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38304 Wolfenbüttel, Germany

alexander.kel@biobase-international.com

Ivo Grosse

Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)
06466 Gatersleben, Germany

grosse@ipk-gatersleben.de

Received (Day Month Year)
Revised (Day Month Year)
Accepted (Day Month Year)

Variable order Markov models and variable order Bayesian trees have been proposed

for the recognition of cis-regulatory elements, and it has been demonstrated that they
outperform traditional models such as position weight matrices, Markov models, and
Bayesian trees for the recognition of binding sites in prokaryotes. Here, we study to which
degree variable order models can improve the recognition of eukaryotic cis-regulatory
elements. We find that variable order models can improve the recognition of binding sites
of all of the studied transcription factors. To ease a systematic evaluation of different
model combinations based on problem-specific data sets and allow genomic scans of
cis-regulatory elements based on fixed and variable order Markov models and Bayesian
trees, we provide the VOMBAT server to the public community.
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1. Introduction

The in silico prediction of cis-regulatory elements in DNA is an interesting and

important problem in genome research. Binding of transcription factors to their

binding sites in the promoter of their target gene is a prerequisite for their acti-

vation or repression. Hence, knowledge of the location of DNA binding sites is of

importance to elucidate the underlying regulatory mechanisms. As wet-lab experi-

ments are expensive to conduct, computational techniques are attractive to tackle

this question despite being less accurate in general.

A wide range of techniques for predicting cis-regulatory elements build on statis-

tical models, one for the cis-regulatory elements under consideration and one for the

background of non-regulatory sequences. These models are trained using a labeled

dataset and subsequently employed in a supervised classifier for predicting new loca-

tions of the cis-regulatory element scrutinized. Within such an approach, the choice

of appropriate model families is of importance for the accuracy of predictions.

A widely used model class for predicting DNA motifs are Markov models1,2,3

used also in many other classification problems. One well-known example is the

position weight matrix (PWM) model4, which is an inhomogeneous Markov model

of order 0. It assumes each position statistically independent of all other posi-

tions. Although it is an open question whether this independence assumption is

reasonable5,6,7, PWM models may outperform Markov models of higher order like

the weight array matrix (WAM) model8, which is an inhomogeneous Markov model

of order 1. One possible explanation is the limited amount of experimentally verified

binding sites available for the learning phase resulting in the problem of overfitting

for models with larger numbers of parameters.

From a statistical point of view, Markov models assume for each nucleotide of

the DNA sequence the statistical dependence on a fixed number of directly preced-

ing nucleotides, called the context, and independence otherwise. With the goal of

improving the performance of Markov models, two sources of potential shortcom-

ing of this assumption can be identified, namely (i) the strictly sequential order of

statistical dependencies with respect to the position of the nucleotides in the se-

quence and (ii) the exponential growth of parameters for a growing context length.

Bayesian networks have been considered as an alternative to Markov models to al-

low for statistical dependencies among non-adjacent positions7. To cope with the

exponential growth of parameters, variable order Markov models10 were proposed.

The power of variable order Markov models stems from the freedom to include only

those contexts into the model for which there are strong statistical dependencies.

The resulting variable order Markov models and Bayesian trees have been shown

to outperform traditional models for the recognition of prokaryotic binding sites9.

We define these statistical models in the next section, and we evaluate them in

a case study using binding sites of six eukaryotic transcription factors in Section 3.

The web server VOMBAT implementing training, prediction, and cross validation

with any of these models on user-supplied data is shortly presented in Section 4.



February 15, 2007 13:18 WSPC/INSTRUCTION FILE cis-elements

Recognition of cis-regulatory elements with VOMBAT 3

2. Statistical models

To predict if a DNA sequence x1, . . . , xL of L nucleotides is a cis-regulatory element

or not, we use likelihood ratio classifiers as the basic methodology. These require

one statistical model Pmotif(x1, . . . , xL) for cis-regulatory elements and one model

Pbg(x1, . . . , xL) for non-regulatory elements constituting the background.

2.1. Markov models

In many classification algorithms for DNA cis-regulatory elements as well as splice

sites or nucleosome binding sites the underlying family of distributions are Markov

models. Starting from the standard factorization of an arbitrary distribution

P (x1, . . . , xL) = P1(x1)
L
∏

l=2

Pl(xl|x1, . . . , xl−1), (1)

Markov models of order M assume that the conditional probabilities do not depend

on all previous nucleotides, but only on the M previous nucleotides xl−M , . . . , xl−1:

P (x1, . . . , xL) = P1(x1)

L
∏

l=2

Pl(xl|xl−M , . . . , xl−1), (2)

where xa, . . . , xb = x1, . . . , xb for a < 1 and xa, . . . , xb is the empty string for a > b.

If the conditional probabilities Pl(xl|xl−M , . . . , xl−1) are identical at all posi-

tions l, the Markov model of order M is called homogeneous (hMM(M)), otherwise

it is called inhomogeneous (iMM(M)). In the following we focus on the description

of inhomogeneous models, which are used to model the cis-regulatory elements, and

comment only briefly on homogeneous models used as background models.

For any position l and observed nucleotide xl at this position, we call the nu-

cleotides xl−t, . . . , xl−1 its context of length t in the following. The number of oc-

currences in a given dataset of any (t + 1)-mer at positions l− t up to l is denoted

by nl(xl−t, . . . , xl). For estimation of parameters we employ a maximum likelihood

approach, which leads to

P̂l(xl|xl−t, . . . , xl−1) =
nl(xl−t, . . . , xl) + p(t + 1)

∑

x∈Σ (nl(xl−t, . . . , xl−1, x) + p(t + 1))
(3)

for any t ≥ 1 and alphabet Σ. For DNA sequences we have Σ = {A, C, G, T}.

Pseudo counts p(t) = ǫ
dt , d = |Σ|, are added to compensate for zero occurrences of

some t-mers with an equivalent sample size ǫ11. These pseudo-counts are equivalent

to using Dirichlet priors for the parameters in Bayesian learning. For hMMs the

estimation is done analogously with the only difference that the summation runs

over all positions l to obtain one single estimate P̂ (xl|xl−t, . . . , xl−1).

2.2. Bayesian networks

One shortcoming of Markov models is the sequential order of statistical depen-

dencies. Generally this is appropriate for time series, but not obviously for DNA
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binding sites7,12. Hence, Bayesian networks (BNs)13,14,11 were considered as an al-

ternative by several research groups. For example, first-order BNs were shown to

outperform PWM models and WAM models in the prediction of splice sites 15,16

and cis-regulatory elements7,9. BNs allow for each position l statistical dependen-

cies on an arbitrary set of other positions – called the parents Pa(l) – as long as no

cycles of statistical dependencies are induced. The probability distribution defined

by a BN decomposes as

P (x1, . . . , xL) =

L
∏

l=1

Pl(xl|~xPa(l)), (4)

where the vector of parents may be empty for some of the positions. Bayesian trees

(BTs) are special cases of BNs where each position must not have more than one

parent. This restriction makes BTs well suited for modeling statistical dependencies

in cases where only a limited amount of training data is available. To determine the

structure of the BT, i.e., the directed tree encoding the statistical dependencies,

we use a maximum likelihood approach. In case of a BT, finding the maximum

likelihood structure is equivalent to finding a maximum spanning tree for the set

of L positions using the mutual information between positions as edge weights17.

2.3. Variable order models

For Markov models and BNs of fixed order, the number of model parameters grows

exponentially with the model order or the number of parents, respectively. For pa-

rameter estimation, especially based on limited data, this often results in a sharp

transition from under-fitted to over-fitted models. To circumvent this problem, vari-

able order Markov models, originally introduced by Rissanen et al.10 for data com-

pression and later studied by Ron et al.18 and Buhlmann et al.19, were applied

to various problems in bioinformatics20,21,12,9. Intuitively, the idea is to shorten

the context at each position in those cases where the full context of length M

does not contain “stronger” statistical dependencies than a shortened one. Hence,

the fixed order M of a Markov model becomes a function of the context, i.e.,

Ml(xl−M , . . . , xl−1), and can be different for each position in general. The joint prob-

ability distribution of the resulting inhomogeneous variable order Markov model

with initial order M (iVOMM(M)) is derived from (2) as:

P (x1, . . . , xL) = P1(x1)

L
∏

l=2

Pl(xl|xl−Ml(xl−M ,...,xl−1), . . . , xl−1). (5)

The variable order idea initially applied to Markov models can be applied to BNs as

well9. For this class of models, called variable order Bayesian networks (VOBNs) or

variable order Bayesian trees (VOBTs), the context xl−M , . . . , xl−1 is substituted

by ~xPa(l), where the parents Pa(l) have to be ordered in contrast to ordinary BNs.

The joint distribution of VOBNs is derived from (4) analogously to iVOMMs.
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Fig. 1. Full context tree for a Markov model of model order 2

To formalize how to determine Ml, we first describe context trees as a convenient

way to represent the set of conditional probabilities at each position for a Markov

model or BN. A full context tree (Fig. 1) is a rooted tree of degree d. Each edge

is labeled with one nucleotide, where the edges to sibling nodes are required to be

pairwise distinct. In the full context tree for position l of a Markov model, each leave

has depth M and represents the conditional probabilities Pl(xl|xl−M , . . . , xl−1), xl ∈

Σ, where xl−M , . . . , xl−1 are the concatenated labels on the unique path from that

leave to the root.

The conditional probabilities of variable order models may be represented by

shortened or pruned context trees (Fig. 2). An arbitrary leaf at depth t with la-

bels xl−t, . . . , xl−1 at the path to the root represents the conditional probabilities

Pl(xl|xl−t, . . . , xl−1), xl ∈ Σ. If an inner node does not have the full degree d,

because some but not all of its children have been pruned, it represents the proba-

bilities of the contexts for the pruned children:

P̂l (xl|xl−t−1 ∈ Rl(xl−t, . . . , xl−1), xl−t, . . . , xl−1) =

β
∑

xl−t−1∈Rl(xl−t,...,xl−1)

P̂l(xl−t−1|xl−t, . . . , xl−1) P̂l(xl|xl−t−1, . . . , xl−1) (6)

The set Rl(xl−t, . . . , xl−1) denotes all nucleotides that have been pruned from the

context tree at the inner node considered. In the example of Fig. 2, these are {c, g}

for the single inner node with degree 2. The normalizing constant β enforces the

conditional probabilities represented at these nodes to sum up to 1 for xl ∈ Σ.

The function Ml is determined by a bottom-up traversal of the full context tree,

where we initialize Ml(xl−M , . . . , xl−1) = M for all contexts. At each leaf of the tree,

the Kullback-Leibler divergence22 between the conditional probabilities represented

at this leaf and at its parent node is computed as a measure of statistical significance

of the last symbol of the context at the leaf. If this divergence is smaller than a

given threshold, the last symbol is considered unimportant, the leaf is pruned from

the context tree, and we set Ml(xl−M , . . . , xl−1) = t − 1. More formally we have

∆KL
l (xl−t, . . . , xl−1) =

∑

x∈Σ

P̂l(x|xl−t−1, . . . , xl−1) log2

(

P̂l(x|xl−t−1, . . . , xl−1)

P̂l(x|xl−t, . . . , xl−1)

)

,(7)
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lP(X |t)P(X |a,(c|g))l
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Fig. 2. Example for a pruned context tree with initial order 2. Pruned nodes and edges are depicted

with dashed lines.

and a leaf is pruned iff

∆KL
l (xl−t, . . . , xl−1) <

{

c for a model of regulatory elements

c · dt+1

nl(xl−t−1,...,xl−1)
for background models.

(8)

This procedure is closely related to the log-loss scores used to derive the ideal

compression rate in the field of data compression. The real-valued parameter c

is called pruning constant. It controls to which extent a difference between the

conditional likelihoods is considered important. For c = 0, any extension of the

context is considered important, and the resulting VOMM becomes a traditional

Markov model of order M . The additional term for background models increases

the pruning constant as the number of examples for the corresponding context

in the training set decreases. This encourages pruning of these leaves and takes

into account the inaccuracies of parameter estimates for small samples. If during

traversal all children of an inner node are pruned, it becomes a leaf itself, and the

same procedure applies recursively. The recursion terminates if no leaves satisfy (8).

Subsequently the conditional probabilities represented at inner nodes with pruned

children, i.e., degree less than d, are estimated according to (6). More details are

given in19,9.

For a homogeneous VOMM (hVOMM(M)), the pruning is carried out jointly

for all positions computing one single pruned context tree.

3. Case study

In this section we present a case study in which we evaluate the accuracy of the

recognition of cis-regulatory elements of fixed order models and variable order mod-

els for six different eukaryotic transcription factors.

3.1. Data

We analyze six sets of binding sites for mammalian transcription factor families:

AP-1, CEBP, GATA, NF-1, SP-1 and thyroid hormone receptor-like factors (“Thy-

roid”). These sets were built using the TRANSFAC R© database (rel. 8.1, 2004)
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and comprise experimentally confirmed binding sites for transcription factors col-

lected from scientific literature. For building these sets, we choose those collections

containing more than 100 binding sites. The six sets represents three out of four

major superfamilies of eukaryotic transcription factors: AP-1 and CEBP belong

to the “Basic Domains” factors; NF-1 belongs to “beta-Scaffold Factors with Mi-

nor Groove Contacts”; GATA, SP-1, and “Thyroid” belong to the factors with

“Zinc-coordinating DNA- binding domains.” Each set contains binding sites for one

definite family of transcription factors (including factors of different mammalian

species) according to the transcription factor classification23, corresponding to the

third family level in the factor hierarchy. All of these sets consist of transcription

factor binding sites from various vertebrate species, with the majority of binding

sites from human, mouse, and rat.

The background set was built by extracting sequences of second exons of hu-

man genes. Second exons were chosen to minimize the chance of having unknown

transcription factor binding sites in the background sequences, since there is no

recorded evidence on known transcription factor binding sites in any second exon

of any gene. This results in six foreground sets containing 112 AP-1 binding sites,

149 CEBP binding sites, 110 GATA binding sites, 96 NF-1 binding sites, 257 SP-1

binding sites, and 127 Thyroid binding sites, respectively, and one background set

containing 267 second exons with a total length of 68,141 bp.

3.2. Stratified holdout sampling

For the evaluation of the performance of the classifiers we use the following stratified

holdout sampling procedure.

(1) Partition the foreground and background set randomly into a training set con-

taining 90% and a test set containing the remaining 10% of the sequences.

(2) Train the foreground and background model on their training sets.

(3) Compute the likelihood ratio of each of the overlapping L-mers of the sequences

of the background test set and define the threshold T such that the specificity

reaches 99.9%. This ensures that the classifier yields at most one false negative

prediction per kb.

(4) Compute the likelihood ratio of each of the sequences of the foreground test set

and determine the sensitivity using T .

Repeat these four steps 104 times, and record the mean sensitivity and its standard

error. The standard error of the mean sensitivity is at most 0.15% for all of the

classifiers and all of the datasets studied below.

3.3. Fixed order models

In this subsection we study the sensitivity of classifiers based on fixed order models

for each of the six transcription factors. We choose an iMM(0), an iMM(1), and a
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BT as foreground model, and an hMM(M) for M ranging from 0 to 5 as background

model, yielding 3× 6 different model combinations. For all of the studies presented

in this paper, we set the equivalent sample size ǫ = 16 for any foreground model,

and ǫ = 4096 for any background model. This corresponds to a pseudo count of 1

for each leaf in the initially full context trees.

(a) AP-1 (b) CEBP (c) GATA

(d) NF-1 (e) SP-1 (f) Thyroid

Fig. 3. Mean sensitivity versus M of the hMM(M) for three foreground models applied to the six
TFBSs (solid: iMM(0), dashed: iMM(1), dotted: BT).

Fig. 3(a) shows the mean sensitivity of each of the 18 classifiers for the tran-

scription factor AP-1. We find that a traditionally used iMM(0) combined with its

optimal background model (an hMM(0) in this case) yields a mean sensitivity of

63.6%, an MM(1) yields 66.7%, and a BT yields 65.0%. This indicates that there

are statistical dependencies among nucleotides in the binding sites of AP-1, which

can be used to improve their recognition with the statistical models investigated.

Surprisingly, the sensitivity of the BT is lower than that of the iMM(1).

One possible explanation is that the statistical dependencies among neighboring

nucleotides are stronger than those among non-neighboring nucleotides in the bind-

ing sites of AP-1. Another possible explanation is an overfitting of the BT given the

limited amount of training data and the additional degrees of freedoms compared

to an iMM(1). We observe similar patterns for CEBP and SP-1 (Fig. 3).

Fig. 3(d) gives the results for the transcription factor NF-1. We find that the sen-

sitivity increases by approximately 5% for most of the studied background models

when using an iMM(1) instead of an iMM(0).

In contrast to AP-1, CEBP, and SP-1, we find that for NF-1 the sensitivity of a
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BT is – for most background models – even lower than that of an iMM(0). Again,

this is may be due to weak or strongly varying statistical dependencies among non-

neighboring nucleotides. Neglecting them improves the recognition of NF-1 binding

sites significantly, probably by avoiding overfitting effects. We find a similar pattern

for GATA (Fig. 3(c)).

For the transcription factor Thyroid (Fig. 3(f)), the iMM(0) outperforms both

the iMM(1) and the BT, which is in contrast to the other five factors. As the amount

of data available for Thyroid is comparable to that of the other data sets (Table 1),

this may indicate that statistical dependencies between pairs of nucleotides are too

weak or too diverse to be of value for the recognition of Thyroid binding sites.

3.4. Variable order models

In this subsection we study the sensitivity of classifiers based on variable order mod-

els. We choose an iVOMM(1) and a VOBT as foreground model, and an hVOMM(5)

as background model. For both model combinations we vary the pruning constants

cf (foreground model) from 2−8 to 2 and cb (background model) from 2−14 to 23.

(a) (b)

Fig. 4. Mean sensitivity versus foreground pruning constant cf and background pruning constant cb

for (a) AP-1 using iVOMM(1)/hVOMM(5) and (b) Thyroid using VOBT/hVOMM(5) classifiers.
The axes are marked with log10(cf ) and log10(cb) respectively.

The mean sensitivity of the iVOMM(1)/hVOMM(5) classifier for the transcrip-

tion factor AP-1 is shown in Fig. 4(a). We find that the sensitivity varies rela-

tively smoothly with cf and cb, and that the highest sensitivity of 67.9% is ob-

tained for cf = 2−2.5 and cb = 2−2. Hence, the maximum is not located in the

vicinity of the four corners, where the iVOMM(1)/hVOMM(5) classifier reduces

to a fixed order classifier. A comparison of Fig. 3(a) and Fig. 4(a) shows that the

iVOMM(1)/hVOMM(5) classifier increases the sensitivity by 1.2% over the optimal

fixed order iMM/hMM classifier. This indicates that VOMMs make a more eco-

nomical use of their model parameters compared to fixed order MMs, resulting in

an improved recognition of AP-1 binding sites.

Fig. 4(b) shows the mean sensitivity of the VOBT/hVOMM(5) classifier for the

transcription factor Thyroid. Again, the sensitivity varies relatively smoothly with
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cf and cb, and the highest sensitivity of 52.0% is obtained for cf = 2−1 and cb = 2−2,

which again yields variable order models that are notably different from their fixed

order limits. Comparing Fig. 3(f) and Fig. 4(b), we find that the VOBT/hVOMM(5)

classifier can increase the sensitivity by 2.0% over the optimal fixed order

classifier. The plots for all factors are available at http://www2.informatik.uni-

halle.de/agprbio/AG/Publication/OnlineMaterial/jbcb07.html.

3.5. Discussion

Even though all six transcription factor families correspond to a similar level of

factor hierarchy, they bear quite different degrees of functional heterogeneity as well

as structural heterogeneity of the factor heterodimers binding to the corresponding

cis-regulatory elements. Especially heterogeneous is the family of thyroid hormone

receptor-like factors, which belongs to the superfamily of nuclear hormone receptors.

Nuclear hormone receptors are ligand-activated transcription factors that belong

to a superfamily consisting of over 150 different members, reviewed in24,25. DNA

binding sites of nuclear hormone receptors are typically composed of two 6-bp half-

sites that may be arranged as direct, inverted, or everted repeats25,26. The family

of thyroid hormone receptor-like factors show a large variety of modes of DNA

binding. Their DNA binding sites are generally direct or inverted repeats with

variable spacing between 0 and 5 bp27,28. The repeated structure of the binding sites

in the Thyroid set may be the reason for the VOBT to slightly outperform VOMMs

for this set. The presence of direct and inverted repeats may explain the statistical

dependencies between non-neighboring nucleotides. It is interesting to observe that

in the case of AP-1 and CEBP binding sites, which are also characterized by a

short inverted palindromic structure, the difference between maximal sensitivity

obtained by VOMM and VOBN models is minimal, which indicates the presence of

dependencies between non-neighboring nucleotides.

The maximal sensitivity level achieved by any of the models is very different for

different sets of binding sites. It does not correlate with the membership of the fac-

tors to specific DNA binding domains or to any functional groups. CEBP sites yield

the lowest sensitivity level (25%). This is not a surprise, since factors of the CEBP

family exhibit an extremely relaxed DNA-binding specificity29, which is still poorly

understood. One possible explanation is that CEBP factors (CCAAT/enhancer

binding proteins) are ubiquitously involved in regulating a huge number of promot-

ers under many different conditions. Their binding to a large variety of promoters is

relatively position specific, which makes the “CCAAT-box” statistically profound

and even considered as a part of the basic promoter structure. Hence, the loose

DNA-binding specificity of these factors can be the result of the requirement of

these factors to be able to bind to the CCAAT-box under many different promoter

contexts. One possibility to improve the computational recognition of CEBP bind-

ing sites is to build separate models for different specific subgroups of CEBP binding

sites, which was explored for the case of the PWMs30 and can be extended for the
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Table 1. Percentage of mean sensitivity averaged over 104-fold replicated stratified-holdout exper-
iments for different model combinations and the six data sets. For row 2 (MM) we vary the order
M of the fixed order foreground model from 0 to 1. For both rows 2 and 3, we vary M of the fixed
order background MM from 0 to 5, and we record the maximum sensitivities in columns 3 through
8. For rows 4 and 5, we use variable order foreground models of initial order 1 and variable order
background models of initial order 5. The maximum sensitivities achieved for varying pruning
constants cf and cb are given in columns 3 through 8.

TFBS background AP-1 CEBP GATA NF-1 SP-1 Thyroid

model model

MM MM 66.7 25.1 77.2 70.4 74.0 50.0
BT MM 65.0 24.8 70.3 61.8 73.1 45.5

VOMM VOMM 67.9 25.9 79.0 71.0 75.1 51.8
VOBN VOMM 67.5 25.7 78.1 69.2 73.5 52.0

Size of dataset 112 149 110 96 257 127

more complex models considered in this paper. The relatively low sensitivity level

achieved for the Thyroid set (50%) can be explained by a high heterogeneity of the

binding sites in the set with variable spacing between the repeats of “half sites”.

This demonstrates some limits of the approach considered in this paper, where the

“inhomogeneous” models are required to be strictly position specific, and therefore

incapable of capturing the variability of spacers between different subparts of the

sites. A generalization of this approach can be considered in the future, where inho-

mogeneous models may be partially homogeneous in some sub-regions of the sites.

First attempts towards building such models with sub-regional homogeneity were

made for splice sites31 and some transcription factor binding sites32,33.

Comparing the performance achieved for the six different sets, we not only find a

wide range of sensitivities. Also the optimal model combination (including the choice

of the optimal model orders for fixed order models and the choice of the optimal

pruning constants for the variable order models) varies strongly from transcription

factor to transcription factor. Hence, we recommend a systematic analysis of the per-

formance of different model and parameter combinations based on problem-specific

training datasets in advance to a genome-wide analysis of cis-regulatory elements.

In order to ease such systematic analyses and genomic scans of cis-regulatory ele-

ments, we provide a web server to the public community, which we describe in the

next section.

4. VOMBAT server

The VOMBAT web-server34 implements an easy-to-use web-interface and allows

users to apply different combinations of Markov models and Bayesian trees to their

data. This includes models with variable and fixed orders as well as homogeneous

and inhomogeneous Markov models. Tasks available are learning statistical models

from data, predicting putative binding sites, and stratified holdout experiments for

different model combinations.

To train a model the user is queried for an input file of training sequences and
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(a)

(b)

Fig. 5. (a) Example for a profile of log-likelihood ratios predicting putative TFBSs;
(b) Histogram of the log-likelihood ratios for a TFBS (left) and the background (right)

parameters to specify the type and order of the model. The output is an XML-

representation of the model including the parameters learnt. It can be downloaded

and used subsequently for prediction and for optional graphical representation.

The trained foreground and background models can be used to predict putative

cis-regulatory elements in a new set of input sequences. The output of the prediction

is an HTML file containing a textual description of the putative cis-regulatory

element. This includes the motif position, its sequence, the likelihood obtained by

the two models, and the corresponding log-likelihood ratio. Additionally, profiles of

the log-likelihoods and the log-likelihood ratio are plotted for each sequence of the

input file (Fig. 5(a)).

For advanced users VOMBAT provides functions for stratified holdout sampling

analyses of different model combinations. This allows the user to find the optimal
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model combination for his or her classification problem and data sets. The output

of the stratified holdout sampling contains the sensitivity obtained for a selected

fixed specificity, the maximum correlation coefficient over all possible classification

thresholds, and a histogram of the log-likelihood ratios for the classified foreground

and background samples (Fig. 5(b)).

The VOMBAT server is based on a three-tier architecture, where the presenta-

tion layer, the management layer, and the execution framework are logically sep-

arated and physically located on different servers. The web front-end of VOM-

BAT is based on standard technologies like JavaServer Faces and Servlets. The

user-supplied parameters and input files are stored in a mySQL-database, which is

queried by the execution framework running on a Linux cluster with 150 processors.

VOMBAT is available free of charge at http://bic-gh.de/vombat. The web pages

also include use cases and a detailed manual.

5. Summary

We study the recognition of eukaryotic cis-regulatory elements by fixed and variable

order Markov models and Bayesian trees. Compared to fixed order models, variable

order models improve the recognition of binding sites for all transcription factors

studied. The combination of a VOMM(1) for the foreground and a VOMM(5) for

the background yields the optimal classifier for AP-1, CEBP, GATA, NF-1, and

SP-1 among the model combinations studied. In contrast, for Thyroid the addi-

tional freedom to exploit statistical dependencies also among non-neighboring nu-

cleotides when using a BT or VOBT increases the performance compared to MMs

or VOMMs. For all of the studied examples, the sensitivity of the variable order

classifiers varies relatively smoothly with cf and cb, which allows to robustly de-

termine the optimal pruning constants for each dataset. However, the values of the

optimal pruning constants, the choice of the optimal combination of models, and the

resulting sensitivities vary strongly from transcription factor to transcription fac-

tor. Hence, we recommend a systematic evaluation of different model combinations

based on problem-specific data sets before starting genomic scans of cis-regulatory

elements. To allow such systematic evaluations, the training of fixed and variable

order MMs and BTs based on user-supplied data sets, and genomic scans of cis-

regulatory elements based on the trained models, we provide the VOMBAT server

to the public community.
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