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Probabilistic sequential methodology for designing a factorial system
with multiple responses

I. BEN-GAL² *, D. BRAHA ³ and O. Z. MAIMON²

This paper addresses the problem of optimizing a factorial system with multiple
responses. A heuristic termed probabilistic sequential methodology (PSM) is pro-
posed. The PSMidenti® es those designs that maximize the likelihood of satisfying
a given set of functional requirements. It is based on sequential experimentation,
statistical inference and a probabilistic local search. The PSM comprises three
main steps: (1) screening and estimating the main location and dispersion e� ects
by applying fractional factorial experiments (FFE) techniques; (2) based on these
e� ects, establishing probabilistic measures for di� erent combinations of factor-
levels; and (3) constructing a set of candidate designs from which the best solution
is selected by applying a heuristic local search. The PSM is attractive when the
exact analytic relationship between factor-level combinations and the system’s
responses is unknown; when the system involves qualitative factors; and when
the number of experiments is limited. The PSM is illustrated by a detailed case
study of a Flexible Manufacturing Cell (FMC) design.

1. Introduction
1.1. Sequential experimentation strategies for systems with multiple responses

Consider the problem of optimizing a factorial system in situations where the
exact analytic relationship between the system con® guration (characterized by a
combination of factor-levels) and the system response is unknown. Consequently,
factorial e� ects are evaluated by experimentation. One practicable strategy is to
conduct all experiments at once, while the other approach is to run experiments
sequentially. Response Surface Methodology (RSM), for example, is founded on
such an approach (e.g. see Myers and Montgomery 1995).

Box (1992) mentions several strategies by which a second stage of experimenta-
tion might evolve as a result of the analysis of the ® rst stage. For s̀cienti® c under-
standing’ , Box suggests adding a second (full or fractional) factorial experiment. For
a q̀uick ® xing’ of factors, he proposes a p̀icking-the-winner’ strategy, where the
additional experiments do not necessarily form a fractional factorial experiment.
Box analysis, which relates to a speci® c example, addresses only location e� ects
(e� ects on the response mean), overlooking the dispersion e� ects (e� ects on the
response variance, which are addressed by Box and Meyer (1986a) but not in the
context of sequential experimentation).

Driven by similar concepts, Shang (1995) suggests sequentially employing t̀wo
optimum-seeking methods’ for designing and optimizing a ¯ exible manufacturing
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system: ® rst, the controversial Taguchi method (e.g. see Box 1988, Box et al. 1988,
Nair 1992) is applied as a screening process and used to optimize qualitative factors.
Second, the RSM is applied in order to ® ne-tune the quantitative and continuous
factors, since RSM c̀annot perform optimization for qualitative factors’ . Shang’ s
use of the RSM approach requires a large number of experiments. In the case study
provided, approximately 200 simulation-runs are performed to propose the best
design with respect to a single performance measure. Such an extensive experimenta-
tion is suitable only when the cost per experiment is su� ciently low.

Both Shang and Box address, in the above mentioned papers, systems with a
single response. However, many systems have more than one criterion by which their
overall performance is determined. Extensive research work was conducted in this
area. Pignatiello (1993), for example, de® nes a quadratic loss function for use of
multiple quality characteristics and summarizes several strategies that could be
employed when seeking robust designs. Elsayed and Chen (1993) as well as
Logothetis and Haigh (1988) used Taguchi’s loss function and Box’s PerMIA to
optimize a multi-response system. Other methods suggest converting all objectives
into equivalent units by considering their relative importance.

The approach presented in this paper proposes a numerical probabilistic measure
termed the success probability (see Suh 1990, 1995, Braha and Maimon 1998). This
measure quanti® es the likelihood of a design to satisfy a set of independent require-
ments. The use of the success probability measure provides a means by which di� er-
ent functional requirements are integrated and normalized to units of probability.
Using this measure for design optimization is appealing for several reasons: (1) it
o� ers an intuitive and unbiased decision criterion to support the design process (as
opposed to coded units used frequently by the RSM and other methods); (2) it is
applicable to systems composed of both quantitative and qualitative (non-ordinal)
factors; and (3) the use of the probabilistic measure enables the development of many
probabilistic algorithms (see section 3) including the heuristic optimization proposed
by this paper.

1.2. The proposed heuristic
In this paper, we suggest a heuristic termed Probabilistic Sequential Methodology

(PSM) for a successful factorial design, which is based on sequential experimenta-
tion, statistical inference and probabilistic local search. The PSM applies fractional
factorial experiments (FFE) techniques combined with a heuristic local search. The
FFE method is used in the ® rst stage for factor screening, and for estimating the
main location’s as well as the dispersion’s e� ects. Based on these e� ects, the PSM
establishes the success probability measures, which evaluate the likelihood of each
design (or sub-design) to satisfy the requirements. Then, a heuristic local search is
applied and a sample set of `most probable designs’ is constructed and evaluated.
The PSM addresses multiple requirements by repeating the local search with respect
to di� erent functional requirements. Finally, the PSM ® nds the best design, with
respect to all the functional requirements, among the sets of `most probable designs’.

The PSM is formulated in a generic manner, and although further research is
needed to support the hypothesis that the heuristic is applicable for general prob-
lems, a successful application is presented in section 4. The rational of the proposed
heuristic is based on the following fundamentals: (1) it utilizes a sequential experi-
mentation paradigm; (2) it considers both dispersion as well as location e� ects; (3) it
applies, similar to Shang’s procedure, both a screening stage (using FFE instead of
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the controversial Taguchi method) as well as a ® ne tuning stage (using a similar
strategy to Box’s `picking-the winner’ approach); (4) its optimization heuristic is
applicable to systems having numerous qualitative and quantitative factors; and
(5) it addresses systems that involve multiple performance measures. Note that the
PSM generates (heuristically) the s̀et of most probable design’ (the ® nal region of
interest) after a single experiment, as opposed to the iterative steepest ascent method-
ology used in RSM (particularly in a multiple responses case when a small step size is
applied). However, in contrast to RSM, if a design point that is included in the s̀et of
most probable designs’ falls far from the region containing the original observations,
then the prediction interval associated with its response might be incorrect and
substantially large. This fact motivates the use of replicated con® rmation experi-
ments for each design in that set, as done in the ® nal steps of the PSM.

It follows that the PSM is attractive for certain situations. First, when the
designer is willing to sacri® ce knowledge about the prediction properties of the
model in the ® nal region of interest. Secondly, when experiments are too expensive
for an iterative optimization process while replications are relatively cheap (e.g. in
testing of design prototypes, where the construction of a prototype is costly while the
cost of its testing is relatively low). Thirdly, when the design contains many quali-
tative factors. For models that mainly involve continuous quantitative factors, more
suitable optimization methods may be applied, such as (1) multiple RSM models
(one per each level of a qualitative factor) combined with a direct optimization by
steepest ascent procedures of a properly chosen quadratic loss function (Pignatiello
1993); or (2) the dual response surface approach (Myers and Montgomery 1995) by
modelling and optimizing both the mean and the variance of a response.

The paper is organized as follows: notations and problem formulation are pro-
vided in section 2, followed by a detailed discussion of the proposed methodology in
section 3. The solution approach is illustrated in section 4 by designing a real world
Flexible Manufacturing Cell (FMC). Section 5 concludes the paper.

2. Notation and problem formulation
Consider an empirical model written as

y = f (x1, x2, . . . , xK;
^

b 1, ^
b 2, . . . , ^

b p) + e , (1)
where y is the system response; f is the ® rst- or second-order polynomial; x1, . . . xK
are the system factors; e is a random noise component; and ^

b 1, . . . , ^
b p are the par-

ameter estimators. In particular, if x1, . . . , xK are qualitative or nominal quantitative
factors, then a design is determined by a combination of parameter-levels:

dn x1(q1), x2(q2), . . . , xK(qK) j qi 2 f 1, . . . , Qgf g n = 1, . . . , QK, (2)
where each factor takes one out of Q possible levels. For Q = 2, we simply use xi(+)
or xi(- ) to denote the levels of the ith factor. Consider a multiple responses system
with L responses and W replications per experiment. Denote the response of the wth
replication of the nth treatment, with respect to the lth functional requirement by
yl

nw, l = 1, . . . , L , w = 1, . . . , W (the notations w, l are omitted if W = 1 or L = 1,
respectively). Assume that a functional requirement is represented by a required
tolerance for the respective response. Let tl = (LBl , UBl) be the lth required toler-
ance, where LBl and UBl denote the lower and upper limits, respectively.
T = f tl j l = 1, 2, . . . , L g denotes the set of required tolerances in the L multiple-
responses system.
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As mentioned above, we consider situations in which the designer looks for the
combinations of levels that maximize the likelihood of satisfying the functional
requirements. This likelihood is evaluated by the success probability (Suh 1990),
which is the probability of the design response to fall within the required tolerance.
Pl

n denotes the success probability of the nth design with respect to the lth functional
requirement, and is given by

pl
n Prob LBl yl

n UBl . (3)

In practice, the exact probability distribution of the response might be unknown and
has to be estimated empirically. In which case, the estimated success probability p̂l

n is
found by substituting yl

n with the estimated response ŷl
n. The overall success prob-

ability, Pn, of the nth design with respect to a set of L independent functional
requirements is estimated by

^Pn =
L

l=1

^Pl
n. (4)

Finally, let us address scenarios where experimental resources are limited. We
associate a unit cost to a single experiment run, and limit the total number of
experiments to C . The designer task is to seek the b̀est’ combination of factor-
levels, constituting the `best’ design solution d , which maximizes the overall success
probability by performing at most C experiments. Thus, d dn , where
n arg maxn f ^Pn j n = 1, . . . , QK g . Note that by b̀est’ we mean t̀he best solution
considering the information gathered throughout the experiments’ . The designer
may decide to examine the admissibility of the optimal design d by comparing its
overall success probability p with a threshold probability P0. If P < P0, an elab-
orate experimentation of the system, with a larger number of factors and/or levels
might be required.

3. A probabilistic sequential methodology for design
The search for an optimal design may be deterministic, by showing which designs

are categorically inferior, or probabilistic, by identifying those designs that have the
highest probability of satisfying a given set of requirements (see Maimon and Braha
1996). The methodology presented in this paper is founded on the probabilistic
paradigm. This paradigm enables the development of many other probabilistic
schemes, such as: (1) using success probability measures to evaluate designs according
to their functional complexity (Suh 1990, 1995); (2) introducing a stochastic dynamic
programming framework to design experiments (Ben-Gal and Caramanis 1998); and
(3) developing optimal information criteria that are based on the correspondence
between FFE and Information Theory (Ben-Gal and Levitin 1997, 1998).

3.1. Estimation of success probability measures
In this section, we discuss the procedure used to estimate the success probability

of di� erent combinations of factor-levels with respect to a single functional require-
ment. Later, this procedure is repeated for each independent requirement and the
overall success probability is computed by applying (4).

The success probability of the nth design depends on the probability distribution
of its response, yn, which is estimated empirically. It is assumed that the response is
normally distributed, therefore, it is enough to estimate its mean and variance in

2706 I. Ben-Gal et al.



order to evaluate p̂n. If the normality assumption does not hold, one has to increase
the number of replications and rede® ne the success probability with respect to the
mean response yn, which is Gaussian in distribution according to the central limit
theorem. In what follows, two alternative procedures are applied in order to estimate
the response mean and the response variance.

Direct estimation: If the experiments have a su� cient number of replications (say,
W 5), the response statistics of the nth treatment in the design matrix can be
directly estimated by the sample mean and sample variance, given respectively by

yn =
1
W

W

w=1

ynw (5)

and

S2
n =

1
W - 1

W

w=1
(ynw - yn)2. (6)

Indirect estimation: Alternatively, one might use the empirical model to estimate
the response statistics. Consider, for example, the ® rst-order linear statistical model
with two levels:

y = b 0 +
K

i=1

b ixi(qi) +
K- 1

i=1

K

j=i+1

b ij xi(qi)xj(qj) + e ; qi, qj 2 f +, - g ; e N(0, s 2),

(7)
where model parameters b 1, . . . , b p are estimated by applying regression techniques
(e.g. see Montgomery 1997). Then, the expected response for any factor combination
(whether or not such a combination is included in the design matrix) can be esti-
mated by adding the location e� ects associated with this particular combination of
parameter levels. Clearly, this estimate depends on the model adequacy that has to
be veri® ed. The method of estimating the response variance depends on the existence
of dispersion e� ects. If no dispersion e� ects are found (e.g. as implied by equation
(7)), the response variance s 2 is simply estimated by the mean square error (MSE). If
dispersion e� ects do exist, the variance response is estimated by the sum of disper-
sion e� ects associated with a particular combination of factor-levels. Box and Meyer
(1986a) provide an approximate method to estimate the dispersion e� ects that is
based on calculating the sample variance of di� erent subsets of residuals. Each
subset of residuals is associated with a speci® c factor-level setting. For instance,
consider a 2K- G FFE, where G is the number of generators. A signi® cant di� erence
between the variance of the 2K- G- 1 residuals S2[xi(- )], where the factor xi is ® xed to
its low level, and the variance of the remaining 2K- G- 1 residuals S2[xi(+)], where the
factor xi is ® xed to its high level, indicates that the factor xi has a dispersion e� ect. xi
is then called a dispersion factor. In practice, dispersion e� ects are identi® ed by
plotting and examining the residuals against the levels of a particular factor, or by
applying the statistic

Fxi = ln
S2[xi(+)]
S2[xi(- )], (8)
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which has an approximate normal distribution if the two variances s 2[xi(+)] and
s 2[xi(- )] are equal. Fxi

values may be studied by numerical comparisons and by
normal probability plots.

In the PSM, we extend Box and Meyer’ s method to account for the combination
of factor-levels. The approximate method is applied to estimate dispersion e� ects of
factor interactions. Note, however, that in order to estimate the sample variance of
residuals, one needs enough data points for each combination of levels. In general,
for a 2K- G FFE with W replications and kd interacting dispersion factors, there are
W 2K- G- kd data points for each subset of residuals (associated with a combination
of kd factors). The number of data points for each subset of residuals decreases as the
number of interacting factors increases. Thus, when estimating higher-order disper-
sion e� ects directly, one expects a lower accuracy of the variance estimates.
Moreover, the number of required calculations grows exponentially with the order
of the interaction. In particular, as illustrated in section 4.3, approximating the
dispersion e� ects of kd factors (each with Q levels) up to the d th-order, requires
estimating the variance of

kd
d

Qd

subsets of residuals.
Thus far we have discussed the success probability of designs as determined by an

entire set of factor combinations, dn f xi(qi) j i = 1, . . . , K; qi 2 f 1, . . . , Qg g . We
now consider sub-designs represented by a subset of factor combinations:

d xi(qi), . . . , xj(qj) xi(qi), . . . , xj(qj) j i, . . . , j K; i 6= . . . 6= j; qi, . . . , qj

2 1, . . . , Qgf g .
(9)

Here, the expected response E[ŷ(xi(qi), . . . , xj(qj))] and the response variance
V[ŷ(xi(qi), . . . , xj(qj))]can be estimated, respectively, by the sum of location e� ects
and the sum of dispersion e� ects. The other parameters that do not belong to the
subset are set to zero. This procedure results in an expected response of all the
designs that contain such a subset (while all other factors vary uniformly among
all possible combinations).

Finally, by knowing both the location and the dispersion e� ects of a sub-design,
one can estimate its success probability as follows,

^P xi(qi), . . . , xj(qj) Prob ŷ[xi(qi), . . . , xj(qj) 2 tg . (10)
In particular, the success probability measures of a subset that contain a single factor
with two levels are estimated accordingly and denoted by P[xi(+)], P[xi(- )].

3.2. The PSM algorithm steps
Having de® ned the success probability measure and delineated ways to estimate

it, we outline the PSM algorithm. The algorithm is further illustrated in section 4 by
presenting a detailed case study.

Outline of the PSM algorithm

Step 1. Initialization
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Consider a factorial system, L independent functional requirements (provided by the
tolerances set T ) and a limit C on the total number of experiments. Allocate N
treatments out of C permitted experiments, and set an initial design matrix X that
contains K factors, which are assumed to a� ect the ® rst functional requirement (i.e.
set l = 1). Di� erent FFE criteria (e.g. alphabetic optimality criteria) can be applied
to generate various design matrices. Nonetheless, the PSM requires main factors and
interactions not to be aliased one with the other, so their e� ects can be estimated
independently. Noise factors might be included in the design matrix, if such factors
exist, to account for robust designs in a later stage.

Step 2. First experimentation (screening)
Conduct the experiments in X by utilizing either the original system or a model of it
(e.g. computer simulation).

Step 3. Analysis
(i) Identify the signi® cant factors and interactions having location e� ects using

normal probability plots or other FFE techniques (see Box and Meyer
1986b). These factors are called location factors and are represented by
the vector xa (following Pignatiello 1993).

(ii) Identify signi® cant factors and interactions having dispersion e� ects using
the sample variance of residuals, plots of residuals versus factors, or other
methods. These factors are called dispersion factors and are represented by
the vector xd .

(iii) Identify factors having no location e� ects and no dispersion e� ects. These
factors are called non-signi® cant factors and are represented by the vector x0.

(iv) Verify the underlying statistical model by analysing the residuals and var-
iances (ANOVA). If needed, re® ne the statistical model, conduct more
experiments, and repeat Steps 1± 3. If the model is validated, estimate the
parameters of the underlying model.

Step 4. Fixing location and non-signi® cant factors
Fix the factors and interactions having only location e� ects (xi, xj, xixj, . . . 2 xa, /2 xd)
to their best levels, with respect to functional requirement tl. Fix the factors and
interactions that have both location and dispersion e� ects (xi, xj, xixj, . . . 2 xa \ xd)
to the levels that will maximize the estimated success probability (applying equation
(10)), with respect to the functional requirement tl. Fix the factors and interactions
having no location e� ects and no dispersion e� ects ( 8 xi 2 x0) to their best economic
levels.

Step 5. Designing the second set of experiments
Construct a new design matrix X 0 that includes N 0 new treatments as follows.

(i) If the dispersion factors appear to interact among themselves, conduct a full
factorial experiment, provided that N 0 is large enough, by varying all the
dispersion factors (xi 2 xd) while all other factors (xi 2 xa [ x0) are ® xed
according to Step 4.

(ii) If N 0 is not large enough, or if the dispersion factors, xi 2 xd , do not appear
to interact one with the other, a set of N 0 designs that have the highest
estimated success probability (the set of `most probable designs’) is generated
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heuristically. To compute the success probability measures two cases are
considered.
(a) If there are su� cient data points to estimate the variance of subsets of

residual, use the direct estimate of dispersion e� ects for each combina-
tion of levels of the dispersion factors, as suggested in section 3.2 (based
on Box and Meyer 1986a).

(b) If data are not su� cient to support a direct evaluation of each level-
combination of dispersion factors, approximate the dispersion e� ect of
each combination by the sum of its individual dispersion e� ects (this
method is illustrated in section 4.3).

Step 6. Second experimentation
Repeat each experiment in X 0 for W 0 independent replications. Then, estimate the
success probability ^Pl

n associated with each design in X 0 as follows; if W 0 is large
enough (i.e. W 0 3) compute ^Pl

n directly (applying equations (5) and (6)), otherwise
use the underlying statistical model and estimate it indirectly (applying equation (10)
as suggested in section 3.1).

Step 7. Repeating Steps 1± 6 for di� erent functional requirements
Generate the set X 0

l of `most probable designs’ with respect to each functional
requirement l (l = 2, . . . , L ) by repeating Steps 1± 5, and apply Step 6 to each set X 0

l .

Step 8. Selecting the best design
Considering that the L functional requirements are independent, obtain the mega-set
XL = [ L

l=1X
0
l of design points by merging the L sets of `most probable designs’.

Exclude those design points in XL that are expected to have a low overall success
probability and obtain the ® ltered mega-set ~

XL . Experiment and replicate each
design point in the ® ltered mega-set ~

XL with respect to the remaining functional
requirement. Compute the overall success probability of each design point in ~

XL by
applying (5) and (6). Select the best design solution d that yields the maximum
overall success probability among all the designs in ~

XL .
The PSM algorithm is illustrated in ® gure 1.

4. An illustrative case study
In this section, a detailed case study of a Flexible Manufacturing Cell (FMC)

design is presented. Designing a FMC is a complex task since the exact analytic
relationship between the cell con® guration and its performance (e.g. throughput
rates) is unknown. For example, if a change is made at a particular workstation,
the overall impact may not be predictable analytically. Consequently, experimenta-
tion through computer simulation is often used as a technique for evaluating the
performance measures of FMCs (see Shang 1995). A typical FMC includes factors
such as: number of machines, queue discipline, bu� er sizes, operation modes, and
machine groupings into cells. Common performance measures include throughput
rates, work-in-process levels, machine utilization, and pro® tability.

The case study is organized as follows: (1) a brief description of the FMC, the
underling production processes, and the factors are provided; (2) several issues
related to the simulation modelling of the FMC are addressed; and (3) a detailed
implementation of the PSM algorithm (described in section 3.2) is applied for the
FMC design problem.
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4.1. System description
4.1.1. Cell stations and machines

The FMC is located at the Automated Design & Manufacturing Laboratory
(ADMS) at Boston University. The cell is composed of various types of stations
located around a central conveyor belt. It includes two robots; a lathe machine
(DYNA); two milling machines (TMC); a vision system; and various control and
communication components (such as sensors; terminals; communication networks;
controllers; and a PLC). The cell is composed of the following stations (see ® gure 2):
(1) computer-aided design stations; (2) a computer numerically controlled (CNC)
machines station; (3) a quality control (QC) station, which is used to perform quality
inspection and rework processes; (4) an assembly station, which is used to assemble
® nished products; and (5) a main controller station, which is used to supervise the
various activities in the FMC.
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Figure 1. A schematic ¯ owchart of the PSM algorithm.



Two di� erent production processes are considered. In the ® rst process, two
di� erent part types are manufactured and assembled to create a ® nished product.
A third part type is manufactured in the second process. Each of the part types
follows a di� erent processing route as detailed below and illustrated in ® gure 3.

Part type 1 (process 1): Part arrival ! loaded to TMC 1 by robot 1 ! milling by
TMC 1 ! loaded to the conveyor by robot 1 ! transportation by the con-
veyor ! quality control by the vision system ! re-milling in probability 0.3 by
TMC 2 ! assembly with part type 2 by robot 2.

Part type 2 (process 1): Part arrival ! loaded to the DYNA by robot 1 ! turning by
the DYNA ! loaded to the conveyor by robot 1 ! transportation by the con-
veyor ! quality control by the vision system ! re-milling in probability 0.4 by
TMC 2 ! assembly with part type 1 by robot 2.

Part type 3 (process 2): Part arrival ! turning by the DYNA ! transportation by
robot 1 ! milling by TMC 1 ! transportation by the conveyor ! quality control by

2712 I. Ben-Gal et al.
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the vision system ! re-milling in probability 0.2 by TMC 2 ! assembly of two iden-
tical part types by robot 2.

4.1.2. The FMC control factors
The following factors that a� ect the cell performance, are considered.

(1) Processing times of primary operations at the CNC station are ® xed. Rework
(countersinking and tapping) processing times are distributed exponentially
but their mean di� ers on the raw material type (aluminium versus steel). For
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aluminium parts, the mean is 5.5 time units, for steel parts, the mean is 6.5
time units.

(2) Two types of maintenance plans are considered for the robots. The ® rst plan
ensures a better reliability but requires more maintenance time. Reliability is
measured in terms of mean time between failures (MTBF), and maintenance
time is measured in terms of mean time to repair (MTTR). The reliabilities of
the CNC machines are ® xed.

(3) Two modes of operation of the central conveyor are considered. Mode 1
utilizes a belt speed of 10 m per time unit, and mode 2 utilizes a belt speed
of 20 m per time unit.

(4) Robots perform certain material-handling tasks according to several sched-
uling procedures. Three policies are considered: (a) ® rst-come ® rst-serve
(FCFS), (b) high value ® rst (HVF)Ð prioritizing part type 2 over part type
1, and (c) low value ® rst (LVF)Ð prioritizing part type 1 over part type 2.
Note that, online operational control and oƒ ine design aspects are consid-
ered simultaneously, as suggested by Shang (1995) and Egbelu and Tanchoco
(1984).

(5) Inter-arrival times of raw materials are normally (truncated) distributed with
a mean arrival rate of 8 time units. The variances of the arrival rates depend
on the supplier’ s service. Two possible scenarios are considered. If it is found
that variance e� ects interact with a controllable factor, they might be treated
as noise factors to establish a robust design according to the Taguchi method
(it is suggested to include the noise factors in a combined array instead of a
crossed structure array in order to minimize the number of experimentsÐ e.g.
see Phadke 1989). Otherwise, the variances are treated as controllable factors
by supervising the supplier policies or by replacing them.

(6) The DYNA lathe machine can operate in two possible modes: (a) l̀ong stack’
mode, which requires longer set-up time and longer time between consecutive
set-ups (20 time units/150 times units); and (b) s̀hort stack’ mode, which
requires shorter set-up and shorter time between consecutive set-ups (8
time units/85 times units).

(7) Some second-order interactions are assumed to be signi® cant.

Eight two-level factors are considered for further investigation, as summarized in
table 1.
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Factors Code Level 1 (+) Level 2 (- )
1. Maintenance type of robot 1 R1 MTBF/MTTR (75/3) MTBF/MTTR: 125/10
2. Maintenance type of robot 2 R2 MTBF/MTTR (75/3) MTBF/MTTR: 125/10
3. Dyna modes DY s̀hort Stack’ (8/85) l̀ong stack’ (20/150)
4. Conveyor modes CS MODE 1 (10) MODE 2 (20)
5. Policy of robot 1 PR1 FCFS LVF
6. Policy of robot 2 PR2 FCFS HVF
7. Arrival rate variance ARR N(8, 1) N(8, 2)
8. Raw material type RM Aluminium steel

Table 1. The controllable factors used for the FMC design.



4.1.3. The FMC performance measures
Three performance measures are outlined as follows.

(1) Average Flow Time for Process 1 (Rsys1), which is the average time that
a product spends in a manufacturing system during process 1. Rsys1 is a
smaller-the-better (STB) type of measure. Rsys1 also measures the balance
between production rates of part type 1 and part type 2, since only the
assembled ® nished products are released from the system.

(2) Average work-in-process in process 1 (WIP1), which is the amount of inven-
tory (parts) in the manufacturing system during process 1. WIP1 is a nom-
inal-the-best (NTB) type of measure, since the designer aims at minimizing
the WIP level without starving the bottleneck machines. WIP1 and Rsys1 are
dependent according to Little’s law (e.g. see Cassandras 1993). Thus, one
expects that a s̀uccessful’ design solution with respect to one measure is also
s̀uccessful’ with respect to the other.

(3) Average ¯ ow time for process 2 (Rsys2), which is the average time that part
type 3 spends in the system. Rsys2 is a smaller-the-better (STB) type of
measure. It is assumed that Rsys2 is independent of WIP1 and Rsys1 since
both processes are executed in di� erent time slots.

4.2. Simulation aspects
Performance measures are investigated through simulations. The logic structure

for the simulation model is illustrated in ® gure 3. The simulation model is written
using the SIMAN V simulation language. The model consists of more than 100
blocks, more than 2000 entities, and is executed for a horizon of 2000 time units.
In order to lower the possibility of correlated simulation runs, di� erent seeds and
streams are used for di� erent executions. The probability distributions and par-
ameters, which are used in the simulation, are speci® ed in table 2.

4.3. Applying the PSM algorithm
The characteristics of the design problem are as follows; consider eight factors

(K = 8), each of which has two levels (Q = 2). Functional requirements are given by
T = f t1 = (0, 235), t2 = (0, 40), t3 = (0, 135) g , where t1, t2 and t3 denote the required
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Activities
Part-type 1

distributions
Part-type 2

distributions
Part-type 3

distributions

Inter-arrival time Normal² (8,1± 2) Normal² (8,1± 2) Normal² (10,1± 2)
Load time at Robot 1 Exp. (1.2) Exp. (1.5) Exp. (1.1)
Unload time at Robot 1 Exp. (2.0) Exp. (1.2) Exp. (1.1)
Processing time at TMC1 Exp. (3.5) Ð Exp. (3.7)
Processing time at DYNA Ð Exp. (4.0) Exp. (4.2)
Load time at Robot 2 Exp. (0.7) Exp. (1.0) Exp. (1.0)
Unload time at Robot 2 Exp. (2.5) Exp. (0.7) Exp. (0.7)
Inspection time Exp. (2.0) Exp. (3.0) Exp. (2.5)
Rework time at TMC2 Exp. (5.5/6.5) Exp. (5.5/6.5) Exp. (5.7)
Assembling time at Robot 2 Exp. (4.5) Exp. (4.5) Ð

² Normal truncated distribution (avoiding negative values).

Table 2. The probability distributions and parameters used in the simulation model.



tolerances respectively to Rsys1, WIP1 and Rsys2. The design space includes
28 = 256 feasible solutions; however, the number of experiments is constrained. In
particular, a limit of 25 experiments is determined for Steps 1± 6 (for each functional
requirement) and a limit of 10 additional experiments is determined for Step 8. The
linear model presented in (7) is selected as the underlying statistical model.

Step 1. Initialization
Step 1 is initiated with respect to Rsys1. 16 experiments are allocated for the initial

screening design. A FFE with the highest possible resolution for a given number of
factors and experiments is selected (e.g. see Montgomery 1997, Ben-Gal and Levitin
1998). Based on the underlying linear statistical model, the designer constructs the 28- 4

IV
FFE shown in table 3, such that all the main factors are not aliased with presumed
two-factor interactions. The 28- 4

IV generators are; E = BCD; F = ACD; G = ABC
and H = ABD. Full alias relationships are provided in Montgomery (1997).

Step 2. First experimentation (screening)
Each treatment in the design matrix X is simulated for a single run. The resulting

responses are presented in table 3.

Step 3. Analysis
Factors R1, R2 and ARR are found to have signi® cant location e� ects, as

indicated by a normal probability plot. The estimates of the parameters of the
linear statistical model that correspond to these factors are generated by the
Design Expert statistical software (see also Montgomery 1997) and are presented
in table 4. Analysis of variance, student residual plots and t-tests corroborate to a
greater extent the underlying linear statistical model.

Dispersion e� ects are explored by: (1) plotting the residuals versus factor-levels
(e.g. see ® gure 4); and (2) computing the dispersion statistics Fxi

following (8), as seen
in table 5. Factors CS, DY, and PR2 are found to have signi® cant dispersion e� ects
(the relatively high value of FRM can be explained by the alias e� ects RM = CS DY
PR2, i.e. FRM = FCS DY PR2).
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Columns
Exp. Run

A
CS

B
RM

C
R2

D
ARR

E
PR2

F
DY

G
PR1

H
R1

Rsys1
responses

1 + + + + + + + + 276.21
2 - + + + + - - - 255.72
3 + - + + - + - - 258.86
4 - - + + - - + + 275.78
5 + + - + - - - + 245.04
6 - + - + - + + - 232.92
7 + - - + + - + - 232.29
8 - - - + + + - + 250.12
9 + + + - - - + - 262.86

10 - + + - - + - + 288.36
11 + - + - + - - + 290.49
12 - - + - + + + - 268.20
13 + + - - + + - - 243.17
14 - + - - + - + + 263.27
15 + - - - - + + + 262.50
16 - - - - - - - - 243.90

Table 3. The 28- 4
IV FFE (Rsys1).



Following the above analysis, factors are partitioned as follows:
xa = f R2, R1, ARR g ; xd = f CS, DY, PR2g ; and x0 = f PR1, RMg .

Step 4. Fixing location and non-signi® cant factors
Since xa and xd are disjoint, there is no need to calculate explicitly the success

probability measures for factor-levels in order to ® x the factors to their best levels.
Therefore, the designer applies the following procedure: (1) a location factor is ® xed
to the level which provides the lowest location e� ect; (2) a dispersion factor is ® xed to
the level which has the lowest residual standard deviation; and (3) non-signi® cant
factors are ® xed to their best (low-cost) economic level. Accordingly, the best design
is estimated to be: f CS(- ), RM(+), R2(- ), ARR(+), PR2(+), DY(+), PR1(- ),
R1(- ) g .

To illustrate the case where a factor xi has both location and dispersion e� ects
(i.e. xi 2 xa \ xd), let us consider the situation where R1 2 xa \ xd . According to the
PSM algorithm, R1 has to be ® xed to the level that yields the highest success prob-
ability, as shown in (10). Based on the location e� ects (table 4), and the dispersion
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Analysis of Rsys1

SOURCE
SUM OF

SQUARES DF
MEAN

SQUARE F VALUE PROB > F
MODEL 4636.0138 3 1545.34 230.06 < 0.0001
RESIDUAL 80.6050 12 6.72
COR TOTAL 4716.6188 15

ROOT MSE 2.5917 R-SQUARED 0.97
DEP MEAN 259.3547

Predicted Residual Sum of Squares (PRESS) = 143.30

FACTOR
COEFFICIENT

ESTIMATE DF
STANDARD

ERROR
t FOR H0

COEFFICIENT= 0 PROB > j tj

INTERCEPT 259.354 70 1 0.647 93
R2 - 12.706 41 1 0.647 93 - 19.61 < 0.0001
ARR 5.98711 1 0.647 93 9.24 < 0.0001
R1 - 9.615 22 1 0.647 93 - 14.84 < 0.0001

Table 4. Analysis of variance and t-tests for Rsys1.

Factors Si(+) Si(- ) Fi

CS 3.22 0.84 - 2.68
RM 2.87 1.16 - 1.79
R2 2.56 2.21 - 0.29

ARR 2.36 2.43 0.05
PR2 1.12 3.08 2.02
DY 0.96 3.08 2.33
PR1 2.31 2.47 0.13
R1 2.30 2.48 0.14

Note that FRM = FCS DY PR2.

Table 5. The dispersion e� ect statistics for di� erent factor
levels with respect to Rsys1, where Fi Fxi

,
Si(+) S[xi(+)]and Si(- ) S[xi(- )].



e� ects (table 5), the designer computes the success probability measure of each level
of R1 as follows:

^P[R1(+)]= Prob f ŷ[R1(+)] 235 g =
135 - 250.3

2.30
0% (11)

^P[R1(- )]= Prob f ŷ[R1(- )] 235 g =
135 - 231.1

2.48
94.6% , (12)

where is the standard normal distribution function, and the estimate of the mean
response of R1(+) is (see table 4): 250.3 = 259.3 - 12.7 - 5.9 + 9.6. Similarly, the
estimate of the mean response of R1(- ) is: 231.1 = 259.3 - 12.7 - 5.9 - 9.6. Thus,
R1(- ) is the optimal level.

Step 5. Designing the second set of experiments
In order to specify the second design matrix, the designer has to ® nd whether

dispersion factors interact with one another. Figure 5 plots the residual average and
the response range for each combination of the levels of CS, DY and PR2. Since any
change (along an axis of the cube in ® gure 5) of the residual average and the response
range appears to be related to the positioning on the other two axes, the designer
concludes that dispersion factors do interact. Thus, a full factorial experiment at the
subsequent stage is desired. The designer decides to conduct a 23 full factorial experi-

2718 I. Ben-Gal et al.

DESIGN-EASE Analysis
Rsys1

CS(-)

S
t
u
d
e
n
t

R
e
s
i
d
u
a
l

1.258

0.635

0.011

-0.612

-1.235

-1.859

-2.482

CS(+)

Figure 4. Residual plots versus CS(+) and CS(- ) for Rsys1.



ment, since the number of remaining experiments is large enough (N 0 9) to sup-
port such a procedure.

It is of interest to consider also the case where N 0 is not large enough to support a
full factorial experiment (say, N 0 = 5). Then, the PSM suggests (section 3.2 Step 5)
heuristically constructing a set of N 0 designs that have the highest estimated success
probability (the set of `most probable designs’ ). To illustrate how to compute the
success probability measures in this case, let us consider three possible scenarios.

(1) Adding replications. Since the dispersion factors f CS, DY, PR2g appear to
interact with one another, it is important to explore the dispersion e� ect
associated with their combinations. Note that the 28- 4

IV FFE with single repli-
cation (presented in table 3) provides only two data points for each combina-
tion of the dispersion factors, which is not su� cient to support a direct
estimation. One solution is to add more replications of each treatment
(say, W 3), and then to employ the approach suggested in section 3.2
(based on Box and Meyer 1986a).

(2) First-order approximation. The ® rst-order approximation, proposed in this
paper, estimates the residual variance of any combination of dispersion fac-
tors by the sum of individual variances associated with the constituent fac-
tors. Table 6 presents a list of designs sorted in descending order by their
(approximated) standard deviations. It is expected that the designs in table 6
have an identical mean response, since the location factors were already ® xed
in Step 4. Hence, ordering these designs according to their standard devi-
ations is identical to ordering them according to their success probability
measures. It follows that for N 0 = 5, the ® rst ® ve designs in table 6 are
selected as the set of `most probable designs’.

Designing a factorial system with multiple responses 2719

D E S IG N -E A S E  A na lys is

C S

D Y

P R 2

- +

-

+

-

+

 0 .3 4
3 3 .0

 1 .3 3
3 .6

2 .0 3
5 8

-5 .4 1
17 .8

-0 .2 0
1 8 .1

1 .2 9
55 .4

0 .1 4
7 .5 4

0 .4 8
31 .9

Figure 5. Residual average and response ranges with respect to Rsys1.



(3) Second-order approximation. It is seen that the estimated standard deviations,
presented in the last column of table 6 have high values. This fact indicates
that the ® rst-order approximation is not su� ciently accurate. Consequently,
a second-order approximation might be considered. This is done by comput-
ing the variances of subsets of residuals, each of which is associated with a
combination of two dispersion factors (instead of a single dispersion factor).
The number of data points in each group of residuals is then four instead of
eight, which reduces the estimation power of the sample variance. Moreover,
the number of required calculations grows exponentially with the order of the
interaction (as explained in section 3.2). In particular, the second-order
approximation in this case requires evaluating the variance of twelve

12 = 3
2 22

subsets of residuals, as opposed to six subsets of residuals required for the
® rst-order approximation.

Step 6. Second experimentation
A 23 full factorial experiment with three replications is executed for the disper-

sion factors CS, DY and PR2. The resulting responses, design means, design stan-
dard deviations, and success probability measures are presented in table 7. The
designs in the table are sorted in descending order by their success probabilities.
Success probabilities are computed by assuming a normal distribution with mean
and standard deviation as estimated by Columns 7 and 8, respectively. It is inter-
esting to note that the ® rst ® ve designs in table 6 (constructed according to a ® rst-
order approximation scheme) are identical to the ® rst ® ve designs in table 7,
although ordered in a di� erent way. Thus, retroactively, it is seen that the ® rst-
order approximation (table 6) provides those ® ve designs with the highest success
probability.
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S(+):
S(- ):

CS
3.22
0.84

DY
0.96
3.08

PR2
1.12
3.08

StdV
(1-Order
Approx.)

1 - + + 1.699
2 - + - 3.336
3 - - + 3.387
4 + + + 3.544
5 - - - 4.440
6 + + - 4.560
7 + - + 4.599
8 + - - 5.421

Table 6. Sorted list of the `most probable designs’ using
the ® rst-order approximation scheme to compute the
response standard deviations. The bold marks represent
the change in factor-levels with respect to the ® rst `most
probable design’ . The location and non-signi® cant factors
are ® xed as follows: RM(+), R2(- ), ARR(+), PR1(- )
and R1(- ).



Step 7. Repeating Steps 1± 6 for the remaining functional requirements
Sets of `most probable designs’ with respect to the remaining functional require-

ments, t2 and t3 (associated respectively with the performance measures WIP1 and
Rsys2) , are generated by repeating Steps 1± 6.

It is found that the partition of the factors to location, dispersion and non-
signi® cant categories with respect to WIP1 is identical to the partition achieved
with respect to Rsys1. Moreover, Rsys1 and WIP1 share the same the set of `most
probable designs’ as well as the b̀est’ design solution. These phenomena are con-
sistent with Little’ s law, as discussed above.

For the independent performance measure Rsys2, the designer obtains a di� erent
partition to location, dispersion and non-signi® cant factors. A di� erent set of `most
probable designs’ is established, as presented in table 8. Location factors are fond to
be: (1) PR1 (® xed to PR1(+) with an e� ect of - 7.85 time units); (2) R2 (® xed to
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CS DY PR2 Rep1 Rep2 Rep3 Mean STD

Success
probability

P1

- + - 229.85 231.07 231.65 230.86 0.915 > 99.9%
+ + + 233.99 233.31 232.65 233.31 0.669 99.4%
- + + 232.66 233.89 234.09 233.55 0.776 96.9%
- - + 229.91 235.37 231.38 232.22 2.824 83.8%
+ + - 233.72 233.83 235.51 234.35 1.002 74.1%
- - - 235.16 235.91 230.12 233.73 3.147 65.7%
+ - - 235.80 234.42 235.20 235.14 0.692 42.2%
+ - + 238.01 241.46 240.19 239.89 1.747 0.26%

Table 7. Full factorial experiment (with three replications) for the dispersion factors CS, DY
and PR2 with respect to Rsys1. The location and non-signi® cant factors are ® xed as
follows: R1(- ), R2(- ), ARR(+) PR1(- ) and RM(+). The last column is computed
by assuming that Rsys1 has a normal distribution with parameters estimated by the
sample mean and standard deviation. The tolerance associated with Rsys1 is
t1 = (0, 235 time units).

DY PR2 RM Rep1 Rep2 Rep3 Mean STD

Success
probability

P3

+ + - 123.63 120.84 123.50 122.66 1.57 > 99.9%
+ - - 122.69 123.43 123.62 123.25 0.49 > 99.9%
+ - + 123.63 123.75 122.78 123.39 0.53 > 99.9%
- + + 122.43 125.68 123.51 123.87 1.65 > 99.9%
+ + + 124.47 123.52 125.18 124.39 0.83 > 99.9%
- - + 126.08 125.23 126.13 125.82 0.51 > 99.9%
- - - 126.01 126.84 125.93 126.26 0.50 > 99.9%
- + - 127.64 127.19 126.26 127.03 0.70 > 99.9%

Table 8. Full factorial experiment (with three replications) for the dispersion factors: RM,
DY and PR2 with respect to Rsys2. The location and non-signi® cant factors are ® xed as
follows: PR1(+), R2(+), R1(+), ARR(+) and CS(- ). The last column is computed by
assuming that Rsys2 has a normal distribution with parameters estimated by the sample
mean and standard deviation. The tolerance associated with Rsys2 is t3 = (0, 135 time
units).



R2(+) with an e� ect of - 2.15 time units); and (3) R1 (® xed to R1(+) with an e� ect
of - 3.57 time units). No-signi® cant factors are found to be: (1) ARR (® xed to
ARR(+) level); and (2) CS (® xed to CS(- ) level). Dispersion factors (that seem to
interact one with the other) are: (1) DY, (2) PR2 and (3) RM.

Step 8. Selecting the best design
As mentioned in section 3.2, the mega-set of designs is obtained by merging the

sets of `most probable designs’ (corresponding to independent functional require-
ments); excluding those design points in the mega-set that are expected to have a
low overall success probability; experimenting each design point in the ® ltered mega-
set with respect to the remaining functional requirement; and selecting the best
design solution d that yields the maximum overall success probability by
applying (4).

Following the foregoing procedure, the designer constructs the mega-set of `most
probable designs’ with respect to the independent performance measures Rsys1 and
Rsys2 as follows.

(1) The sets of `most probable designs’, as given in table 7 and table 8, are
merged to obtain 16 design points.

(2) It is expected that the design points in table 8 ( b̀est designs’ with respect to
Rsys2) will generate low success probability measures with respect to Rsys1
and consequently a nearly-zero overall success probability. This is due to the
fact that R1(+) and R2(+) increase the ¯ ow time of process 1 by +9.6 and
+12.7 time units, respectively. On the other hand, the location e� ects of levels
R1(- ) and R2(- ) with respect to Rsys2 are less signi® cant, since the upper
bound of Rsys2 (given by the tolerance t3) is su� ciently high to tolerate such
a growth (i.e. see the high values in the last column of table 8). Therefore, the
designer excludes from the mega-set those designs that are included in table 8,
leaving eight designs in the ® ltered mega-set, as presented in table 9. Note
that (a) dispersion factors (CS, DY, PR2) and location factors (R2, R1,
ARR), with respect to Rsys1, are set to di� erent levels as speci® ed in table
7; (b) if a non-signi® cant factor with respect to Rsys1 is a dispersion factor
with respect to Rsys2 (e.g. RM), then it is ® xed to its best level with respect to
Rsys2; (c) if a non-signi® cant factor with respect to Rsys1 is a location factor
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Design
order

A
CS

B
RM

C
R2

D
ARR

E
PR2

F
DY

G
PR1

H
R1

P1

(Rsys1)
P3

(Rsys2) P1P3

1 + - - + + + - /+ - 99.4% 94.9% 94.3%
2 - - - + - + - /+ - 99.99% 92.5% 92.5%
3 - - - + + + - /+ - 96.9% 91.4% 88.6%
4 + - - + - + - /+ - 74.1% 98.8% 73.2%
5 - - - + + - - /+ - 83.8% 84.7% 71.0%
6 - - - + - - - /+ - 65.7% 77.6% 50.9%
7 + - - + - - - /+ - 42.2% 62.8% 26.5%
8 + - - + + - - /+ - 0.26% 99.0% 0.26%

Table 9. The ® nal set of `most probable designs’ . The overall success probability measures
with respect to both Rsys1 (with tolerance t1) and Rsys2 (with tolerance t3) are provided
in the last column. PR1 is an online-adjustable factor of the FMC, therefore, it is ® xed to
the (- ) level in the ® rst process and to the (+) level in the second process.



with respect to Rsys2 (e.g. PR1), then it is ® xed to its best level with respect to
Rsys2 (note, however, that PR1 is an online-adjustable factor of the FMC
and hence can be ® xed to its (- ) level during the ® rst process); and (d) if a
factor is non-signi® cant with respect to both Rsys1 and Rsys2, then it is ® xed
according to its best economic level.

(3) The designer conducts eight additional experiments (each with three
replications) in order to estimate the success probability measures (with
respect to Rsys2) of the constituent designs in table 9. These estimates are
used to compute the overall success probability measures as presented in the
last column of table 9. Finally, the designer selects the design point that
yields the highest overall success probability, d = f CS(+), RM(- ),
R2(- ), ARR(+), PR2(+), PR1(- /+), DY(+), R1(- ) g , with an overall
success probability measure of 94.3% , although it is not the most
successful design with respect to each of the individual requirements. The
remaining designs are sorted in descending order by their overall success
probabilities.

5. Summary
In Suh (1990, 1995) a functional complexity measure was provided as a rational

means for quantifying how well a proposed design satis® es the governing require-
ments. In this paper, the functional complexity measure is shown also to have a
heuristic merit. The proposed PSM approach provides a detailed design paradigm,
although further research is required to support its applicability to wide range of
design problems. The main contribution of the PSM lies in its underlying simplicity
and its modular structure which includes: (1) screening and estimating the main
e� ects to attain a tractable problem size; (2) generating probabilistic measures to
determine designs that maximize the likelihood of satisfying a given set of functional
requirements; and (3) applying a heuristic search to select the best design solution.
Each of these steps can be modi® ed by the designer in several respects to ® t the
speci® c design problem better. Some examples are: (1) replacing the approximation
method used to derive the dispersion e� ects by the exact method suggested by Box
and Meyer (1986a); (2) extending the underlying statistical model to include higher-
order interactions; (3) using di� erent procedures to derive the probabilistic measures;
and (4) applying other heuristics in order to construct the sets of `most probable
designs’. All of these modi® cations, however, maintain the general notion of a prob-
abilistic design within a stochastic framework. Moreover, the PSM can be modi® ed
to support redesign activities by a computerized database, as suggested in Ben-Gal et
al. (1997).

Further research is required to determine policies for resource allocation in
sequential experiments and how to consider a set of dependent functional require-
ments. Ben-Gal et al. (1997) suggest approaching this problem by introducing the
concept of conditional success probability measures.
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