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Abstract—Consider an epidemic that propagates in a network of
N individuals. The dynamics of the infection are governed by the
N -intertwined SIR model, which is a non-linear model. Our goal
is to prevent the epidemic by removing (vaccinating) nodes and
removing (closing) links. Since vaccinating nodes and closing links
is costly, we want to minimize this cost under the constraint that the
outbreak is prevented. We first show that preventing the outbreak
can be guaranteed by ensuring that the maximal eigenvalue λ1 of
a specific linear system is negative. This induces a well posed, but
highly complex, combinatorial optimization problem. We propose
a greedy algorithm that at each step picks the approximately best
link to close or node to vaccinate, and proceeds to break the
network until λ1 < 0. We also prove that running our algorithm
on a coarser and smaller graph of regions as opposed to individuals
still guarantees that the epidemic is prevented in the large network
of size N . We tested our algorithm on an N -intertwined SIR model
that was calibrated using real data that includes measles outbreaks
and contact frequencies. The contact network was generated based
on raw cellular localization data of 17 billion records from Radio
Network Controllers (RNCs) that cover 1.8 million users over
2 months. Our encouraging results demonstrate that algorithms
which consider the topology of the network can offer great value
even in practical scenarios, where the decisions and computations
can only be made on the regional level.

I. INTRODUCTION

Measles is a highly contagious disease that remains a major
cause of death among young children globally, despite the
availability of a safe and effective vaccine. In recent years, many
cases of measles outbreaks have been observed around the globe
and the rates of disease and deaths have increased [1], [2]. The
dominant reason for the increase of measles cases in developed
countries is vaccine hesitancy [2], [3], which is considered one
of the top 10 threats to global health, and is associated with the
30% global rise in measles cases [4].

If in a certain community vaccination rates are dramatically
lower, even just few cases of measles can quickly spread
throughout the community. Therefore, vaccine hesitancy can
lead to a serious outbreak that in turn infects vaccinated in-
dividuals that did not successfully develop antibodies or simply
infants that have yet to be vaccinated. It is intuitively clear that
removing nodes and closing links around hesitant communities
is much more beneficial than treating random or even central
nodes and links in the network. Any policy that does not look
at the topology of the network as a whole will miss this type
of more intricate solutions, that in general are not intuitive.

Another major change in recent years is the availability of
“big data”. Today data such as measles cases and vaccination
rates is easily accessible. When public policies are considered,
then cellular localization data is also available. Using cellular
localization over time, one can even estimate the topology of
the network. Knowing the topology opens the way for more
sophisticated computational methods for preventing outbreaks
despite vaccine hesitancy.

Our goal is to prevent the epidemic by vaccinating nodes and
closing links, while minimizing the cost of these countermea-
sures. The knowledge of the topology of the network allows
quantifying the spread rate of a process on a graph using the
eigenvalues of the adjacency or the Laplacian matrices (see [5]).
This way, we can estimate the spread rate reduction caused by
removing a certain node or deleting a certain link. By picking
more effective nodes and links, the outbreak is prevented with
a lower intervention cost.

However, for epidemics control in large networks, using
spectral graph theory is far from being straight forward. First,
the mathematical models of infectious disease, like Susceptible-
Infected-Susceptible (SIS) or Susceptible-Infected-Recovered
(SIR) [6] are not linear. Hence, it is not clear how the adjacency,
Laplacian or any other matrix is related to the disease spread.
Second, even if such a matrix is given, it represents the individ-
uals in a country or a city, so its dimension is huge. Repeatedly
computing the eigenvalue decomposition for a large matrix is
not possible in practice, since the complexity is O

(
N3
)

where
N is the population size. Exhaustive search for the best link to
remove has a complexity of O

(
N5
)

per decision, which is not
even practical for medium-sized networks.

Our main theoretical contribution is to prove that working on
a smaller graph of regions (e.g., cities, districts, neighborhoods)
instead of individuals can still guarantee the prevention of the
outbreak in the actual larger network. Hence the complexity of
our algorithm is O

(
R3
)

per decision, where R is the number
of regions which typically satisfies R � N . This reduction is
important not only for complexity considerations. In practice,
decisions on vaccinations and link closure are made on some
regional level or another, rather than on an individual level.
Furthermore, we modify the approach of [7] to quantify the
benefit from closing each link using the eigenvector, therefore
reducing the complexity to O

(
N3
)

(or O
(
R3
)
) per decision

instead of O
(
N5
)

(or O
(
R5
)
).



While the focus of this paper is preventing outbreaks, the
theoretical ideas are readily applicable to computer viruses
spreading over the internet, which share a similar model [8].

A. Previous Work

Modeling disease spread is an established and rich field of
research [9]–[14]. Over the past decade, prescriptive studies
have started to appear that rely on the descriptive modeling
studies. Various works have considered the problem vaccina-
tions allocation to prevent an outbreak on a graph [15]–[20].
The works that most resemble our approach are [18], [19].

In [19], a semi-definite programming (SDP) continuous op-
timization problem was formulated where the budget is min-
imized under a constraint that guarantees that the outbreak
is prevented. The authors also provided a heuristic for the
combinatorial optimization case. This work has considered the
SIS model in continuous time, but more importantly, only
considered vaccinations for nodes, leaving the links untouched.
In each iteration of the algorithm in [19], an eigenvalue decom-
position is performed once for each node to determine the best
node to vaccinate. This results in a complexity of O

(
N4
)

per
decision (vaccinating one node). Employing the same approach
for link closure will result in a complexity of O

(
N5
)

per
decision, which is already much worse than our O

(
N3
)
, and

is of a completely different scale compared to O
(
R3
)
. In this

work, we partially build upon the unpublished results in [18],
that analyzed continuous optimization in the SIS case and only
for the individuals network of size N .

B. Outline

The paper is organized as follows: in Section II we formulate
our problem and describe our algorithm. In Section III we ana-
lyze the performance guarantees and properties of the proposed
algorithm. In Section IV we test our algorithm on data driven
networks. Section VI concludes the paper.

II. PROBLEM FORMULATION

Counter-measures that break the network can prevent an
outbreak even when vaccine hesitancy is significant. It has
already been proposed that vaccinating infants earlier than usual
might help preventing the epidemic [21]. The disadvantage is
that the immune system of these infants might not be fully
developed yet, making the vaccination useless for some of
them. Another option is to run antibodies tests to detect what
adults are not immune despite receiving a shot in the past.
The disadvantage is the cost of this process. These possibil-
ities amount to vaccinating (removing) certain nodes in our
network. When vaccine hesitancy is involved, the number of
non-vaccinated individuals that are willing to get vaccinated
might be limited. Hence, other ways of breaking the network are
necessary. Since infants and young children are at elevated risk
to become infected and transmit the disease, temporarily closing
daycares and kindergartens will slow down the disease spread.
Closing other public places might achieve similar effects. In
an emergency, temporarily closing roads might be necessary. In
any case, closing only certain roads going out from a district

is far more convenient for the residents than simply isolating
the whole district. All these measures amount to closing certain
links (contacts) in our network.

By considering the network topology, we can come up with
localized policies that are much less costly than assigning
vaccinations to everyone or closing all the links in a city. This,
however, requires a solid mathematical model, developed next.

A. N -intertwined SIR Model

Next, we formulate our mathematical model, which uses the
SIR model [6] in discrete time for each individual, and ties
individuals together using a given network. A similar approach
was taken in [19] for the SIS model. Let G = (V,L) be a
network of N individuals, or nodes. Denote by A the adjacency
matrix such that aij = 1 and aji = 1 if node i and j are
connected in G and aij = 0 and aji = 0 otherwise.

The time index is discrete and denoted by t = 0, 1, 2, ....
Denote by pi (t) the probability that individual i is infected
at time t. Denote by si (t) the probability that individual i is
susceptible (healthy) at time t. Denote by ri (t) the probability
that individual i is recovered at time t. The vaccinated individ-
uals can be either recovered from a previous infection, hence
they have natural vaccination, or individuals that have received
a vaccine shot. Each individual is either susceptible, infected or
recovered so for all t and i

pi (t) + si (t) + ri (t) = 1. (1)

Denote by δi > 0 the recovery rate at node i. The recovery
rate is uncontrollable in nature, and many studies estimated the
recovery rate for Measles [22]. Denote by βi > 0 the infection
rate at node i. Define the vectors p (t) , (p1 (t) , ..., pN (t))

T ,
s (t) , (s1 (t) , ..., sN (t))

T and r (t) , (r1 (t) , ..., rN (t))
T .

An individual is at recovered state at time t if he was at
recovered state at time t− 1 or if he was infected at time t− 1
and got cured at time t:

ri (t) = ri (t− 1) + δipi (t− 1) (2)

Next we derive the dynamics of pi (t). Assume that individuals
get infected independently at random in time and between
individuals. Hence, the probability that an individual i does not
get infected from all of his neighbors is given by

ζi (t) =

N∏
j=1

(pj (t) (1− βiAji) + 1− pj (t)) =

N∏
j=1

(1− pj (t)βiAji) . (3)

Individual i is infected at time t if he was infected at t− 1 and
did not get cured at t, or if he was susceptible at t− 1 and got
infected at t from at least one of his neighbors. Hence

pi (t) = (1− δi) pi (t− 1) +
(
1− ζti

)
si (t− 1) (4)



B. Our Algorithm

Corollary 3 in Section III allows us to pose the constraint of
“preventing the outbreak” in mathematical terms. Our suggested
policy, or algorithm, is then based on a heuristic that aims to
minimize the costs under this constraint. We now formalize this
combinatorial optimization problem.

Denote by V the set of nodes we choose to vaccinate, and
by L the set of links we choose to close. Let ci be the cost
of vaccinating node i and ci,j be the cost of closing link
(i, j). Note that we can model a node i that refuses to get
vaccinated by setting ci = ∞. Define the diagonal matrices
B = diag

(
{βi}Ni=1

)
and D = diag

(
{δi}Ni=1

)
. Also define

P (t) = diag
(
{pi (t)}Ni=1

)
and S (t) = diag

(
{si (t)}Ni=1

)
.

Our goal is to solve the following combinatorial optimization
problem:

min
V,L

∑
i∈V ci +

∑
(i,j)∈L ci,j

s.t. λ1 (AB −D) < 0,
(5)

where λ1 (AB −D) is the maximal eigenvalue of the matrix
AB −D.

In order to solve (5), we propose Algorithm 1. The idea
behind the algorithm is that at each step, we want to pick a
link (or a node, which is equivalent to the set of its links)
such that the decrease of λ1 (AB −D) is maximal. This idea
is formalized in Subsection III-A.

The number of individuals N in a neighborhood, let alone
a city or a state, can be huge. The eigenvalue decomposition
in Step 1 of Algorithm 1 typically requires a time complexity
of O

(
N3
)
. This is impossible in practice already for N =

104. Furthermore, in a realistic scenario decision makers will
be limited to policies that target regions rather than individuals.
This leads us to the notion of the regions network:

Definition 1. In the regions network GR of G, there are R
regions which are the smallest geographical units for which
different decisions about vaccinations and link closures can be
made (e.g., neighborhoods, districts or cities). In GR:
• There are two nodes for each region, one for all the

individuals that can get vaccinated and the other one all
the individuals that cannot or unwilling to get vaccinated.

• The weight of link (iR, jR) is the number of links in G
that connect an individual in iR to an individual in jR.

III. THEORETICAL PERFORMANCE GUARANTEES

In this section we prove that our algorithm is guaranteed to
prevent the outbreak. Therefore, while being a heuristic, the
heuristic part only affects the minimization of the cost of the
countermeasures. The main goal of preventing the outbreak is
fully analytical. However, our heuristic of minimizing the cost
is not a guess but rather is based on analytical grounds, as
explained in Subsection III-A. Subsection III-B proves that our
algorithm prevents the outbreak even if it runs on a coarse
regions network with size R and not the actual individual
network with size N .

Algorithm 1 Greedy Link Closure Algorithm
Initialization: Let ci.j be the cost of closing link (i, j) and
ci the cost of vaccinating node i. Let A = {aij} be the
adjacency matrix of G or GR, that the algorithm modifies at
each iteration (see Definition 1).

While λ1 > 0 Do
1) Compute the maximal eigenvalue λ1 of AB −D and its

eigenvector v1.
2) Assign each link (i, j) a grade Q (i, j) =

1
ci.j

∑
v1 (i) v1 (j) and each node i a grade

Q (i) = 1
ci

∑
j Q (i, j) .

3) Compute (l∗1, l
∗
2) = argmax

(i,j)

Q (i, j) and i∗ =

argmax
i

Q (i).

a) If Q (i∗) > Q (l∗1, l
∗
2) then vaccinate node i∗ by

setting ai∗j = 0 for all j.
b) If Q (i∗) ≤ Q (l∗1, l

∗
2) then close link (l∗1, l

∗
2) by

setting al∗1 l∗2 = al∗2 l∗1 = 0.
End

The SIR N -intertwined model in (5) is non-linear for two
reasons - the multiplicative term (1− ζti ) and the dependence of
pi (t) on si (t− 1). The following lemma suggests an alternative
linear system. This system is not an approximation for the N -
intertwined SIR Model, but instead is an upper bound for the
probability that node i is infected for all i and all times t. Hence,
if we can guarantee that the outbreak is prevented in this new
system, we know it is prevented also in the actual N -intertwined
SIR model.

Lemma 2. The system

p̃ (t) = (I +BA−D) p̃ (t− 1) (6)

dominates (4) in the sense that pi (t) ≤ p̃i (t) for all i and t.

Proof: We have, for any t, that

pi (t) = (1− δi) pi (t− 1)+

si (t− 1)

1−
N∏
j=1

(1− pj (t− 1)βiaij)

 ≤
(a)

(1− δi) pi (t− 1) + si (t− 1)

N∑
j=1

pj (t− 1)βiaij ≤
(b)

(1− δi) pi (t− 1) +

N∑
j=1

pj (t− 1)βiaij (7)

where uses
∏N
n=1 (1− xn) ≥ 1 −

∑N
n=1 xn that holds since

0 ≤ xn ≤ 1 for all n, and (b) follows since si (t− 1) ≤ 1 for
all i.

A linear system is stable if its maximal eigenvalue λ1 is
negative. This leads to the following corollary, which is the
main theoretical guarantee of our algorithm.



Corollary 3. Denote by λ1 (M) the maximal eigenvalue of a
matrix M . If λ1 (BA−D) < 0 then p (t) vanishes faster than
e−tλ1(BA−D).

A. Greedy link closure algorithm

In this subsection we explain the idea behind Algorithm 1.
Since closing a link is a binary option, finding the best link
to close among O

(
N2
)

many links is highly complicated.
However, if instead we were to infinitesimally reduce the weight
of a link instead of closing it, then it is easy to compute the best
link we should pick to infinitesimally decrease λ1. This idea is
formulated in the following lemma.

Lemma 4. Let Aw be a weighted adjacency matrix. Let λ1 be
the maximal eigenvector of Aw, and v1 be its corresponding
eigenvector such that vT1 v1 = 1. Let l = (i, j) have a weight
wl. Then

dλ1 (wl)

dwl
= 2v1 (i) v1 (j) (8)

Proof: Using the Rayleigh quotient to express the maximal
eigenvalue

λ1 (wl) =
vT1 Awv1
vT1 v1

= vT1

(∑
l∈L

Al

)
v1 (9)

where for l = (i, j), Al is a matrix that has aij = wl and
aji = wl, and zero anywhere else. The result now follows by
differentiating λ1 (wl) with respect to wl.

B. Large Scale Graphs and Regional Constraints

At first glance it looks like since decisions are made on
a regional level, there is no need to do computations on the
individual network. However, even if decisions are made on a
regional level, the disease spreads on the network of individuals.
Hence, in order to estimate the spread rate in each step after
making a regional decision, we still must work with matrices
of the size of the whole population N .

Fortunately, one can construct a contracted graph GR that
only represents the regions (see Definition 1) but the maximal
eigenvalue of its adjacency matrix satisfies λ1 (AR) > λ1 (A).
Running Algorithm 1 on the regions graph will find a policy that
guarantees λ1 (ARBR −DR) < 0, so also λ1 (AB −D) < 0.
In other words, by only doing computations on the regional
level we can still guarantee that the epidemic is prevented on
the individual level.

To formalize this we define the node contraction operation,
that combines two nodes into one.

Definition 5. Let G = (V,L). A contraction of vertex v1 and
vertex v2 into a new node v1v2 is the operation that results in
the set of nodes Ṽ = (V ∪ v1v2)\{v1, v2}, and for any u ∈ Ṽ ,
the weight av1v2,u of the edge between v1v2 and u is:
• av1v2,u = av1u + av2u for any u 6= v1, v2.
• av1v2,u = 2av1v2 + av2v2 + av1v1 if u = v1 or u = v2.

The following Lemma guarantees that λ1 (A′) > λ1 (A)
after each contraction of G into G′. Since the regions network
results from the individual network after enough contractions,

then also λ1 (AR) > λ1 (A). Moreover, removing nodes and
closing links in a contracted graph is equivalent to doing the
same operations for the corresponding nodes and links in the
original graph. The gap λ1 (AR)− λ1 (A) might be very large
in practice, so that a policy that achieves λ1 (AB −D) < 0 at
a much lower cost is very likely to exist. However, computing
and even enforcing such an individualized policy is impossible
in practice. Moreover, the main concern is preventing the
outbreak. As a bonus, according to Corollary 3, a large gap
λ1 (AR)− λ1 (A) means that the outbreak vanishes very fast.

Lemma 6. Let Ã be an adjacency matrix that results from A
by contracting l vertices. Let λ̃1 be the maximal value of Ã.
Then λ̃1 ≥ λ1

Proof: Let x be any non-zero N dimensional vector. Let x̃
be an N −1 dimensional vector and assume without the loss of
generality that we contract vertex 1 and vertex 2. The Rayleigh
quotient of x̃ is

x̃T Ãx̃

x̃T x̃
=

∑
i

∑
j ãij x̃ix̃j

x̃T x̃
=

∑
i>1

∑
j>1 ãij x̃ix̃j

x̃T x̃
+∑

j>1 ã1j x̃1x̃j

x̃T x̃
+

∑
i>1 ãi1x̃1x̃i

x̃T x̃
+
ã11x̃1x̃1
x̃T x̃

=
(a)∑

i>1

∑
j>1 ai+1,j+1x̃ix̃j

x̃T x̃
+ 2

∑
j>1 (a1,j+1 + a2,j+1) x̃1x̃j

x̃T x̃
+

(a11 + a22 + 2a12) x̃1x̃1
x̃T x̃

. (10)

where (a) follows from Definition 5. Now choose x̃ such that
x̃i = xi+1 for all i > 1 and x̃1 =

√
x21 + x22. Note that for this

choice xTx = x̃T x̃. Hence∑
i>1

∑
j>1 ai+1,j+1xi+1xj+1

xTx
+

2

∑
j>1 (a1,j+1 + a2,j+1)

(√
x21 + x22

)
xj+1

xTx
+

(a11 + a22 + 2a12)
(
x21 + x22

)
xTx

≥
(a)∑

i>1

∑
j>1 ai+1,j+1xi+1xj+1

xTx
+ 2

∑
j>1 a1,j+1x1xj+1

xTx
+

2

∑
j>1 a2,j+1x2xj+1

xTx
+
a11x

2
1 + a22x

2
2 + a12x1x2 + a21x2x1
xTx

=

∑
i

∑
j aijxixj

xTx
=
xTAx

xTx
(11)

where (a) follows since a12 = a21 and because

(a1,j+1 + a2,j+1)
2 (
x21 + x22

)
=(

a21,j+1 + a22,j+1 + 2a1,j+1a2,j+1

) (
x21 + x22

)
≥
(a)

a21,j+1x
2
1 + 2a1,j+1a2,j+1x1x2 + a22,j+1x

2
2 =

(a1,j+1x1 + a2,j+1x2)
2 (12)



where in (a) we used that x21 ≥ x1x2 or x22 ≥ x1x2. Since
(11) holds for any x, it also holds for the eigenvector v1 of λ1,
which shows that

λ̃1 = max
y 6=0

yT Ãy

yT y
≥ x̃T Ãx̃

x̃T x̃
≥ vT1 Av1

vT1 v1
= λ1. (13)

IV. SIMULATIONS ON A DATA-DRIVEN CONTACT NETWORK

A. N -intertwined SIR Model Calibration from Data

We have used measles incidence data from the Israeli Min-
istry of Health [23] to calibrate the N -intertwined SIR model
parameters and the individual network G. The calibration metric
was to minimize the squared error between the model predic-
tions and incidence data of the overall number of infected by
subdistrict.

The infection rate β of all nodes was calibrated to fit measles
cases data by subdistrict of the last outbreak in Israel between
March 2018 and March 2019. To better match the actual out-
break in the calibration process, we have added an exposed state
to the SIR dynamics (known as SEIR dynamics). Susceptible
individuals can get exposed to measles from their infected
contacts with probability β as usual. After the incubation period,
exposed individuals become infected with probability 1

σ , where
they can now infect their contacts. The average incubation
period was taken as 8 days, based on [22] .The recovery rate δ
of all nodes was chosen to be δ = 1

8 based on [22]. Recovered
(vaccinated) individuals are generated based on vaccination
coverage data by city [24] and according to vaccine efficacy
based on the individual’s age group [25], [26]. Individuals
for which the vaccination was efficient are removed from the
network (not counted in “N”).

The contact network was generated based on raw cellular data
from Radio Network Controllers (RNCs) covering central Israel.
The data includes 17 billion records describing the location of
1.8 million Israeli users over 2 months. The home area of the
users was inferred by their location during the night, and their
age group was inferred based on proximity to schools. A contact
probability matrix was developed, in which each element is
the probability that an individual from area i will contact an
individual from area j. This probability is a summation over
all the areas of the probability that both individuals will visit
the same area, multiplied by the proportion of individuals from
area j attending the relevant area. In the contact network,
each node represents an individual with a home area and an
age group, based on the Israel Central Bureau of Statistics
demographic data. The number of contacts for each node was
generated independently from a geometric distribution, and the
contacts between nodes were generated according to the contact
probability matrix. This contact network captures spatial and
sociodemographic dynamics of the population of Israel. For
details, see [27].

In order to adjust the contact network to the measles model
age groups, a further age stratification was needed. We adjusted
the contact matrix that was used to create the network and
stratified it to the required age groups using data from a

few worldwide surveys collected in 8 European countries and
were projected to other 144 countries, including Israel, using
a Bayesian hierarchical model [28]. These data include contact
rates between 5-year age groups. After the adjustment of the
contact matrix, a 100,000-node contact network was generated
as described in [27].

B. Numerical Results

We tested Algorithm 1 on four different contact networks
labeled A-D in Table 1. The networks differ in the geographical
area they cover (i.e., the subdistricts they include) and in
the vaccination coverage. All network were contracted to the
statistical area level (e.g. regions, see Definition 1) and the
number of such regions is detailed in Table 1. To simplify
the interpretability of our results, we assumed that the costs
of all vaccinations and all link closures are uniform across the
network. The factor ρ is the ratio between the cost of vaccinating
a region and that of closing a link. It is proportional to the
average degree in the weighted regions graph, since this is the
average number of links that are effectively being closed when
a node is vaccinated. The proportions are 1, 2 and 20. In all
cases, the outbreak was prevented in the individual network G,
as guaranteed by our analysis.

Network A covers the subdistricts of Tel Aviv, Jerusalem,
Petah Tikva, Ramla, Rehovot, Ashkelon and Judea & Sameria.
The average vaccination rate is 96%, according to [24]. Network
B is identical to Network A, but with a different randomization
of the vaccinated individuals. The similarity of the results on
Network A and Network B demonstrates the robustness of our
algorithm.

Network C includes only Tel-Aviv district, with a vaccination
rate of 96%. We can see that the performance of our algorithm
scales roughly linearly with N , since in Networks A, Network
B and Network C closing ~30% of the links (when vaccinations
are too costly and not used) was enough to prevent the outbreak.

Network D is another instance of Network A, where the
vaccination rate was artificially lowered by 10% in every city,
modeling a significant vaccine hesitancy. As anticipated, more
aggressive intervention was needed to prevent the outbreak.

For benchmark purposes, we compare the performance of
Algorithm 1 to two variations where the grade Q (i, j) is
modified. In the “Centrality” variation the grade of link i, j is
given by Q (i, j) = di+dj where di is the degree of node i (in
the weighted graph). In the “Random” variation the grade of link
i, j is a random variable, e.g., uniform on [0, 1], which leads to
a random link (or node) selection. However, all these variations
use the eigenvalue decomposition of Algorithm 1 and hence rely
on both Corollary 3 and Lemma 6. It can be seen that Algorithm
1 is generally better than its centrality variation, especially when
only link closure is considered. Both variations are significantly
better than random link and nodes selection, which shows that
exploiting the topology of the network is important. However,
even the random selection uses the topology of the network in
its stopping condition.



Network N R #Links d̄ ρ #closed links
Algorithm 1

#vaccinated
regions

Algorithm 1

#closed
links

Random

#vaccinated
regions
Random

#closed
links

Centrality

#vaccinated
regions

Centrality
A 10138 1696 18250 8.86 177.25 7618 0 9559 0 7887 0
A 10138 1696 18250 8.86 17.70 6751 23 - - 5768 68
B 9765 1667 17239 8.35 167.10 7129 0 - - 7391 0
B 9765 1667 17239 8.35 16.71 6418 21 - - 5615 63
C 862 214 1145 4.68 4.68 188 23 289 34 162 32
C 862 214 1145 4.68 9.36 360 3 535 6 315 10
C 862 214 1145 4.68 93.65 409 0 628 0 442 0
D 14548 1768 30184 6.945 13.89 7869 189 - - 6932 249
D 14548 1768 30184 6.945 277.88 13578 0 - - 13860 0

TABLE I
PERFORMANCE ON DATA-DRIVEN NETWORKS

V. CONCLUSIONS

In this paper, we suggested an algorithm that vaccinates some
nodes and closes some links in a network in order to prevent
a measles outbreak. The algorithm is heuristically trying to
minimize the cost of these countermeasures, while provably
guaranteeing that the epidemic is prevented. Moreover, we
proved that the algorithm can run on a coarse regions network
(e.g., cities, districts, neighborhoods) instead of the actual
network of all population, and still guarantee that the epidemic
is prevented. This is important since decisions are made in
practice on a regional level and not per individual, for both
fairness and complexity reasons. Our algorithm exhibited good
performance on data-driven networks extracted from cellular
localization data and measles cases, which are available for
decision makers in practice. Therefore, our results are a step
forward in closing the gap between theoretical spectral graph
results and practical decision making.
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