure 1 about here ***///

Figure 1: The VOM generated from a set of E.Coli promoter motifs. The empirical

probabilities in each node are ordered with respect to nucleotides {4,C,G,T}

Note that Ron et al. (1996), Bejerano and Yona (2001), proposed an algorithm
for the detection of Probabilistic Suffix Trees. Their algorithm, which consists of five
arbitrary parameters, was applied to text clustering, classification of protein families,
and classification of E-Coli genome. Further modifications by Apostilico and
Bejerano (2000), Slonim et al. (2000) speeds up its learning and prediction time so
they are linear with the sequence length. Their algorithm is significantly different than
ours in the parameterization, growth, and pruning stages. From theoretical
considerations (Ziv 2001), we expect that our algorithm - due to its fast convergence

rate - will produce more accurate results when small datasets are involved.

9

10

3. Experiments: Distinguishing Coding and Noncoding DNA

Our method to distinguish coding from noncoding DNA involves the calculation of a
coding measure, acting as a score function, and a classification scheme that infers a
"coding" or "noncoding" identification based on the score value. The score is
calculated for a given sequence of fixed length. In the first part of this section, we use
a benchmark dataset to optimize the parameters of the algorithm. We demonstrate the
superiority of the VOM over the de-facto standard Markov models of fixed-order five
(denoted hereafter by “Markov5™). In the second part, we construct an up-to-date

VOM model and further optimize it by boosting techniques.

A. Optimizing the parameters of the algorithm

In a classical experiment, Fickett and Tung (1992) generated two datasets of

representative coding and non-coding sequences from the human genome.

In coding sequences, the nucleotides operate in triplets (called codons). Each
codon encodes one amino-acid. It is well known that the distribution of the
nucleotides depends on their position in the codon (first, second, or third position).
Accordingly, Fickett and Tung (1992) extracted a special subset of the coding dataset
in which the first nucleotide takes always the first position in the codon triplet. They
called it “phase-coding” and used approximately half of the data for model training

and the remaining half for model testing.

In their comparative study of 21 different coding measures, Fickett and Tung
(1992) found that homogenous and non-homogenous Markov chains of order 5 yield
the highest accuracy in classifying sequences of 54 nucleotides (base pairs). The

Markov5 model is exactly the model that would have been obtained had we applied

an unpruned (i.e., complete and balanced) VOM model of depth K ,, =5. Further

max
details on the use of fixed order Markov models for likelihood estimation can be

found in Duda (2001).

10

11

In what follows we use the same benchmark data set to compare the accuracy
of the VOM classification versus the best of the 21 coding measures evaluated in
Fickett and Tung (1992). The first part of Table 1 presents the number of sequences
(both coding and noncoding) that were used in Fickett and Tung experiment. For the
phased coding sequences, the first nucleotide starts in the first position of the codon.
For the non-phased coding sequences, the position of the first nucleotide in the first
codon is unknown. Recall that the number of sequences has a potential effect on the

size of the truncated context tree, as a result of the pruning algorithm.

Table 1: The number of benchmark sequences of length 54 base pairs (bp)

#Non-coding | Coding Sequences

Sequences #phased | #non-phased
Fickett and 125,870 4,199 16,275 Training set
Tung (1992) | 123,166 4,680 18,238 Testing set
GENIE 25,333 4,079 4,079 Training set
(1998) 25,333 4,079 4,079 Testing set

Following Fickett and Tung (1992), we conducted two experiments. In the
first experiment, we constructed two homogenous VOM trees from the training
datasets — T~ from coding segments and 7Ty from noncoding segments. Then, we

applied the following rule to classify the unknown sequences:

{classify as “coding DNA” If length(coding by T) < length(coding by T)

classify as “non-coding DNA” Otherwise.

In the second experiment, three non-homogeneous VOM trees — one for each
position in the codon — were constructed and trained from the phased training set.
These VOM models were simultaneously used to score the unknown sequences — the
likelihood of each nucleotide was obtained from the respective VOM ftree,

T i=1273 depending on the nucleotide position in the codon. A rule similar to the

1

above was then used to classify unknown sequences, only that now the coding was

performed by the combination of VOM models 7¢y,Tc,,Tc5 .-

11

12

Note that each non-homogeneous (position-dependent) VOM was constructed
from only one third of the coding sequence. The accuracy of the classification was
computed as the average of the correct classification ratios on the true coding and the
true non-coding testing subsets (i.e., using bioinformatics terminology, as the average
of the frue positive and the frue negative values). The 95% confidence interval for the

accuracy mean of the testing set was estimated to be approximately” +0.7%.

Table 2 presents the comparative results of both types of experiments (the
accuracy is computed from the testing sets). The first row presents the classification
accuracy— based on the Markov5 as the best model found in Fickett and Tung (1992)
— for both the non-phased and the phased sequences. The following six rows present
the classification accuracy based on different VOM models with various truncation
coefficients, in the range C €[0.5,...,8]. The last two columns present the number of
parameters of each model (the sum of the number of independent contexts in the
non-coding VOM tree and the coding VOM tree(s)). The VOM8 and VOMD trees are
those VOM models generated with K, =89 respectively. Note that the number of
parameters for the Markov5 model is smaller than the theoretical number (4”7 — 1 =
4,095 parameter for each MarkovS model) since some contexts with specific
biological functions (such as contexts that include the "stop" codons) are excluded

from the learning dataset.

From the top part of Table 2, we find that the top four VOM models provide a
more accurate classification in comparison to the 21 coding measures evaluated in
Fickett and Tung (1992) (for sequences of length 54 bp). In fact, all the VOM models
obtain for the non-phased data an accuracy level, which is above the confidence
upper-bound 70.5 + 0.7 = 71.2%. For the phased data, the VOM models obtain better
accuracy only for C <2. Note the inverse relation between the truncation coefficient
C and the number of parameters in the VOM - the accuracy seems to increase with the

logarithm of the number of parameters, which is inversely related to C. A reasonable

?Using the normal approximation to the binomial, with the worst case scenario from tables 1,2

- - ~0.705
1.96-0.5\/1“(l p) pdzp) P
m ny n =4079,ny =25333

12

13

compromise between the obtained accuracy and the number of parameters (or, in fact,
between the model bias and the model variance) seems to be found at C=2. Further
decreasing C results in a moderate gain in the accuracy for an excessive number of
parameters. The smaller numbers of the VOM model parameters indicate that it is less
vulnerable to bias errors, and hence, can be better estimated from smaller data sets.
Reducing K,,x from 9 to 8 had a marginal effect on the obtained accuracy while
reducing the number of parameters by approximately 25%. This indicates the
potential for further optimization of the number of parameters, yet, further reduction
of Kpax may result in loosing the capability to identify long contexts of special

interest.

Table 2: comparative results with respect to the benchmark sequences of length 54 bp.

Experiment Accuracy (test set) # of parameters
non-phased | Phased | non-phased | phased
Fickett | Markov5 70.5% 80.7% | 7,651 15,149
and VOMOY, C=0.5 | 72.8% 82.3% | 26,467 21,352
Tung VOMY, C=1 72.5% 82.5% | 12,561 10,677
(1992) | VOMS, C=2 | 71.9% 82.3% | 5,153 5,022
VOMY, C=2 72.1% 82.4% | 6,894 6,703
VOMY, C=4 71.7% 77.8% | 4,417 4,273
VOM9, C=8§ 71.4% 76.8% |2,314 2,125
GENIE | Markov5 82.0% 86.3% | 7,651 15,149
(1998) VOMS, C=2 81.2% 86.1% | 2,542 2,563
VOM9, C=2 81.2% 86.2% | 2,582 2,603
Boosted VOMS | 83.8% 88.9% |2,549 2,706

B. Boosting the VOM model

Boosting (Freund and Schapira 1997) is a general machine-learning technique that
mixes predictions from different models, where each model is constructed from a
different population of samples. It is often used to improve the accuracy of weak
classifiers (having large error probability). In the context of VOM models, weighting
the contexts of various VOMs is effectively equivalent to generating a new VOM
model with an equivalent distribution of contexts. In the following we used boosting

to (indirectly) optimize the structure of the VOM.

13

14

Several boosting heuristics are available in the literature. The common theme
is that a special population rich with "difficult cases" (the boosted population) is
prepared with the implicit assumption that a classifier that is trained on the difficult
population will obtain better results on the "normal" population of samples. The size
of the VOM model (thus its accuracy) increases non-linearily with the size of the
training set. To neutralized this effect, we constrained the size of the boosted training
set such that it is approximately equal to the size of the original training set. The

following heuristics was used to generate the boosted population:
Construct the VOM classifier using the original training set.

Use the VOM classifier to identify the true-classified sequences and the

miss-classified sequences.

Duplicate the miss-classified sequences in the boosted set, while fixing a
30% probability for each true-classified sequence to be excluded from the

training set.

Boosting algorithms are sensitive to the effect of outliers in the training set (since
their number is also boosted). The data-set of Fickett and Tung (1992) is now days
considered outdated and of low quality for the purpose of representing the human
genome. We therefore used the more updated GENIE data-set (GENIE, 1998) for the
construction of an up-to-date VOM model. The GENIE data-set contains 462 coding
sequences and 2381 introns that are representative sequences of the human genome
with less than 80% homology between sequences. Following the experiment of
Fickett and Tung (1992), the sequences where chopped into segments of size 54 bp.
The bottom part of Table 1 details the sizes of the training and the testing sets used in
the experiments. A VOM classifier was constructed from the training set and was then

used with the above-mentioned algorithm to generate the boosted dataset.

The new VOM classifier was constructed from the boosted dataset and used to
re-score the testing dataset. For comparison purpose, we also present the results of the
Markov5 model as well as the results obtained from the un-boosted VOMS8 C=2
model. The bottom part of Table 2 presents the comparative results of the boosting

14

15

experiment. As can be seen, the boosted VOM classifier produced a statistically
significant 2.6% improved accuracy over the un-boosted VOM classifier, while
retaining a similar number of parameters. Though the accuracy of the Markov5 model
is marginally higher than the accuracy produced by the VOM model, it has a
significantly higher number of parameters. Thus, we did not pursue with boosting the

Markov5 model.

The new and reliable dataset improved the overall classification performance
of the tested models by 4% — 10%. Since a single iteration of the boosting algorithm
was sufficient to produce a significant improvement in the classification accuracy, we
believe that implementing the complete boosting algorithm can further improve the
result. We did not pursue further this issue because the results were sufficient to prove
the superiority of the VOM classifier, and sufficient accuracy was obtained for the

construction of the sequence annotation device presented next.

Finally, let us note that typically the updated "clean" human datasets have
huge sizes (containing more than 50,000 sequences). This situation is a-typical to
other organisms that are of interest in Bioinformatics. The VOM models — due to their
efficient parameterization — are expected to outperform other algorithms when data is

scarce, or when the quality of the sequence annotation is poor.

15

16

4. Discussion

Current gene-recognition approaches are exceedingly multifaceted, implementing a
variety of well-established algorithms. Recognition of coding DNA regions is an
important phase of any gene-finder procedure. We believe that there exist niche
datasets with specific characteristics, which are not entirely addressed by
conventionally used algorithms. For example, datasets from newly sequenced
genomes that share little homology with known datasets. Often, in such cases, it is

difficult to tune properly the gene-finders due to over-parameterization.

In this paper, we introduce the VOM-based compression method to coding
recognition. The VOM model was originally introduced in the field of information
theory for compression purposes and later has been implemented successfully in
various research areas, such as statistical process control (Ben-Gal et al. 2003) and
analysis of financial series (Shmilovici et al. 2003). The unique feature of the
proposed method (compared to closely related ones, such as the Probabilistic Suffix
Tree by Bejerano and Yona, 2001) is that its convergence to the optimal parameter set
was proven to be optimally fast even for finite sequences (Ziv 2001). Practically, such
convergence ensures an efficient parameterization of the VOM model, even when it is
trained on small and relatively unreliable datasets.

In our experimentations for distinguishing coding and noncoding DNA, the
proposed VOM-based approach outperforms any of the 21 traditional methods
evaluated in Fickett and Tung (1992).

The initial encouraging results makes it tempting to conjecture that elements
of the proposed method could be integrated into other gene-finding procedures. Such
integration might enhance the procedure performance on short coding fragments from

relatively low-quality sequenced data.

16

17

References
Apostolico, A., G. Bejerano. 2000. Optimal amnesic probabilistic automata or how to learn
and classify proteins in linear time and space. J. Comp. Biology, 7(3/4) 381-343.

Bejerano, G., G. Yona. 1999. Variations on Probabilistic Suffix Trees: statistical modeling
and prediction of protein families. Bioinformatics. 17(1) 23-43.

Ben-Gal, 1., A. Shmilovici G. Morag. 2000. Design of control and monitoring rules for state
dependent processes. The International Journal for Manufacturing Science and
Production, 3(2-4) 85-93.

Ben-Gal, 1., A. Shmilovici G. Morag. 2003. CSPC: A Monitoring Procedure for State
Dependent Processes. Technometrics, 45(4) 293-311.

Brown, N.P., C. Sander et al. 1998. Frame: detection of genomic sequencing errors.
Bioinformatics 14(4) 367-71.

Buhlmann, P., A. J. Wyner. 1999. Variable Length Markov Chains. Ann. Statist. 27(2)
480-513.

Burge, C., S. Karlin. 1998. Finding the genes in genomic DNA. Current Opinion in Structural
Biology. 8(3) 346-54.

Chen, X., S. Kwong, M. Li. 2000. A compression algorithm for DNA sequences and its
application in genome comparison. Proceedings of the fourth annual international
Conference on Computational Molecular Biology - RECOMB 2000. ACM Press.
107-117.

Duda, R.O., P.E. Hart D.G. Stork. 2001. Pattern Classification. John Wiley & sons.

Fickett, J.W., C.S. Tung. 1992. Assessment of protein coding measures. Nucleic Acids
Research, 20(24) 6441-50.

Fickett, J.W., 1996. Finding genes by computer: the state of the art. Trends in Genetics. 12(8)
316-20.

Freund, Y., R.E. Schapira, 1997. A Decision Theoretic Generalization of on-line learning and
an application to Boosting, Journal of Computer and Systems Sciences, 55(1), 119-139.

GENIE data-sets, from Genbank version 105, 1998. Available: www.fruitfly.org/seq_tools/
datasets/Human/CDS_v105/ ; www.fruitfly.org/seq_tools/datasets/Human/intron_v105/

Grumbach, S., F. Tahi. 1994. A new challenge for compression algorithms: genetic
sequences. J. of Information Processing and Management, 30(6) 866-875.

Holste D., I. Grosse, S. V. Buldyrev, H. E. Stanley, H. Herzel. 2000. Optimization of Protein
Coding Measures Using Positional Dependence of Nucleotide Frequencies. J. of
Theoretical Biology. 206, 525-537.

Iseli, C., C. V. Jongeneel, P. Bucher 1999. ESTScan: a program for detecting, evaluating, and
reconstructing potential coding regions in EST sequences. Proceedings of Intelligent

Systems for Molecular Biology. AAAI Press, Menlo Park, CA.

Kac K., 1947. On the notion of recurrence in discrete stochastic processes. Bulletine of the
American Mathematical Society. 53 1002-1010.

17

18

Liu, X., D. L., Brutlag, J. S., Liu. 2001. BioProspector: discovering conserved DNA motifs in
upstream regulatory regions of co-expressed genes. Pac. Symp. Biocomput., 6, 127-138.

Ohler U., S. Harbeck, H. Niemann, E. Noth, M. Reese. 1999. Interpolated Markov chains for
eukaryotic promoter recognition. Bioinformatics. 15(5) 362-369.

Rissanen, J., 1983. A universal data compression system. IEEE Transactions on Information
Theory, 29(5) 656- 664.

Rivals, E., O. Delgrange, J.P. Delahaye, M. Dauchet, M.O. Delorme, et al. 1997. Detection of
significant patterns by compression algorithms: the case of approximate tandem repeats
in DNA sequences. CABIOS, 13(2) 1313-136.

Ron, D., Y. Singer, N. Tishby. 1996. The power of amnesia: learning probabilistic automata
with variable memory length. Machine Learning. 25:117-149.

Shmilovici, A., Y. Alon-Brimer, S. Hauser. 2003. Using a Stochastic Complexity Measure to
Check the Efficient Market Hypothesis. Computational Economics, 22(3) 273-284.
Slonim, N., S. Fine N. Tishby. 2000. Discriminative Variable Memory Markov Model for
Feature Selection. Available online: citeseer.nj.nec.com/484303.html
Willems, F.M.J., Y.M. Shtarkov T.J.Tjalkens. 1995. The context-tree weighting method:
Basic properties. IEEE Transactions on Information Theory. 41(3) 653-664.

Ziv, J., 2001. A universal prediction lemma and applications to universal data compression
and prediction. [EEE Transactions on Information Theory 47(4) 1528-1532.

Ziv, J., A. Lempel. 1997. A universal algorithm for sequencial data compression. /[EEFE
Transactions on Information Theory, 23(3) 337-343.

18

19

node 1
0.30,0.15,0.16,0.39
A G T
[[|
node 2 node 3 node 4
0.28,0.19,0.11,0.42(|0.38,0.22,0.10,0.30 0.32,0.12,0.20,0.36
T | T
node 8 node 5
0.38,0.25,0.12,0.25 0.28,0.13,0.31,0.28
[
A | C | 1 T
node 9 node 6 node 7

Figure 1: The VOM generated from a set of E.Coli promoter motifs. The empirical

0.31,0.26,0.01,0.42

0.54,0.04,0.04,0.38

0.44,0.15,0.08,0.33

probabilities in each node are ordered with respect to nucleotides {4,C,G, T}

19

