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In certain types of processes, verification of the quality of the output units is possible only after the entire batch has been processed.
We develop a model that prescribes which units should be inspected and how the units that were not inspected should be disposed
of, in order to minimize the expected sum of inspection costs and disposition error costs, for processes that are subject to random
failure and recovery. The model is based on a dynamic programming algorithm that has a low computational complexity. The study
also includes a sensitivity analysis under a variety of cost and probability scenarios, supplemented by an analysis of the smallest batch
that requires inspection, the expected number of inspections, and the performance of an easy to implement heuristic.

1. Introduction

Most researchers and practitioners in the field of produc-
tion management agree that process improvement con-
tributes more to product quality than the inspection of pro-
cess output. However, quality inspection, the focus of this
study, remains the main mechanism for preventing defects
introduced during the production process from reaching
the customer.

We distinguish between two inspection modalities: on-
line and off-line. On-line inspection is performed during or
immediately after the production operations and allows not
only the detection of defects but also the adjustment of the
production process, if warranted. On-line inspection pro-
vides, in effect, the basis for statistical process control and
is the more effective of the two. However, in some cases, due
to technological or operational constraints, it is infeasible
or impractical to perform inspection during the production
process. This may be true for cases where the physical envi-
ronment of the production process does not permit carrying
out the inspection in a reliable manner, where the cost of
a setup adjustment in mid-batch is high, or where the time
for the inspection operation is significant when compared to
the time required for the production process itself. In such
cases, the accepted procedure is to preserve the production
order of the units and to carry out off-line inspection after
the entire batch has been processed. Then, by inspecting the
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output it is possible to identify units for which the process
deviated from the original setup. One of the main drawback
with off-line inspection is that due to the fact that the units
have already been produced before inspection begins, it is
not possible for the inspection process to affect the number
of units produced.

Even though economic optimization of off-line inspec-
tion problems has not drawn as much attention as on-line
inspection problems, there are several papers on this impor-
tant subject in the literature. Most of these papers relate to
an environment where there is a finite ordered batch of units
produced by a machine subject to random breakdowns.

Hassin (1984) investigated the optimal full inspection
policy that minimizes the expected number of inspections
needed to locate the exact transition point for the case
where the last unit of the batch is known to be non-
conforming and the transition probability for every step
is time-independent. He et al. (1996) extended the model
to the case where the actual quality of the last unit of the
batch is unknown. Herer and Raz (2000) investigated the
same problem setting as Hassin (1984), but allowed for par-
allel inspections, i.e., inspecting more than one unit at the
same time. They developed a policy which is based on in-
formation theory.

Raz et al. (2000) investigated, as we do here, the economic
optimization of the search for the transition unit. They for-
mulated and solved the problem of determining the opti-
mal inspection/disposition policy. The objective function
was to minimize expected costs, including the inspection
cost per unit, the penalty for accepting a non-conforming

0740-817X C© 2005 “IIE”



996 Finkelshtein et al.

unit, and the penalty for rejecting a conforming unit. They
solved the problem under the assumption of constant and
variable transition probabilities.

In this paper we extend the work of Raz et al. (2000) by
taking into account the ability of the production process to
recover after a failure. Fine (1983) also examined a recover-
ing process. Although his model of recovery is identical to
ours, the problem he studies (“effect of quality-based learn-
ing on optimal inspection policies”) is very different. Fine
(1983) gives several examples of where recovery may occur.
Recovery may occur in the steel production or metal pro-
cessing industries. Consider a batch which is passed through
an oven on a conveyor belt. The oven’s temperature may
fluctuate during the processing of the batch. Since it is in-
feasible to stop the process and inspect and remove the non-
conforming units when the process is running, the batch is
inspected after the last unit is produced. In this case, rather
than searching for the single transition unit, we wish to
identify all units that were produced when the process was
out of control. If we know the identity of these units with
certainty, we will reject all these units that were produced
when the process was out of control, and accept all the oth-
ers. Knowledge of all transition points can be acquired by
inspecting all the units in the batch, resulting in high inspec-
tion costs. Reducing the number of units inspected would
reduce the inspection costs, but would also introduce the
probability of acceptance/rejection errors, along with the
associated penalties. The inspection facility is assumed to be
error-free, meaning that only conforming units will be clas-
sified as conforming and only non-conforming units will be
classified as non-conforming.

The status of the system during the production of a batch
is modeled as a discrete-time two-state Markov process.

Fig. 1. Markov chain representation of the production system.

The objective is to define the inspection/disposition pro-
cedure that minimizes the sum of the inspection cost and
the penalty costs for incorrect disposition decisions. In ad-
dition to an optimal O(N2)-time dynamic programming
algorithm, a simple, easy to manage, heuristic rule that pro-
vides local optimization and opportunities for parallel in-
spection, is presented and investigated. The performance
of the heuristic policy and the behavior of the optimal pol-
icy are explored under various combinations of cost pa-
rameters and transition probabilities. The results are used
to derive managerial insights for operational and design
issues.

This paper is organized as follows. Section 2 describes
the production process and defines the problem of finding
the optimal inspection/disposition policy, and Section 3
formulates the mathematical model and presents the dy-
namic programming algorithm used to find the optimal
policy. Section 4 explores the behavior of the optimal in-
spection/disposition policy under various process param-
eters. Some operational and managerial implications are
addressed, in particular the need for inspection and the ex-
pected number of inspections. Finally, Section 5 presents a
heuristic approach to the problem and compares its perfor-
mance and that of other heuristic approaches to the optimal
policy. Section 6 summarizes the findings and suggests some
further research directions.

2. Problem definition and research objectives

2.1. The process

We consider a production process that can be in one of two
states (see Fig. 1):
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1. The process is properly set up and adjusted, such that
all the units produced conform to specifications and are
acceptable to the customer. This will be referred to as
the IN state.

2. The process is incorrectly adjusted, such that all the units
fail to meet specifications and are not acceptable to the
customer. This will be referred to as the OUT state.

The process operates in a batch mode, and the order in
which the units were produced within the batch is pre-
served. The units in each batch have to be classified ac-
cording to whether they conform (and should be accepted)
or do not conform (and should be rejected) to the quality
specifications.

The states of the process before production starts and at
the end of production may be known (either IN or OUT)
or unknown. Typically a process starts in the IN state. The
probability of a transition from the IN state to the OUT
state is known and assumed to be constant. Once the tran-
sition occurs and the process shifts into the OUT state, all
the units produced are non-conforming. There is a con-
stant and known probability (generally different from the
first one) that the process will recover and return to the IN
state during the production of each unit. The unit produced
when a transition occurs is by definition in the new state.
Once the process returns to the IN state it again produces
conforming units. The process can again shift to the OUT
state and so on until completion of the entire batch. Because
of the one-to-one relationship between “process state” and
“unit condition” these terms will be used interchangeably.

A batch of units consists of a series of conforming and
non-conforming units that follow each other. A batch nor-
mally starts with a series of conforming units (possibly
empty) which ends at the first IN-OUT transition unit.
The production of non-conforming units continues until
the first OUT-IN transition unit and so on until the end of
the batch. Due to the stochastic nature of the process, the
batch can contain only conforming units, which means that
an IN-OUT transition never occurred. Similarly, the batch
can contain only non-conforming units, which means that a
transition to the OUT state occurred during the production
of the first unit and an OUT-IN transition never occurred.

The classification of any given unit can be done in one
of two ways: (i) either the unit is inspected and classified
according to the inspection result; or (ii) the unit is clas-
sified based on the inspection results of other units in the
same batch. This latter option carries with it the risk of
committing one of two possible errors: (i) classifying a con-
forming unit as non-conforming; and (ii) classifying a non-
conforming unit as conforming. The only way to avoid these
classification errors with certainty is to inspect all the units,
but this will probably be too costly. Note that inspecting a
unit, not only determines its status with certainty, but also
provides information on the probable status of the units
around the unit inspected. In fact due to the Markovian na-
ture of the transitions, inspecting a batch divides the batch

into two parts: (i) the units produced before (and including)
the inspected unit; and (ii) the units produced after the in-
spected unit. The question of optimally classifying the units
in these two sub-batches is identical to the original prob-
lem of how to classify the entire batch, albeit the size of the
batch and the status of the process (IN, OUT or unknown)
at the beginning and/or at the end of the batch may be
different. This last observation will form the basis of our
dynamic programming solution procedure.

2.2. Cost function and optimal policy

If we had perfect a priori knowledge of all the transition
points of the process, then the optimal policy would be
straightforward: accept all conforming units and reject all
non-conforming units. The cost of this policy is unavoidable
for a given production batch and is the absolute minimum
achievable, and will thus serve as our point of reference. Pro-
duction costs include the unit production costs multiplied
by the number of units in the batch, and may also include
any applicable setup costs for the batch as a whole. These
production costs were all incurred prior to the inspection,
and are in fact sunk costs in our model. Consequently, they
are not considered separately in the costs in the objective
function.

We will address the problem of finding the inspec-
tion/classification policy that minimizes the sum of the
expected costs above this reference point. Three costs are
considered by our model:

1. The cost of inspection. All the costs involved in determin-
ing whether a unit is conforming or non-conforming.
This cost is the same for all units regardless of whether
the unit is conforming or non-conforming and is calcu-
lated as the sum of direct labor and materials required to
inspect one unit, plus an allocation to reflect fixed costs
(equipment depreciation, facilities, etc.) plus an alloca-
tion for overhead charges, if appropriate.

2. The cost of classifying conforming units as non-
conforming. If the demand is essentially unlimited, then
this cost includes any lost profits that could have been
obtained if it were known that the unit was indeed con-
forming and was eventually sold. Thus, it is the revenue
that would have been received for the part minus the
value of the additional inputs (labor, materials, machine
run time, etc.) that would have been invested in the unit.

If the units are being produced for a contract that
specifies a certain quantity, then we must produce a re-
placement unit. This cost includes production and in-
spection costs incurred by the unit, as well as any other
costs accumulated so far by the unit (inventory carrying
charges, internal transportation, etc.).

In both these cases we must add the cost of actually
scrapping the unit. If there is a salvage value for non-
conforming items then this part of the cost may be neg-
ative. Although the actual costs may vary among units,
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it is conceivable that average cost values are available as
part of the managerial cost accounting system in place.

3. The cost of mistakenly classifying non-conforming units
as conforming. This cost is the most difficult to estimate,
as it includes the costs of repairing the damage that the
non-conforming unit may cause downstream in the value
chain.

From a practical perspective, we suggest the follow-
ing approach to estimate this parameter. If the process
in question is the last one before the product reaches
an external customer, we will assume that any non-
conforming unit will eventually be detected as such and
will have to be repaired, replaced, or dealt with otherwise
according to the warranty conditions. Thus, the cost of
mistakenly allowing a non-conforming unit to reach the
customer can be estimated as the average warranty cost
per product unit.

On the other hand, if the output of the process goes
on to the next step in the production sequence, then the
cost of missing a non-conforming unit may be estimated
as the value of the additional inputs (labor, materials,
machine run time, etc.) that will be invested in the unit
up to the next inspection where it will be discovered to
have been non-conforming.

Note that all these costs are constant and independent of
the placement of the unit in the batch and of when the unit
is inspected.

Consider, for example, a commercial printing operation
that produces packaging materials for consumer goods
(wrappers for fast food; labels for jars, etc.). The company
has a long-term contract with a fast food chain to supply
wrappers printed with the chain logo and the name of the
food product, in four colors. The wrappers are printed, cut
and bound in batches, with all the processing being done
automatically. There is a possibility that the paper sheets
will be misfed into the printing machines. The probability
of such an event is estimated at 0.0001. Misfeeding is a re-
sult of the paper not being properly aligned, and lasts for a
relatively small number of cycles. The average run length of
misfed sheets is estimated at 100. Assuming an exponential
distribution, this run length is equivalent to a probability
of recovery of 0.01.

Before shipping the batch to the customer, the wrap-
pers are inspected for defects. Inspecting a single wrap-
per (pulling it out of the batch, going over it, and replac-
ing it) takes about 1 minute, at an estimated cost (labor +
overhead) of $0.80. The cost of producing a wrapper is es-
timated at $0.04, which would be the cost of discarding an
acceptable wrapper. The contract with the fast food chain
stipulates that if a batch of wrappers contains more than
two defectively printed wrappers, then the printing supplier
is charged $250 to cover the costs of screening the entire
batch for defects, by the food chain personnel. This figure
will be used as the estimated cost of allowing a defective
wrapper to reach the customer.

Before starting the development of our optimal solution
procedure, let us examine the spectrum of possible solu-
tions. At one end of the spectrum stands the “inspect-all”
policy. This policy may be appealing when the penalties
for erroneous acceptance/rejection are very high. However,
in most situations it is unappealing due to the inherently
high inspection costs. At the other extreme stands the “no-
inspection” policy. Given the transition (failure and recov-
ery) probabilities of the process and penalties for erroneous
acceptance/rejection, the expected penalties for disposition
errors can be calculated for each unit of the batch and the
appropriate action taken. This policy becomes more appro-
priate when the production process is stable and when the
inspection is costly relative to the penalty costs. The inspect-
all policy minimizes the penalty costs (they are zero) by pay-
ing for inspecting all of the units, whereas the no-inspection
policy minimizes the inspection costs (they are zero) by in-
curring the risk of paying penalties for the erroneous clas-
sification of units. Since our cost is the sum of inspection
and penalty costs, we develop a solution method that will
minimize the expected value of this sum and will most likely
fall between these two extremes.

3. Model formulation

In this section we develop a mathematical formulation of
our model and develop an optimal O(N2)-time dynamic
program to find the optimal inspection/disposition policy.
Before we go into the details of the model, we first present
our notation starting with the parameters of the model:

N = number of units in the process batch;
K = number of units in the portion of the process batch

being considered, 1 ≤ K ≤ N;
pc = IN-OUT transition probability. This is the probabil-

ity of a transition from the IN (conforming) state to
the OUT state while producing a unit;

pn = OUT-IN transition probability. This is the probabil-
ity of a transition from the OUT (non-conforming)
state to the IN state while producing a unit, i.e., the
process recovers;

CI = cost of inspection per unit;
CP = cost of incorrect acceptance, i.e., the penalty result-

ing from allowing a non-conforming unit to reach
the process customer, above and beyond the rework
or replacement costs that are normally incurred for
any non-conforming unit;

CS = cost of incorrect rejection, i.e., the loss resulting from
scrapping a conforming unit.

To introduce our solution procedure we will need the fol-
lowing notation.

Sb = the status of the system before the start of the batch;
Se = The status at the end of the batch (i.e., the status of

the last unit);
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Sm = the status of the unit from the middle of the batch
which was inspected.

The variables Sb, Se, Sm can have one of three possible val-
ues, c, n, or u representing, respectively, conforming (IN),
non-conforming (OUT), and unknown.

PSb
i = the probability that unit i will be conforming,

given that before the batch started the process
was in the Sb state;

α
SbSe
i (K) = the probability that unit i will be conforming

in a batch of size K, given that before (after)
the batch started (completed) the process was
in the Sb (Se) state;

W SbSe (K) = minimal expected cost (above the reference
point) of classifying all the units in a batch
of size K without inspection, given that be-
fore (after) the batch started (completed) the
process was in the Sb (Se) state;

GSbSe (K) = minimal expected cost (above the reference
point) of classifying all the units in a batch
of size K, given that before (after) the batch
started (completed) the process was in the Sb
(Se) state;

GSbSe
j (K) = minimal expected cost (above the reference

point) of classifying all the units in a batch
of size K, given that before (after) the batch
started (completed) the process was in the Sb
(Se) state, given that unit j is to be inspected.

The recursive nature of the problem is illustrated in Fig. 2.
We begin with a batch of N units. We inspect one of the
units, thus dividing the whole batch into two sub-batches.
For each of these sub-batches we again inspect a unit, di-
viding each of these sub-batches into sub-sub-batches. This
process continues until it is no longer economically advis-
able to continue inspecting; at this time we determine the
disposition of each of the units using the information that
we have about the batch, i.e., Sb and Se. The recursive equa-
tions (i.e., the dynamic program) for determining when and
which unit to inspect are the subject of Sections 3.3 and 3.4.

3.1. Probabilistic aspects

Before moving to our dynamic programming formulation
we first develop a mathematical expression for α

SbSe
i (K), i.e.,

the probability that a particular unit will be conforming.
First we consider the case where we know the status of the
process both before the batch was started and when the
batch was completed (i.e., the status of the last unit).

We start by examining the Markov chain representation
of our system (see Fig. 1). The case when either pc or pn are
equal to zero reduces to the problem studied by Raz et al.
(2000). The transition matrix associated with this Markov
chain is as follows:

IN OUT
IN 1 − pc pc

OUT pn 1 − pn

.

Using an induction argument on i one can easily show
that for all i ≥ 0 (for notational convenience we define β =
1 − pn − pc):

Pc
i = β ipc + pn

pn + pc
and 1 − Pn

i = β ipn + pc

pn + pc
. (1)

Note the symmetry of the problem: the IN and OUT states
are symmetric.

Applying Bayes’ theorem to the definition of α
SbSe
i (K) we

obtain:

α
SbSe
i (K) = prob{unit i is conforming | the batch started in the Sb state and ended in the Se state},

= prob{unit i is conforming and the batch ended in the Se state | it started in the Sb state}
prob{the batch ended in the Se state | the batch started in the Sb state} .

Thus,

αcc
i (K) = Pc

i Pc
K−i

Pc
K

= (βK−ipc + pn)(β ipc + pn)
(pn + pc)(βNpc + pn)

,

and similarly,

αcn
i (K) = Pc

i

(
1 − Pc

K−i

)
1 − Pc

K
, αnc

i (K) = Pn
i Pc

K−i

Pn
K

, and

αnn
i (K) = Pn

i

(
1 − Pc

K−i

)
1 − Pn

K
.

If the process starts in the unknown state and finishes in
the unknown state then we have no information about the
units produced and thus we use the steady-state probabili-
ties, that is:

αuu
i (K) = pn

pn + pc
. (2)

If the process starts in a known state (either c or n) and
ends in the unknown state, then we have information of
how the process started and no information of how the
process ended. Thus:

α
Sbu
i (K) = PSb

i .

In the uncommon situation where the status of the process
is unknown at the beginning of the batch and known at the
end of the batch we can use the reversibility of the Markov
chain to obtain:

α
uSe
i (K) = PSe

K−i.

Now, having demonstrated how to calculate the prob-
abilities α

SbSe
i we proceed to our dynamic programming
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Fig. 2. Calculation of the optimal inspection/disposition policy.

formulation for finding the optimal inspection/disposition
policy.

3.2. Optimal inspection/disposition policy

The basic problem is to find the first unit to be inspected in
a batch of K units (initially K = N) when the status of the
process before producing the first unit is Sb and the status of
the process after producing the Kth unit is Se. Suppose that

we inspect a unit from the middle of the batch, call it unit
j, in order to obtain a value for Sm. This action effectively
creates two batches: one of size j, including units 1, . . . , j
for which the status of the process before producing the first
unit (i.e., unit 1) is Sb and the status of the process after pro-
ducing the last unit (i.e., unit j) is Sm; and the other of size
K − j, including units j + 1, . . . , K for which the status of
the process before producing the first unit (i.e., unit j + 1)
is Sm and the status of the process after producing the last
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unit (i.e., unit K) is Se. Due to the memoryless property
of Markov processes, the probabilities for the status of the
units of the second batch are independent of the probabil-
ities of the status of the first batch, i.e., the two batches,
given the results of the inspections, are independent of each
other. Moreover, the two problems associated with the two
parts of the batch (after inspecting unit j) are identical to
the initial one, except that the batch size is reduced.

The discussion above assumed that some unit will be in-
spected. However, this will not always be economically de-
sirable. Thus, we must also consider whether it is cheaper
(lower expected cost) to classify all the units without further
inspection.

3.3. No-inspection policy

In order to determine whether inspection is economically
justified we must consider the optimal policy if no inspec-
tions are performed. Once we decide not to inspect, then
we have to determine the disposition of each unit. To do
this we look at the expected cost if we decide to reject
the unit, α

SbSe
i (K)CS (the probability that the unit is con-

forming multiplied by the penalty of rejecting a conform-
ing unit), and the expected cost if we decide to accept the
unit, (1 − α

SbSe
i (K))CP (the probability that the unit is non-

conforming multiplied by the penalty of accepting a non-
conforming unit), and choose the lesser of the two. Sum-
ming over all units in the batch we have that:

W SbSe (K) =
K∑

i=1

min
(
α

SbSe
i (K)CS,

(
1 − α

SbSe
i (K)

)
CP

)
.

3.4. Recursive equations for determining the optimal policy

The minimum cost, GSbSe (K), can be calculated using the
following recursion:

GSbSe (K) = min
[
W SbSe (K), min

1≤j≤K
GSbSe

j (K)
]
, (3)

where

GSbSe
j (K) = CI + α

SbSe
j (K)

(
GSbc(j) + GcSe (K − j)

)

+ (
1 − α

SbSe
j (K)

)(
GSbn(j) + GnSe (K − j)

)
. (4)

The outer minimum in Equation (3) represents the choice
between not inspecting, W SbSe (K), and inspecting one of
the units from 1 to K, min1≤j≤K GSbSe

j (K). Equation (4) rep-
resents the fact that if we choose to inspect, then we must
pay the unit inspection cost CI. Furthermore, the inspec-
tion of unit j could reveal it to be conforming (Sm = c),
with probability α

SbSe
j (K), or non-conforming (Sm = n),

with probability 1 − α
SbSe
j (K). Recall that inspection di-

vides the batch into two parts and we must account for the
cost of inspecting/disposing of the units in both parts. The
first part of the batch ends with the unit being inspected
(unit j) and thus has size j, and the second part of the

batch starts with unit j + 1 and thus has size K − j. The
boundary conditions for the recursion in Equation (3) are:
GSbc(1) = GSbn(1) = GSbSe (0) = 0. Note that the boundary
condition GSbSe (0) = 0 comes into play only when we in-
spect the last unit in the batch, which in turn is only rea-
sonable when the status of the last unit is unknown.

The computational effort necessary to arrive at the op-
timal inspection/disposition policy is modest. Examining
the straightforward implementation of the computations
we see that the calculation of each PSb

i requires O(1) time
and the calculation of each α

SbSe
i (K) also requires O(1)

time. Since there are O(N) of the former quantities and
O(N2) of the latter, the total computational effort to cal-
culate all these probabilities is O(N2) time. After calculat-
ing these probabilities the calculation of each W SbSe (K) re-
quires O(N) time and since these calculations need to be
performed for K = 1, . . . , N, the total calculation time for
these quantities is O(N2). Finally, after calculating the prob-
abilities and the cost of not inspecting, the calculation of
each GSbSe (K) requires O(N) time and since these calcu-
lations need to be performed K = 1, . . . , N, the total cal-
culation time for these quantities is O(N2). Thus, the time
required for a batch of N units is O(N2).

4. Behavior of the optimal solution

In this section we investigate, through a set of computa-
tional experiments, the behavior and sensitivity of the opti-
mal solution to different situations. Additionally, we inves-
tigate some operational aspects of the problem that might
be of interest to managers, such as the need for inspection
and the expected workload for the inspection facility.

4.1. Parameters for the computational study

In order to investigate the behavior of the optimal inspec-
tion/disposition policy under different situations, 10 sets of
cost parameters and 12 different probability combinations
were used, making a total of 120 combinations. Addition-
ally, the number of units in the batch varied from one to
500. For the sake of simplicity, we only examine the most
common situation, namely that the process starts in the IN
state, Sb = c, and the status of the process at the end of
the batch is unknown, Se = u. The analysis for the other
situations would be similar.

The relevant cost parameters for the model are the unit in-
spection cost, CI, and the penalties for incorrect acceptance,
CP, and incorrect rejection, CS. We follow Raz et al. (2000)
and check 10 combinations of these parameters, termed cost
scenarios, as listed in Table 1. These cost scenarios have the
following attributes. In scenario A both penalty costs are
infinite indicating that we require “perfect information”,
thus complete inspection is required. In scenario B we re-
quire “zero-defects”, i.e., no non-conforming part can be
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Table 1. Cost scenarios used for the computational study

Cost
scenario CI CP CS Represented case

A 1 ∞ ∞ Perfect information policy
B 1 ∞ 1 Zero-defects policy
C 1 50 10 Sensitivity analysis with respect to CP

D 1 10 10
E 1 1 10
F 1 10 50 Sensitivity analysis with respect to CS

G 1 10 1 —together with scenario D
H 50 1 1 Sensitivity analysis with respect to CI

I 10 1 1
J 1 1 1

accepted, but conforming parts can be rejected. Scenarios
C, D and E allow us to perform a sensitivity analysis with
respect to CP. Scenarios F, D and G allow us to perform a
sensitivity analysis with respect to CS. Scenarios H, I and
J allow us to perform a sensitivity analysis with respect to
CI.

For each of the 10 cost scenarios, we considered 12 pairs
of transition probabilities (pc, pn), termed probability sce-
narios, see Table 2. We again follow Raz et al. (2000) in our
choice of IN-OUT transition probabilities. To examine the
model’s sensitivity to the recovery probability, three differ-
ent values of pn were used for each pc, namely, pn = 0.5pc,

pc, 2pc.
The optimal inspection/disposition policy was deter-

mined for batch sizes ranging from one unit to 500 units.
The reason we did not evaluate the policy for larger batch
sizes stems from the Markovian property of the process.
Our system converges rather quickly to its steady-state val-
ues. Recall that for our computational study Sb = c and
Se = u. Thus, we can know how close the system is to reach-
ing its steady-state value by examining the closeness of PSb

n
to its steady-state value (pn/(pn + pc), see Equations (1)
and (2)). This is illustrated in Fig. 3 for scenario I. We
choose to examine scenario I because it has the slowest
convergence of all the probability scenarios. The x-axis is
the batch size N and the y-axis is PSb

N . Because the system
with the slowest convergence has reached steady-state for a
batch size of 500 items, there is no need to examine larger
batches.

Table 2. Probability scenarios used for the computational study

Probability
scenario I II III IV V VI VII VIII IX X XI XII

pc 0.005 0.005 0.005 0.01 0.01 0.01 0.05 0.05 0.05 0.1 0.1 0.1
pn 0.0025 0.005 0.01 0.005 0.01 0.02 0.025 0.05 0.1 0.05 0.1 0.2

Fig. 3. Illustration of convergence of probabilities for probability
scenario I.

4.2. Results of the computation study

4.2.1. Expected average cost per unit of the optimal
inspection/disposition policy

Table 3 presents the expected average cost per unit of the
optimal inspection/disposition policy, GSbSe (N)/N, under
scenario V for the 10 different cost scenarios and for batch
sizes ranging from one to 500. By examining Table 3 we
note that as the batch size grows the expected average cost
per unit asymptotically converges to a constant value. This
indicates that the expected average cost per unit of the op-
timal inspection/disposition policy for “large” batches is
independent of the batch size. The intuitive explanation is
straightforward. Similarly to what we saw in Section 4.1
with respect to the last item in the batch, as the batch size
grows, the probability that a “middle” unit is conforming
converges to its steady-state value rather quickly. As a result
the marginal cost of treating each additional “middle” unit
converges to some constant value. Therefore, for “large”
batches the expected average cost per unit is independent
of the batch size. This phenomenon was also observed for
all the other probability scenarios.

This observation is important because it allows us to nor-
malize the optimal policy costs in large batches by the batch
size. For this reason, for the rest of the computational study,
we will present our results in terms of the expected average
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Table 3. Expected average cost per unit under probability scenario V

Batch size

CI CP CS Scenario 1 50 100 150 200 250 300 350 400 450 500

1 ∞ ∞ A 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 ∞ 1 B 0.990 0.812 0.713 0.655 0.620 0.597 0.581 0.570 0.561 0.554 0.549
1 50 10 C 0.500 0.192 0.184 0.180 0.177 0.175 0.174 0.173 0.173 0.172 0.172
1 10 10 D 0.100 0.135 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134 0.134
1 1 10 E 0.010 0.080 0.088 0.092 0.094 0.096 0.097 0.097 0.098 0.098 0.099
1 10 50 F 0.100 0.145 0.152 0.156 0.159 0.161 0.162 0.163 0.163 0.164 0.164
1 10 1 G 0.100 0.122 0.115 0.112 0.109 0.108 0.107 0.106 0.106 0.105 0.105

50 1 1 H 0.010 0.188 0.287 0.345 0.380 0.403 0.419 0.430 0.439 0.446 0.451
10 1 1 I 0.010 0.188 0.237 0.245 0.256 0.257 0.262 0.262 0.265 0.265 0.266

1 1 1 J 0.010 0.069 0.071 0.072 0.072 0.072 0.073 0.073 0.073 0.073 0.073

cost per unit. Note that for a given batch size the two mea-
sures (expected cost and expected average cost per unit)
differ by a constant. Thus, the same inspection/dispostion
policy minimizes both measures.

4.2.2. Effect of model parameters on the expected average
cost per unit

Clearly as the cost parameters increase, the expected av-
erage cost per unit of the optimal inspection/disposition
policy will also increase. Likewise, we would expect the val-
ues of the transition probabilities to have an effect on the
expected average cost per unit. In order to investigate and
quantify these points we evaluated the expected average cost
per unit of the optimal inspection/disposition policy for all
120 combinations of the cost and probability scenarios for
a batch size of 500. Examining the results in Table 4 the
following observations can be made:

� When the penalty costs are infinitely high (scenario A),
the expected average cost per unit is insensitive to prob-
ability values and is equal to the cost of inspection. The

Table 4. Expected average cost per unit for a large batch (i.e., N = 500)

pc

0.005 0.01 0.05 0.1

pn 0.0025 0.005 0.01 0.005 0.01 0.02 0.025 0.05 0.1 0.05 0.1 0.2
CI CP CS scenario I II III IV V VI VII VIII IX X XI XII

1 ∞ ∞ A 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
1 ∞ 1 B 0.506 0.598 0.710 0.421 0.549 0.688 0.350 0.509 0.670 0.341 0.504 0.668
1 50 10 C 0.085 0.110 0.144 0.129 0.172 0.226 0.353 0.476 0.620 0.529 0.711 0.915
1 10 10 D 0.067 0.084 0.104 0.106 0.134 0.166 0.305 0.387 0.466 0.467 0.592 0.709
1 1 10 E 0.052 0.060 0.068 0.085 0.099 0.108 0.246 0.276 0.272 0.376 0.400 0.332
1 10 50 F 0.084 0.101 0.118 0.138 0.164 0.190 0.405 0.472 0.525 0.617 0.708 0.768
1 10 1 G 0.052 0.068 0.089 0.077 0.105 0.139 0.195 0.280 0.378 0.277 0.403 0.561

50 1 1 H 0.327 0.358 0.290 0.351 0.451 0.312 0.337 0.491 0.330 0.335 0.496 0.332
10 1 1 I 0.158 0.185 0.203 0.222 0.266 0.282 0.337 0.491 0.330 0.335 0.496 0.332

1 1 1 J 0.037 0.046 0.055 0.058 0.073 0.087 0.154 0.196 0.223 0.224 0.285 0.310

cost of a disposition error is so high that we have to in-
spect every unit in the batch. That is, we require perfect
information about each unit in the batch.

� When the value of either of the penalties increases, the
expected average cost per unit increases as well, albeit
by a smaller percentage (compare scenarios E, D, C and
G, D, F). Since for these sets of parameters not all of
the units will be inspected, some disposition errors are
inevitable, and the higher the penalty values, the higher
the expected average cost per unit.

� When the stability of the production process decreases,
as identified by higher values of pc and pn, the expected
average cost per unit generally increases. Intuitively, this
is because when the process is unstable, inspection is less
useful in that it gives us less information. When we in-
spect a unit we find out the status of the process at the
time it finished producing that unit. One might infer that
other units (produced both before and after this unit)
are likely to have the same status. When the process is
stable this inference is reasonable, but when the process
in unstable, the inference is unreliable.
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Table 5. Threshold batch size (i.e., minimal batch size for which an inspection is performed)

pc

0.005 0.01 0.05 0.1

pn 0.0025 0.005 0.01 0.005 0.01 0.02 0.025 0.05 0.1 0.05 0.1 0.2
CI CP CS scenario I II III IV V VI VII VIII IX X XI XII

1 ∞ ∞ A 1 1 1 1 1 1 1 1 1 1 1 1
1 ∞ 1 B ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
1 50 10 C 2 2 2 2 2 2 1 1 1 1 1 1
1 10 10 D 7 7 7 5 5 5 2 2 2 1 2 1
1 1 10 E 25 25 27 19 19 21 11 12 16 10 11 ∗
1 10 50 F 7 7 7 5 5 5 2 2 2 1 2 1
1 10 1 G 7 7 7 5 5 5 2 2 2 2 2 2

50 1 1 H 248 317 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
10 1 1 I 87 95 117 65 74 124 ∗ ∗ ∗ ∗ ∗ ∗

1 1 1 J 24 24 25 14 18 19 9 9 11 6 7 14

∗For these combinations inspection was never economically justified.

� A notable exception to the above point is scenario B. In
this case, because of the imbalance in the penalty costs
if we do not inspect, we will prefer the units to be non-
conforming. Thus, as pc increases for fixed pn (scenarios
II/IV, III/V, VIII/X, and IX/XI) the expected average
cost per unit decreases.

� Another exception occurs when the inspection costs are
so high that no inspections are called for (see Table 5)
and CP = CS. In these situations, for a fixed pc, the
expected average cost per unit at first goes up with
pn and then down. The intuition for this is that when
no inspections are called for the units must be dis-
posed of without inspection. When pc = pn (the situa-
tion with the highest cost) the probability that the last
unit is conforming/non-conforming asymptotically ap-
proaches one-half (see Equation (1)) and thus the ex-
pected cost of disposing of the unit without inspection
is high. However, when pn is decreased (respectively, in-
creased) the probability that the last unit is conforming
asymptotically approaches one-third (respectively, two-
thirds) and the last unit can be rejected (respectively, ac-
cepted) with a reasonable expectation that the decision
is the correct one.

� When the inspection costs are relatively high (scenarios
H and I) and the process is less reliable (high values of
pc), the expected average cost per unit is insensitive to
the value of the inspection cost. This can be explained
by the fact that in these cases no inspections are called
for (as discussed below); the units are classified based
on the other information available. However, when the
inspection costs are not high enough to cause no inspec-
tions to occur then the expected average cost per unit is
more sensitive to changes in CI.

4.2.3. Need for inspection
An important operational question when implementing the
optimal policy is whether any inspection is economically

justifiable. To address this issue, we calculated the minimum
batch size that justifies inspection for different parameter
values. Recall that for small batches it may be worthwhile
to dispose of the units without inspection. As the batch size
grows, we have less information about the status of the units
in the batch and thus, in some informal sense, inspection
gives us more information for a larger number of units. The
threshold batch size was obtained by finding the minimum
batch size for which the optimal policy called for inspecting
at least one unit. Table 5 presents the summary of these
results for all 120 combinations of our cost and probability
scenarios. Examining the table the following observations
can be made:

� When the reliability of the process decreases (larger val-
ues of pc and lower values of pn) the need for inspec-
tion increases, that is, inspection is justified for smaller
batches.

� When the inspection costs increase relative to the other
cost parameters, the need for inspection decreases, that
is, larger batches are required to justify inspection (see
scenarios J, I and H).

� The need for inspection is more sensitive to changes in
the penalty for incorrect acceptance CP than changes in
the penalty for incorrect rejection CS (see scenarios E,
D, C and G, D, F).

4.2.4. Expected number of inspections
In addition to economic optimization managers are in-
terested in operational aspects of the production process,
which includes workload analysis. The expected workload
on the inspection facility is important for production and
inspection planning. To address this issue, we calculated the
expected number of inspections for all 120 different com-
binations of the cost and probability scenarios. Our calcu-
lations were performed using the recursive formulas below.
First, new notation is defined:
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νSbSe (K) = The unit number to be inspected under the
optimal inspection/disposition policy in a
batch of size K, given that before (after) the
batch started (completed) the process was
in the Sb (Se) state. By convention, if the
batch is disposed of without inspection we
let νSbSe (K) = 0.

ISbSe (K) = The expected number of inspections under
the optimal inspection/disposition policy in
a batch of size K, given that before (after)
the batch started (completed) the process was
in the Sb (Se) state. Note that ISbSe (K) is not
the minimal expected number of inspections
possible, but rather the expected number of
inspections using the policy that minimizes
the expected average cost per unit.

Applying the definition of νSbSe (K) we have:

νSbSe (K) =




0 if the minimum in
Equation (3) isW SbSe (K),

arg min
1≤j≤K{
GSbSe

j (K)
}

otherwise.

Thus, the recursive formula for calculating the expected
number of inspections is:

ISbSe (K) =




0 if νSbSe (K) = 0,

α
SbSe

νSbSe (K)
(K)

(
ISbc

(
νSbSe (K)

)
+ IcSe

(
K − νSbSe (K)

))
+ (

1 − α
SbSe

νSbSe (K)
(K)

)
× (

ISbn
(
νSbSe (K)

)
+ InSe

(
K − νSbSe (K)

))
otherwise.

Table 6 summarizes the results for the expected number
of inspections, ISbSe (K), for a batch size of 500 and all 120
combinations of the cost and probability scenarios. The

Table 6. Expected number of inspections for a large batch (i.e., N = 500)

pc

0.005 0.01 0.05 0.1

pn 0.0025 0.005 0.01 0.005 0.01 0.02 0.025 0.05 0.1 0.05 0.1 0.2
CI CP CS scenario I II III IV V VI VII VIII IX X XI XII

1 ∞ ∞ A 500 500 500 500 500 500 500 500 500 500 500 500
1 ∞ 1 B 0 0 0 0 0 0 0 0 0 0 0 0
1 50 10 C 32 41 52 48 65 81 132 176 249 205 263 433
1 10 10 D 25 31 39 41 50 63 114 149 178 179 235 264
1 1 10 E 18 21 23 30 34 35 81 82 70 121 104 0
1 10 50 F 31 37 44 51 62 69 143 175 203 248 263 301
1 10 1 G 18 24 31 26 36 47 58 84 122 72 105 181

50 1 1 H 1 1 0 0 0 0 0 0 0 0 0 0
10 1 1 I 4 4 5 5 6 5 0 0 0 0 0 0

1 1 1 J 13 15 18 19 24 26 42 50 55 56 72 55

table reveals trends similar to the results we observed re-
garding the expected costs and the threshold batch size.

� When the stability of the process decreases, as identified
by higher values of pc and pn, the expected number of in-
spections generally increases. Intuitively this is because a
single inspection gives less information (see explanation
in section 4.2.2). Since each individual inspection gives
less information, more inspections are generally needed.

� When the penalties for acceptance/rejection errors are
large, more units are to be inspected (compare scenarios
E, D, C and G, D, F).

� On the other hand, the expected number of inspections
increases as the inspection cost decreases (H, I and J).

Another issue of interest is the expected number of in-
spections for different batch sizes. Table 7 presents the
expected number of inspections for the optimal policy,
ISbSe (K), as a function of the batch size for scenario V for
each of the different cost scenarios.

Raz et al. (2000) stated with respect to their model (i.e.,
without recovery, pc = 0) and for their graph corresponding
to Table 7 that “The last part of the curves appears to con-
verge to asymptotic values. This is intuitively plausible: as
the batch becomes larger, the probability that the last units
are non-conforming becomes practically one, and there is
no need for additional inspection to make the correct dis-
position decision”. The present model shows the same phe-
nomenon, albeit the asymptote is to a linear function and
not a constant. This is due to the fact that in the present
model, as the batch becomes larger, the probability that
“middle” units will be non-conforming reaches an asymp-
tote and thus the attention it needs (number of inspections)
also reaches an asymptote. In other words, if we examine
the expected average number of inspections per unit, it will
approach a constant. This phenomenon is consistent with
the observation above that the expected average cost per
unit approaches a constant as the batch size grows.
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Table 7. Expected number of inspections for probability scenario V

Batch size

CI CP CS Scenario 1 50 100 150 200 250 300 350 400 450 500

1 ∞ ∞ A 1 50 100 150 200 250 300 350 400 450 500
1 ∞ 1 B 0 0 0 0 0 0 0 0 0 0 0
1 50 10 C 0 7.08 13.7 20.2 26.7 33.0 39.3 45.6 51.9 58.2 64.6
1 10 10 D 0 4.70 10.4 15.1 19.8 25.5 30.2 35.0 40.6 45.4 50.1
1 1 10 E 0 2.37 5.36 9.39 12.6 16.4 19.8 23.3 26.9 30.4 33.9
1 10 50 F 0 5.11 11.5 17.5 23.9 30.1 36.4 42.8 49.0 55.3 61.7
1 10 1 G 0 3.95 7.91 11.6 15.1 18.7 22.2 25.8 29.3 32.8 36.4

50 1 1 H 0 0 0 0 0 0 0 0 0 0 0
10 1 1 I 0 0 1 1.45 2.43 2.88 2.92 4.32 4.36 5.75 5.80

1 1 1 J 0 1.84 4.62 6.79 8.96 11.7 13.8 16.5 18.7 20.9 23.6

4.2.5. Effect of imperfect estimation of the model
parameters

Until now we have assumed that all the model parameters
are given. In practice, however, this is not always the situa-
tion. In fact, if the true cost of inspection, CI, was 1.0, due
to the difficulty in estimating the cost parameters, it would
not be too surprising if one estimates the inspection cost
to be ĈI = 1.1 (we will use the symbol to denote perceived
costs). In this subsection we investigate the effects of such
estimation errors.

Consider the situation where the costs are estimated as
ĈI, ĈP and ĈS when the true costs are CI, CP and CS. In
this situation, the inspection/disposition policy would be
calculated using ĈI, ĈP and ĈS. This policy would then be

Table 8. Error factor due to imperfect cost estimation

pc

0.005 0.01 0.05 0.1

pn 0.0025 0.005 0.01 0.005 0.01 0.02 0.025 0.05 0.1 0.05 0.1 0.2
CI CP CS Scenario Deviation I II III IV V VI VII VIII IX X XI XII

1 10 10 D +10% in CP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.01
−10% in CP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
+20% in CP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.02
−20% in CP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
+30% in CP 1.00 1.01 1.01 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.03
−30% in CP 1.00 1.01 1.01 1.00 1.00 1.01 1.01 1.01 1.01 1.00 1.01 1.00
+10% in CS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
−10% in CS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
+20% in CS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
−20% in CS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
+30% in CS 1.00 1.00 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.00 1.00
−30% in CS 1.00 1.00 1.00 1.01 1.00 1.00 1.00 1.01 1.00 1.01 1.01 1.00

10 1 1 I +10% in CI 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
−10% in CI 1.00 1.00 1.00 1.00 1.01 1.00 1.00 1.01 1.00 1.00 1.00 1.00
+20% in CI 1.01 1.01 1.00 1.01 1.00 1.01 1.00 1.00 1.00 1.00 1.00 1.00
−20% in CI 1.01 1.01 1.01 1.01 1.02 1.01 1.00 1.03 1.00 1.00 1.00 1.00
+30% in CI 1.02 1.01 1.01 1.01 1.00 1.02 1.00 1.00 1.00 1.00 1.00 1.00
−30% in CI 1.02 1.03 1.02 1.02 1.03 1.02 1.00 1.07 1.00 1.00 1.00 1.00

implemented, but the actual costs incurred would be CI, CP
and CS. We call the ratio of the cost of this policy over the
optimal policy (i.e., the policy calculated and implemented
using the true costs CI, CP and CS) the error factor due to
imperfect cost estimation.

In Table 8 we report the error factor due to imperfect
cost estimation for selected combinations of the cost and
probability scenarios for a batch size of 500. We examine
the cases where the estimated costs differed from the actual
costs by 10, 20 and 30%. As can be seen from the table, the
system is more sensitive to errors in CI and more sensitive
to underestimation, but this is not to say that the system is
sensitive. In fact we conclude from Table 8 that the proposed
method is robust to imperfect cost estimation. The largest
error factor is found to be only 1.07 while the mean error
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factor is a mere 1.00 (1.004 if we use more significant figures)
and the median error factor is also 1.00 (1.001 if we use more
significant figures).

5. Heuristic solution

The optimal inspection/dispostion policy was found with
a dynamic programming algorithm and each decision de-
pends on the results of previous inspections. This means:

� The operational complexity is high. Before each inspec-
tion the inspector needs to consult the policy and use the
results of previous inspections as input. This operational
complexity may cause the optimal solution to be unim-
plementable for many real-life production processes.

� Only one inspection can be carried out at a time. As
pointed out by Herer and Raz (2000) there are potential
advantages of carrying out inspections in parallel.

On the other hand, the two immediately available heuristic
policies, namely the Inspect-All and No-Inspection Heuris-
tics may be unacceptably costly. For these reasons, we de-
velop a solution method that is cost efficient, simple to im-
plement, and allows the inspection process on all units to
begin simultaneously. Below we develop such a heuristic
which we will call the “end-point heuristic”.

5.1. The end-point heuristic

One of the better known heuristics for on-line inspection
is to inspect the process at constant intervals. That is, to
set a positive integer � and inspect every � units that exit
the machine. See for example Lee and Rosenblatt (1987),
Badı́a et al. (2001) and Kim et al. (2001). Our End-Point
Heuristic can be seen as taking the constant interval concept
and applying it to off-line inspection. Basically, our End-
Point Heuristic takes a batch of N units and divides it into
sub-batches of � units each, for some � = 1 . . . N. If N is
not divisible by �, then we let each sub-batch have � units
except for the last one. For a given �, we inspect the last
unit of each sub-batch. The units in each sub-batch are then
disposed of in the optimal manner using the information on
the status of the process at the end-points of the sub-batches.
The expected cost, which we denote cost�, is equal to the
sum of inspection costs and the expected penalty costs of
each of the sub-batches. We evaluate the expected cost for
each � = 1 . . . N and choose the � with the lowest cost. The
following pseudo-code presents the End-Point Heuristic.

input N, Sb, Se
for � = 1 to N

m = 1, cost� = 0
while m + � < N do begin

cost� = cost� + CI + αSbSe
m (N)αSbSe

m+�−1(N)W cc(�)

+ αSbSe
m (N)

(
1 − α

SbSe
m+�−1(N)

)
W cn(�)

+ (
1 − αSbSe

m (N)
)
α

SbSe
m+�−1(N)W nc(�)

+ (
1 − αSbSe

m (N)
)(

1 − α
SbSe
m+�−1(N)

)
W nn(�)

m = m + �

end while
cost� = cost� + CI + αSbSe

m (N)αSbSe
N (N)W cc(N − m + 1)

+ αSbSe
m (N)

(
1 − α

SbSe
N (N)

)
W cn(N − m + 1)

+ (
1 − αSbSe

m (N)
)
α

SbSe
N (N)W nc(N − m + 1)

+ (
1 − αSbSe

m (N)
)(

1 − α
SbSe
N (N)

)
W nn(N − m + 1)

end for

The cost of the End-Point Heuristic is min� cost�.

5.2. Computational study of the end-point heuristic

In this section we compare, through a computational study,
the performance (i.e., the expected cost relative to the op-
timal policy) of the three heuristics presented in this pa-
per, namely the End-Point, Inspect-All, and No-Inspection
Heuristics.

Inclusion of the Inspect-All and No-Inspection Heuris-
tics into the scope of the computational study is important
since it allows operations managers to evaluate the trade-off
between cost efficiency and the computational effort needed
for the optimal and End-Point Heuristic policies. One of the
purposes of the comparisons presented in this section is to
analyze the characteristics of the production process that
affect the relative gain of the optimal over the heuristic so-
lution. Table 9 presents the ratio of the heuristic policy cost
to the optimal cost (see Table 4), for the three policies for a
batch size of 500 units and for all 120 combinations of the
cost and probability scenarios. Examining this table we can
make following observations:
� As the inspection cost grows, the Inspect-All Heuristic

becomes more expensive relative to the optimal policy
(compare scenarios J, I and H). Although this is a trivial
result, it has important managerial application: in the
presence of high inspection costs, managers should al-
low the parts to be accepted and/or rejected without
knowing their status with certainty.

� In general, the performance of the heuristics relative to
the optimal solution improves with higher values of the
failure and recovery probabilities, pc and pn. Our intuitive
explanation for this finding is as follows. The advantage
of the optimal policy results from the fact that it is adap-
tive, in the sense that at any point in time the decision
regarding whether to accept, reject or inspect, and if so,
which unit, is made on the basis of all the information
available at that moment, as reflected by Sb and Se. In
contrast, the No-Inspection and Accept-All Heuristics
disregard that information and the End-Point heuristic
only utilizes it in a limited manner, since according to
this heuristic the inspection interval is fixed and cannot
be adjusted in response to the actual values observed.
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Table 9. Ratio of expected costs for different policies to the cost of the optimal policy

pc

0.005 0.01 0.05 0.1

pn 0.0025 0.005 0.01 0.005 0.01 0.02 0.025 0.05 0.1 0.05 0.1 0.2
CI CP CS Scenario policy I II III IV V VI VII VIII IX X XI XII

1 ∞ ∞ A End-point 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
No-inspection ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
Inspect-all 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

1 ∞ 1 B End-point 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
No-inspection 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Inspect-all 1.98 1.67 1.41 2.38 1.82 1.45 2.86 1.96 1.49 2.93 1.98 1.50

1 50 10 C End-point 11.81 9.05 6.96 7.77 5.82 4.42 2.84 2.10 1.61 1.89 1.41 1.09
No-inspection 55.56 50.86 46.69 31.36 30.95 29.59 9.85 10.63 10.77 6.43 7.07 7.30
Inspect-all 11.81 9.05 6.96 7.77 5.82 4.42 2.84 2.10 1.61 1.69 1.41 1.09

1 10 10 D End-point 14.86 11.87 9.66 9.40 7.44 6.03 3.28 2.59 2.15 2.14 1.69 1.41
No-inspection 54.05 47.66 27.96 32.95 33.55 18.80 11.06 12.69 7.07 7.17 8.38 4.68
Inspect-all 14.86 11.87 9.66 9.40 7.44 6.03 3.28 2.59 2.15 2.14 1.69 1.41

1 1 10 E End-point 4.57 4.00 3.24 3.09 2.84 2.38 1.56 1.49 1.21 1.27 1.24 1.00
No-inspection 9.56 6.65 4.28 6.81 4.57 2.90 2.64 1.78 1.21 1.75 1.24 1.00
Inspect-all 19.35 16.55 14.78 11.76 10.13 9.29 4.07 3.63 3.68 2.66 2.50 3.01

1 10 50 F End-point 11.87 9.89 8.46 7.23 6.09 5.26 2.47 2.12 1.91 1.62 1.41 1.30
No-inspection 58.66 39.74 24.49 41.87 27.46 16.41 16.05 10.40 6.28 10.68 7.00 4.32
Inspect-all 11.87 9.89 8.46 7.23 6.09 6.26 2.47 2.12 1.91 1.62 1.41 1.30

1 10 1 G End-point 4.48 3.68 2.81 3.24 2.73 2.12 1.70 1.49 1.26 1.23 1.25 1.12
No-inspection 9.40 8.54 7.79 5.36 5.15 4.89 1.79 1.82 1.77 1.23 1.25 1.19
Inspect-all 19.27 14.72 11.27 13.00 9.53 7.20 5.14 3.57 2.65 3.61 2.48 1.78

50 1 1 H End-point 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
No-inspection 1.11 1.12 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Inspect-all 152.96 139.74 172.66 142.59 110.86 160.37 148.39 101.83 151.72 149.15 110.81 150.70

10 1 1 I End-point 1.25 1.17 1.11 1.11 1.06 1.05 1.00 1.00 1.00 1.00 1.00 1.00
No-inspection 2.31 2.17 1.42 1.58 1.69 1.10 1.00 1.00 1.00 1.00 1.00 1.00
Inspect-all 63.48 54.13 49.20 45.13 37.54 35.42 29.68 20.37 30.34 29.83 20.16 30.14

1 1 1 J End-point 3.39 2.91 2.34 2.44 2.14 1.77 1.30 1.21 1.12 1.12 1.06 1.05
No-inspection 9.72 8.73 5.27 6.06 6.19 3.60 2.19 2.51 1.48 1.49 1.74 1.07
Inspect-all 26.71 21.74 18.20 17.28 13.72 11.54 6.51 5.11 4.49 4.46 3.51 3.23

Now, that advantage is most valuable when the failure
and recovery rates are relatively small, i.e., the process is
relatively stable, which means that the inferences regard-
ing the status of the other units in the batch that are made
based on Sb and Se are valid. Conversely, the advantage
of the optimal policy with respect to the heuristics de-
clines when the failure and recovery rates are higher, i.e.,
the process is relatively unstable, and the information
provided by Sb and Se is less valuable.

� Not surprisingly, the End-Point Heuristic outperforms
the other two heuristics. This is due to the fact that it
utilizes information about Sb and Sc, which the other
heuristics ignore.

6. Concluding remarks

Off-line inspection following an unreliable production pro-
cess is an appropriate quality assurance tactic for certain
systems. In this paper we developed a model that supports

decision-making regarding which units should be inspected
and how the units that were not inspected should be dis-
posed of, in order to minimize the sum of the expected in-
spection and disposition error costs. The model is based on
a dynamic programming algorithm that has a low compu-
tational complexity, O(N2), and that can be implemented
on electronic spreadsheets without major effort.

The study also included a sensitivity analysis under a
variety of cost and probability scenarios, supplemented by
an analysis of the smallest batch that requires inspection,
the expected number of inspections, and the performance
of an easy to implement heuristic.

The main contribution of this work is that it provides
a practical tool to assist operations managers and quality
managers in managing the performance of a type of pro-
cesses that thus far has not been fully addressed by the
research literature. The value of the tool is enhanced by
its ease of implementation and by the various insights and
implications obtained from the analyses.
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One of the assumptions of our model is that only con-
forming (non-conforming) units are produced in the IN
(OUT) state. Relaxing this assumption would mean that
the problem would no longer “separate” when an item is
inspected. For example, even if units 7–22 were all non-
conforming, this could be due to “bad luck” in the IN state.
For this reason the size of the state space would become 3n.
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