
IEEE Transactions on Games - Manuscript ID: TCIAIG-2017-0046.R2 1

Abstract— Diffusion of information is a key factor in many

social and political situations. This work presents a strategic game

called “Spread-It,” which models the spread of information

through social network structures. In the game, two competing

parties must decide on the allocation and timing of their limited

resources with the goal of increasing their influence in the

network. Since present decisions affect the future level of network

penetration, their effort allocation must be carefully planned. The

work starts by defining the mathematical characteristics of the

game, followed by analytical results derived by implementing

several strategies for winning the game. Analyzing the

experiments provides few observations regarding the role of

influencers (‘hubs’) under different game conditions, the

superiority of Monte Carlo tree search strategy over traditional

game-tree search methods, and the budget required to guarantee

the game’s finalization.

Index Terms— B2B Marketing, Game Theory, Information

Diffusion, Political Games, Social Network

I. INTRODUCTION

PREAD-IT is a proposed two-player zero-sum game aimed

at analyzing strategic thinking in the art of acquiring

influence through social networks. The game can be played

on a virtual or physical board that represents an organization’s

social graph, where the set of vertices (nodes) is associated with

members in the network, and the set of edges defines the

connectivity between these members. Two opposing parties

(players) compete on the board to increase their dominance, as

a single choice of the organization. “Spread-It” can be played

over any undirected graph representing the game’s board,

unlike other board games, e.g., Chess, Checkers and Othello,

which are played on specific boards.

The reality that the game simulates can be seen as a case of

two opposing attitudes trying to win a group of decision-

makers. Such scenarios are seen, for example, in politics

between two parties or in a bidding process where two suppliers

are submitting competing proposals. Thus, the game can mimic

two suppliers trying to win a bid within an organization by

influencing different decision-makers to adopt their product /

service. In large organizations, bids are applied regularly to

choose between suppliers, and only one supplier is eventually

chosen. Each of the two players represents an attitude

(supplier), and the players are lobbyists of the supplier within

the organization, trying to advance their attitude within the

social graph of decision-makers. In each move, each player

must decide on what node (key decision maker) to invest its

convincing efforts, where each unit of ‘convincing effort’ is

represented by a token, with different colors representing

different attitudes for each of the lobbyists.

Influencing someone to adopt an alternative is seldom

completed in a single interaction and is instead often

accomplished through repeated efforts. This logic is embedded

in the proposed game, where each player adds a single unit of

influence (a colored token) to a chosen node during his/her turn.

The token represents a limited (e.g., marketing) resource, such

as budget or energy, required to influence the selected member.

Then, when the total number of tokens in a node reaches the

node’s threshold, the node ‘fires’ or ‘explodes’ (we use both

terms interchangeably), indicating that the associated member

adopts the alternative of the player that gains the majority of

tokens on the node. This adoption of an opinion by a node is

named “an explosion” in the game’s terminology. When an

explosion occurs, first, all the tokens on a node are changed to

the color of the winning party. This represents the loss of the

effort of the losing party, and the effort invested by the winning

party that increases its strength by winning its opponent.

Furthermore, when an explosion occurs, after having the color

of the losing party changed to that of the winning party, the

tokens are distributed to the neighboring nodes. This process,

represented by the “explosion,” may repeat itself in a cascade

manner, where one converted member influences another, thus

representing the influence that the exploding node has on its

neighbors toward adopting the alternative that it has.

As in many games, this game is a simplified set of rules that

mimics a certain aspect of a highly complex reality. This

simplification clearly implies limitations for the scenarios that

the game represents. For example, the game does not represent

the scenario in which an effort to influence opinions is

performed through mass media such as the use of TV, radio or

billboards, but only an effort to influence opinions through a

personal one-to-one contact. Moreover, “Spread-It” falls under

the category of sequential games (sometimes called dynamic

games), where players move at different points of time and can

observe some, if not all, the choices of other players before

deciding upon their optimal response. This contrasts with static

games (or simultaneous game) where players making their

moves simultaneously. A broader discussion of the limitations

of the game’s model as well as the reality represented by its set

of rules is discussed in subsection III.C.

The game includes two variations that represent opposite real-

life scenarios: a Zero Loyalty variant and a Full Loyalty variant.

In the Zero Loyalty variant, each node can flip and change its

color (alternative) repeatedly without being “loyal” to any

player, even the one that initiated the interaction with the node.

This variant can represent a social dynamics case where people

“Spread-It”: A Strategic Game of Competitive

Diffusion through Social Networks
Shimon Ben-Ishay, Alon Sela, and Irad Ben-Gal

Dept. of Industrial Engineering, Tel Aviv University

S

IEEE Transactions on Games - Manuscript ID: TCIAIG-2017-0046.R2 2

can unlimitedly change their opinions. Typically, this model is

used to simulate the diffusion of ideas and opinions, such as the

attitude towards a news event or the support of different

political proposals, which may switch back and forth based on

new information that is gathered along the process. In the Full

Loyalty variant, each node can select an alternative only once.

That is, once the node (person) has selected a color (adopting

an alternative), it remains loyal to this alternative and does not

change it further. This model can be used, for example, to study

the diffusion of the adoptions of new products since these

adoptions are typically associated with a purchase behavior or

a significant investment and are not easily reversible.

This paper studies the two game variants and mainly focuses

on the Zero Loyalty variant. It addresses some mathematical

properties of the proposed model that rely on earlier games,

such as the chip-firing game [1], and based on these works, it

defines some mathematical properties that can be relevant in

real-life scenarios. Several strategies and heuristics are studied

and benchmarked to find potentially good influential policies in

certain networks. Among these methods, a Monte Carlo tree

search (MCTS) method is found to provide relatively better

results. Moreover, several interesting observations can be made

based on the empirical study. Analyzing the conducted

experiments provides some unintuitive observations regarding

the limited role of influencers (‘hubs’) in the situation of no

customer loyalty to an alternative (‘zero loyalty’); the

superiority of probabilistic approaches (e.g., the MCTS) over

traditional game-tree search methods; and the budget required

to guarantee the game flow. Furthermore, the game provides a

structured deterministic case, where the complex art of coalition

formation can be studied, and demonstrates the difficulty of

prediction in such scenarios where influence and decision-

making is performed within a set of interacting social

connections.

“Spread-It” was initially created as a board game in [2]. The

game is freely available for non-commercial use and can be

downloaded at http://tinyurl.com/md2tbke.

II. BACKGROUND

This section describes various diffusion models through

social networks. We use the following notation throughout the

paper. Let 𝐺 = 〈𝑉, 𝐸〉 be a graph that represents the social

network, where the set of vertices 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} is

associated with the individual users in the network, and the set

of edges 𝐸 = {𝑒𝑖𝑗 = (𝑣𝑖,, 𝑣𝑗)|𝑣𝑖,, 𝑣𝑗 ∈ 𝑉} defines the

connectivity between the users.

Models for the processes by which information and influence

propagate through a social network have a long history in social

science studies. These information diffusion models have been

widely applied in a “word of mouth” (WOM) context [3]. In

marketing, WOM has been acknowledged as a major influencer

in the promotion of new products. Traditionally, WOM has

been specified as information exchanged through face-to-face

interactions; though more recently, the term has been extended

to online or to technology-enabled information exchange

between individuals. The mathematical properties of

information spread through social networks have been studied

in the well-known work of Kempe et al. [4]. The authors

considered two basic models of information spread: the Linear

Threshold (LT) model and the Independent Cascade (IC)

model. These models represent the core ideas of information

spread by which the Linear Threshold model captures social

influence, and the Independent Cascade model captures

retention loss. More formally, the LT model assumes that a

node 𝑣 can change from state 0, in which it is non-infected (or

inactive), to state 1, in which it is infected (or active), and such

a change depends on the mapping of weights and states of the

node’s infected neighbors, denoted by the subset 𝛿𝑣. Thus, node

𝑣 becomes infected and changes its state to 1 only if ∑ 𝑏𝑣,𝑢𝛿𝑣
≥

𝜃𝑣, where 𝜃𝑣 ~ 𝑈[0,1] is the threshold of 𝑣, and 𝑏𝑣,𝑢 represents

the social influence of the infected neighbor 𝑢 on 𝑣. In the IC

model, when node 𝑣 becomes infected, it has a single chance to

infect each ‘currently non-infected’ neighbor 𝑢. The infection

attempt succeeds with probability 𝑃𝑣,𝑢. Accordingly, the

influence maximization problem (IMP) is defined as a selection

of 𝑘 seed nodes (the ‘seed set’) that maximizes the expected

number of infected nodes by the end of the diffusion process.

Kempe et al. [4] proved that the IMP problem under both IC

and LT models is an NP-hard problem and showed that a greedy

approach would reach a solution within 63% of the optimal

bound. Unlike the “Spread-It” game with a Zero Loyalty

variation, the LT model and the IC model do not consider

recovery dynamics by which an infected node can reversely

become uninfected.

A trivial extension of the IC or the LT model is to introduce

a competitive setting for the diffusion of influence through the

social network. In real-world cases, for example, there is a

competition among firms providing products or services that

compete for the same market share. These firms compete for

strategic members (influencers), aiming to maximize the

adaptation of their products. These products are usually pricey,

and in many cases, it is unlikely that a consumer will purchase

more than one competing product within a short period of time.

In recent years, several competitive influence propagation

models have been studied. Bharathi et al. [5] proposed an

extension to the IC model and showed that the last player to

select the seed set can obtain at least a (1 −
1

𝑒
)-approximation

to the optimal strategy. Carnes et al. [6] studied the available

strategies of a company trying to introduce a new product into

an existing market where a competing product already exists.

Such a setting turns the problem into a Stackelberg game [7].

Clark and Poovendran [8] introduced a model called Dynamic

Influence in Competitive Environments (DICE) and showed that

the IC and the LT models can be derived as special cases of

DICE. Like the proposed “Spread-It” game (with a Zero

Loyalty variation), a node in the DICE model can switch

between adopted alternatives over time. The second variant of

DICE (simultaneous-move game) considers a game of

incomplete information, in which neither player can observe the

other’s moves. This setting is different from the proposed

“Spread-It” model, in which a perfect information game is

assumed, i.e., all players have access to the game information

and know exactly at each time what are the influence efforts

that are made by their opponent. This scenario not only allows

a better strategic planning of the moves, but also fit the reality

to a certain degree.

http://tinyurl.com/md2tbke

IEEE Transactions on Games - Manuscript ID: TCIAIG-2017-0046.R2 3

Influence was further studied through a game theoretic

approach. In this direction, Alon et al. [9] introduced a model

of diffusion of influence through a social network and studied

the relation between the network diameter and the existence of

pure Nash equilibria. Tzoumas et al. [10] generalized the model

proposed by Alon et al., and considered a setting where each

player tries to infect a set of 𝑘 seed nodes. While in the proposed

“Spread-It” model, each player can only influence (by putting a

color token) one node at a time in every turn. Another difference

between Tzoumas et al.’s and Alon et al.’s models vs. “Spread-

It” is that in the former models, each node can have at most one

alternative, i.e., a node that has adopted a particular alternative

cannot alter its decision later on, while in the latter model (the

“Spread-It” with Zero Loyalty variation), each node can flip

and change its color repeatedly without being “loyal” to any

alternative. Furthermore, in Alon et al.’s model, if two players

compete for the same node at the same time, they “cancel out”

each other, and the node is removed from the game (colored

gray), while in “Spread-It,” such conflicts are allowed, i.e.,

different players can compete for the same node at the same

time, as often happens in real-life settings.

III. THE “SPREAD-IT” MODEL

“Spread-It” is a game played on a finite graph. For purposes

of simplicity, we have chosen to focus on a finite, connected,

undirected graph without self-loops or parallel edges. Every

vertex (𝑣) in the graph has a threshold value 𝑘𝑣, which is set to

deg(𝑣) the degree of 𝑣 unless otherwise defined. Full

information is assumed, and 𝑘𝑣 is thus pre-specified and known

to both players. When the threshold is reached, the node “fires”

(sends) one token to all its connected nodes. The players’

objective is to gain influence through the network by turning all

(or the majority of) the nodes to their color. In this paper, we

focus on a two-player game that represents a competitive dual

diffusion through social networks. As indicated above, two

game variants are considered, as follows:

— In the Zero Loyalty variant, a member (vertex) can change

its alternative (color) throughout the game, and a particular

vertex in the graph can thus fire several times.

— In the Full Loyalty variant, a member (vertex) can select an

alternative (color) and fires only once. Once the node fires, it is

colored by the winning color (according to a majority rule), and

the players continue competing for the remaining vertices (if

such exist), while the colored node remains unchanged.

A. “Spread-It” Rules and Notations

Let 𝐺 = 〈𝑉, 𝐸〉 be a finite connected undirected graph

without loops with 𝑛 vertices and 𝑚 edges, in which each vertex

has a predefined threshold value 𝑘𝑣. The function 𝑇: 𝑉 → ℕ is

a token configuration. 𝑇𝑏(𝑣) is the number of black tokens on

vertex 𝑣, and 𝑇𝑟(𝑣) is the number of red tokens on vertex 𝑣.

Two players (black and red) play the following game:

1) Initially, there are no tokens on the vertices: 𝑇𝑏(𝑣) =
0, 𝑇𝑟(𝑣) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉.

2) Each player receives a designated, equivalent number of

tokens equal to 𝑚 −
𝑛

2
 (in subsection Ⅲ.D.2, an

explanation for this number of tokens is given).

3) Players alternate turns, each of which consists of two

phases. In the first phase, the player puts his colored token

on any vertex on the graph. If a vertex 𝑣 has as many tokens

as its threshold (𝑇𝑏(𝑣) + 𝑇𝑟(𝑣) ≥ 𝑘𝑣), it fires (or

“explodes”). In the second phase, following the explosion,

the firing vertex distributes one token of the winning color

to each of its neighbors.

4) The player with the largest number of tokens at the time

that the vertex reaches its threshold “wins” all the tokens

on this vertex, coloring all of them. If the numbers of

tokens on a node are equal and the threshold is reached, the

color of the last token placed on the node defines the

winning color.

5) Formally, when 𝑣 explodes, 𝑇𝑐 is modified to a

configuration 𝑇𝑐
′ such that:

𝑇𝑐
′(𝑢) = {

𝑇(𝑣) − 𝑘𝑣 𝑖𝑓 𝑢 = 𝑣,

𝑇𝑐(𝑢) + 1 𝑖𝑓 𝑢𝑣 ∈ 𝐸(𝐺),

𝑇𝑐(𝑢) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

 (1)

where 𝑐 is the winning color (black or red) on 𝑣. Firing

vertex 𝑣 means that we decrease 𝑇(𝑣) by 𝑘𝑣 tokens, and

increase 𝑇𝑐(𝑢) by 1 for each neighbor 𝑢 of 𝑣.

6) In the Full Loyalty variant of the game, the exploded vertex

is marked (fixed) by the winning color and becomes

inactive, which means that no player can place any more

tokens on this colored vertex anymore.

7) In the Zero Loyalty variant, the game is won when both

players have finished their initial tokens and one player’s

tokens are a majority or when the game reaches the infinite

topple (“endless explosions”) and only one color of tokens

is on the graph, giving that player a clear victory. In the

Full Loyalty variant, the game is won by the player having

the majority of vertices on the board with his/her color.

Explosion Order. When an explosions cascade occurs after a

player action, it follows an order defined by the dominance of

that player. Technically, these vertices are sorted by the

difference between the player’s colored tokens vs. the other

colored tokens in descending order. Accordingly, the first

exploded vertices are the ones where the player has the largest

majority. Such ordering gives the player an advantage. An

alternative order is to assign an index to each vertex in the graph

such that if several vertices meet the criterion for explosion,

they explode by their index order.

B. Examples of Game Play

Below, two examples are proposed - one per each “Spread-

It” variant.

1) Zero Loyalty variant.

The Zero Loyalty variant is presented in Fig. 1.

 (a) The initial board state - each vertex is identified by an id.

The vertex threshold is denoted by the number at the center of

the vertex. The number of red tokens on a vertex is denoted by

the number at the bottom left-hand side of the vertex. The

number of black tokens on a vertex is denoted by the number at

the bottom right-hand side of the vertex. (b) Black places

his/her token on 𝑣1. (c-d) Red places his/her token on 𝑣1. An

“explosion chain” starts on 𝑣1 since it reaches its threshold (2).

Because Red was the last player to put a token on 𝑣1, he/she is

the winner of this vertex. 𝑣1 explodes and fires one red token

to each of its neighbors: 𝑣2 and 𝑣3. (e) Black places his/her

IEEE Transactions on Games - Manuscript ID: TCIAIG-2017-0046.R2 4

token on 𝑣3. Now, 𝑣3 has reached its threshold of 2 and

explodes. When 𝑣3 explodes, it fires one black token to each of

its neighbors: 𝑣1 and 𝑣2. (f) The “explosion chain” continues.

𝑣2 reaches its threshold of 2. Black is the winner of this vertex

as he/she was the last player to put a token on 𝑣2. 𝑣2 explodes

and fires one black token to each of its neighbors: 𝑣1 and 𝑣3.

(g) The “explosion chain” continues. 𝑣1 reaches its threshold of

2. Black is the winner of this vertex as he/she has the majority

of tokens in the vertex (2 vs. 0). The game ends. One obtains an

infinite chain of Black explosions. The winner is Black, who

has won all the tokens in the game. Red has lost all of his/her

tokens.

Fig. 1 An example of a Zero Loyalty game played on a small board. In this

example, some nodes (𝑣1) change their alternatives.

Fig. 2 An example of Full Loyalty game played on a small board.

2) Full Loyalty variant.

 The Full Loyalty variant is presented in Fig. 2.

 (a) The initial board state. (b) Black places his/her token on 𝑣2.

The vertex explodes since its threshold is 1. Black wins this

vertex and “occupies” it. The vertex is now Black forever, and

the players compete on all vertices except for 𝑣2. (c) Red places

his/her token on 𝑣4. (d) Black places his/her token on 𝑣1. (e)

Red places his/her token on v1. Red wins the vertex and

“occupies” it. The players then compete on all vertices except

for 𝑣2 and 𝑣1. (f) An “explosion chain” starts. 𝑣4 explodes in

Red. While v1 is the neighbor of 𝑣4, this vertex is out of the

game at this stage (since it is already occupied). It does not

receive a token. One token remains in the “exploded” v4. (g)

The “explosion chain” continues. 𝑣3 explodes in Red. Red wins

this vertex and occupies it. All the vertices are “occupied” by

the players. Red has won the majority of vertices in the game

and is declared as the winner.

C. “Spread-It” and Real-World Influence Diffusion

Scenarios

This subsection presents some of the properties of “Spread-

It” and explains how the game model fits (to a certain extent)

real-world scenarios of influence diffusion through social

networks.

— Vertex coloring and node “explosion”. In the game, when

a vertex reaches its threshold, all the tokens change their colors

to the majority’s color before the vertex fires. Such a rule

represents a situation where a few players (e.g., companies) are

trying to convince a decision maker in an organization to adopt

their alternative (e.g., product or service). When enough

persuasion efforts have been invested, the decision maker

threshold is reached, implying that the he reached a decision.

Then, all efforts made by the non-winning player become

obsolete. The “explosion” indicates that the person not only has

adopted the winning alternative but also become an agent of that

alternative and now influences his/her neighbors toward this

alternative. A more realistic approach will consider the case

where the nodes might, or might not, accept the influence

following the “explosion” by some probability value, but this

probabilistic approach is outside the scope of this paper and

could be considered in future research.

— The winner takes all. When a player wins a vertex, all

efforts made by the losing player on that specific vertex become

practically useless; moreover, these efforts serve the winning

player. An equivalent scenario in real life occurs when two

software companies compete for a new customer in a request

for information (RFI) process. Each of the companies allocates

efforts to answer the RFI, proposing new features and methods

(effort is represented by tokens). When the customer decides to

adopt one of the proposals, the winning company profits from

the effort of the loosing company as well, e.g., by using parts of

the features that are now integrated by the client in a single RFP

(request for proposal) or by the publicity of such a win against

a company that invested in the competition. However, even in

the general case, the winning company gains a new customer,

which improves not only its cash flow but also its

competitiveness in comparison to the losing party.

— The relation between the node’s threshold and its degree.

Selecting the node’s threshold to be greater than or equal to its

degree represents a scenario in which the required effort to win

IEEE Transactions on Games - Manuscript ID: TCIAIG-2017-0046.R2 5

a decision maker (node) is proportional to his influence

(reflected by the node degree). For example, winning a bid in a

large influential company requires, in most cases, greater effort

compared to winning a bid in a smaller company. Naturally, the

winning results (financial gains) are usually higher when

winning a bid in a larger company than in a smaller one.

Nevertheless, it is not at all certain that the relationship between

influence and ease of access is linear as applied in the game.

The linear relation between influence and ease of accessibility

is modeled in the game’s dynamics mainly to provide an easy

(and functioning) set of rules that apply to the game. In the

Experiments section (see subsection V.F) we examine the case

where the node’s threshold is smaller than the node’s degree

and analyzed its effects on the player’s choices.

— Token distribution. Let us note that the distributions of

tokens at the beginning of the game are equal for both players.

This setting represents an underlying assumption that the two

competing players have relatively equivalent alternatives. For

example, the products of the two firms are comparable in terms

of price, features, branding and quality, such that the main

factor that influences the purchasing decision depends on their

strategic effort to influence the decision maker. Of course, this

is not the case in many real scenarios, where one product

outperforms the other in one or more aspects. Nonetheless, such

a scenario where one product clearly outperforms the other is

less relevant for the game since the customer’s choice is clearer.

— Influencing several nodes at a time. Note that each player

can use a single token per turn. This implementation results in

a simpler game rule, speeds up the game and maintains a

continuous game flow. An alternative is to allow players to use

more than a single token at each turn. Note, however, that under

such a scenario, before the player places its next token, it is

necessary to apply the ‘firing rules’ on each node which is about

to explode until a stable state of the game is reached. Following

an experimentation of this alternative, we have concluded that

applying a rule where a player may use more than one token in

each turn tends to result in an abrupt game which is much harder

to follow and to analyze, particularly for human players.

D. “Spread-It” and the Chip-firing Game

This section considers an important related model to “Spread-

It” known as the Chip-Firing Game (CFG) [1]. The CFG

provides a broad base for better understanding the “Spread-It”

game and its various characteristics. The model provides

insights and properties regarding some of the “Spread-It”

features. However, the games are inherently different, as

discussed below.

CFG is a widely used model in physics, economics, computer

science and other science domains to illustrate dynamical

systems. For example, in physics, CFG is often used to describe

the phenomenon of self-organized criticality [11]; in economics

and computer science, CFG was proposed as a model for

resource distribution systems [12]. The classic CFG model is a

solitaire game played on a graph [1]. The graph or game board

is comprised of a set of interconnected vertices, some of which

have multiple chips. The “degree” of a vertex is defined as the

number of edges that directly connect it to other vertices. When

the number of chips is greater than or equal to the degree of the

vertex, the vertex “fires” its chips, and such firing sends one

chip on a vertex to each of its connected neighboring vertices

(see Fig. 3). Leftover chips remain in the original vertex.

The game is played by firing a single vertex at each time step

until a stable configuration is reached (that is, until no vertex

has more chips than its degree) or until it is determined that

stability cannot be achieved. The game is said to be in a stable

configuration if none of the vertices are in the process of firing.

One trivial example of a stable configuration is the empty

configuration, in which none of the vertices contain any chips.

A few of the CFG properties can provide insights into the

dynamics of the “Spread-It” model. For example, the total

number of tokens on each vertex, regardless of their colors, can

reveal when the game has become stable. This point is further

discussed later. Additional background on chip-firing games

can be found in [13], [14].

Fig. 3 Example of CFG “Firing.”

1) CFG vs. “Spread-It: Similarities and Differences.

At the early stages of the “Spread-It” game in the Zero Loyalty

variant, one can notice certain characteristics that distinguish

both games:

— Infinity: “Spread-It” can reach a state of infinity (a series of

explosions in vertices) without reaching any stable state.

— Periodicity: A series of recurring explosions in certain graph

structures and game configurations that are worth further

examination.

The classic CFG is similar to “Spread-It” with several changes:

(a) CFG is a solitaire game; “Spread-It” is a two-player game.

(b) CFG uses one color of tokens; “Spread-It” uses two colors.

(c) In CFG, the explosion order in a given turn does not matter

as the same game state is eventually reached. In “Spread-It,”

the order matters as two different colored tokens are used. To

decide whom the winning player is at a given moment, the

order of the explosions is important.

2) CFG Properties Used in “Spread-It” Game.

In most CFG models, including the classic one (Björner et al.

model [1]), the threshold of each vertex 𝑣 is set to be the degree

of 𝑣, 𝑑𝑒𝑔(𝑣). By applying this threshold to any vertex in the

“Spread-It” graph, one can infer the following properties:

Infinity. Based on CFG theory, it is known that reaching a

state of infinity depends on a number of factors:

— 𝑁 – The total number of tokens on the game board (one can

ignore the color of the tokens and consider them as a single

color).

— 𝑛 – The number of vertices in graph 𝐺.

— 𝑚 – The number of edges in graph 𝐺.

Both 𝑛 and 𝑚 are static and known in advance to both players.

𝑁 keeps changing in every turn as each player adds a token to

the graph.

If the total number of tokens (𝑁) is more than 2𝑚 − 𝑛, then the

procedure cannot terminate. With this number of tokens, one

node will have at least as many as its degree. If 𝑁 ≤ 2𝑚 − 𝑛,

then a terminating position can occur. If the number of tokens

is less than 𝑚, then the game always terminates. Furthermore,

IEEE Transactions on Games - Manuscript ID: TCIAIG-2017-0046.R2 6

if 𝑚 ≤ 𝑁 ≤ 2𝑚 − 𝑛, then the game may or may not terminate,

depending on the original configuration of the tokens. At every

moment of the “Spread-It” game, one can calculate these

parameters and determine, for example, whether the game is in

an infinite state and declare the winner. One can deduce that if

both players play at least 𝑚 turns, the game enters a stage in

which it can end in an infinite topple. This can be a problematic

situation for a computer agent. For example, a tree-search based

agent generates a game tree to find the best next move, and if

one of the tree nodes (game states) will lead to an infinity state,

then the tree generation process may not terminate. To prevent

such cases, these CFG properties can be used to identify the

“infinity zone” and thus create a mechanism to stop the tree

generation at this step.

Token Distribution. The use of CFG properties enables the

determination of the number of tokens each player will receive

at the beginning of the game according to the characteristics

presented above. Each player is given exactly 𝑚 −
𝑛

2
 tokens. If

more tokens are given, the game will be endless (since, if the

total number of tokens is greater than 2𝑚 − 𝑛, the game is in

an infinity state). If the number of tokens (two colors together)

is less than 𝑚, then one can reach the point where the players

have used all their chips, but there is no explosion at all on the

board. By the distribution choice we have made, we let the

game be in the infinite or finite state. This depends on each

player’s moves.

Note that the above properties do not hold if the vertex’s

threshold is not equal to its degree, which is a valid option of

the “Spread-It” game. Please refer to Appendix A for an

example demonstrating such a case.

The “Spread-It” game is a challenging problem for a

computerized agent. The methods used to build such an agent

are presented in the next section.

IV. METHODS

A. AI Game Agents

This subsection describes the search methods that were

studied in order to find a good game strategy that wins “Spread-

It.” All these methods seek a promising seeding of nodes by

tokens with respect to some decision criteria. A direct

implementation of a brute-force search in “Spread-It” on a large

network (hundreds or thousands of nodes) is computationally

prohibitive. The main reasons are the game complexity and the

lack of an adequate evaluation function. However, by solving

“Spread-It” on smaller networks (of a few dozen nodes), one

can assess some of the strengths and weaknesses of various

game strategies. Moreover, optimal game strategies over small

networks may be used as a benchmark for testing other

searching techniques. For these small networks, an Alpha-Beta

algorithm was utilized [15]. For larger networks (over 30

nodes), where the branching factor is larger, the tree search

methods (such as Alpha-Beta) are no longer a tractable strategy.

Accordingly, a Monte Carlo tree search (MCTS) method, which

was previously implemented to master the game Go [16], was

utilized in “Spread-It.” Along with these two methods, a

Dummy strategy (using a random player) was also implemented

mainly for a benchmark purpose. The following subsections

elaborate on each of these agents.

1) Alpha-Beta Agent. Turn-based games can be represented as

a “game tree.” Tree nodes represent network (board) situations,

while branches are a possible board configuration following the

players’ actions. The tree leaves represent possible game

endings and contain information on the value (utility) to each

of the players given the related ending. One theoretical method

for searching for the best action is to generate the entire game

tree for a given position and select the action that results in the

highest utility. The problem with this approach is that the game

trees for most of the board games, including “Spread-It,” are

usually too large to be searched entirely in a reasonable time. A

common approach for performing searches on game trees is

based on the Minimax algorithm along with an optimization

scheme [15]. The Alpha-beta pruning is a common optimization

scheme of the Minimax algorithm. It limits the search space by

avoiding searching sub trees of moves which won’t be selected,

allowing for a relatively more powerful look-ahead search. In

addition to the Alpha-beta pruning, iterative deepening strategy

has been used as an enhancement for this agent.

A vital requirement for game tree searches is the use of an

evaluation function (heuristic) by which the Minimax algorithm

operates. The heuristic function directs the search process by

scoring various states of the game. Note that, since a perfect

evaluation function is not given and often does not exist in a

real setting, we inspected a handful of heuristics, including

some combinations of functions. In particular, the following

heuristics were studied:

— Parity heuristic - Captures the token difference between the

current player and opponent player.

— Stability heuristic - Each player’s tokens are classified into

three categories:

(a) Stable: Tokens that cannot be flanked (alternate color) in

the next game steps.

(b) Semi-Stable: Tokens that might be flanked in the next

game steps.

(c) Unstable: Tokens that can be flanked in the next action.

Weights are associated with each of the three categories, typical

weights can be: 𝑤𝑠=1 for stable tokens (𝑇𝑠), 𝑤𝑢𝑠=-1 for unstable

tokens (𝑇𝑢𝑠) and 𝑤𝑠𝑒=0 for semi-stable tokens (𝑇𝑠𝑒). The sum

𝑇𝑠 ∙ 𝑤𝑠 + 𝑇𝑢𝑠 ∙ 𝑤𝑢𝑠 + 𝑇𝑠𝑒 ∙ 𝑤𝑠𝑒 defines the final stability value

for each player.

— Hubs heuristic - A common assumption relates the number

of hubs in a region to the player’s stability in that region. In

other words, it assumes a positive correlation between the

number of hubs owned by a player and the probability of that

player to win the game. Following this approach, a score is

given to each node in the graph according to the player’s

chances of winning that node (e.g., a high score was given to a

node that is about to explode during the next move and the

player is the winner of that node). Accordingly, each node’s

score is multiplied by the PageRank value of that node,

prioritizing hubs. The sum of the nodes’ scores defines the final

Hubs value for each player.

— Mobility Heuristic - The number of possible next moves.

One can assess the player’s potential mobility, taking into

account the number of beneficial and non-beneficial moves.

— General heuristic - Two factors are used to rate the overall

state of the game: the “counting factor,” which counts the

number of majority nodes a player has and the “remaining

IEEE Transactions on Games - Manuscript ID: TCIAIG-2017-0046.R2 7

factor,” which calculates the player’s remaining tokens in each

node required for it to “explode.” The remaining factor is given

a larger weight.

— Linear Combination (LC) heuristic - The LC consists of

linear combinations of all the other heuristics and looks as

follows: 𝐿𝐶 𝑆𝑐𝑜𝑟𝑒 = 𝑤1 · 𝐻1 + 𝑤2 · 𝐻2+. . . +𝑤𝑗 · 𝐻𝑗, where 𝐻𝑗

is the score of a particular heuristic, and 𝑤𝑗 is the associated

weight assigned to this heuristic score. To learn the weights, a

learning algorithm was utilized, following Mitchell’s model of

a computer agent for the game of checkers [17]. The learned

weights determine the relative importance of the various

heuristics. A detailed description of the implemented approach

can be found in Appendix B.

2) Monte Carlo Tree Search Agent. In “Spread-It,” the size of

the board (graph) is theoretically unlimited. However,

conventional game-tree search algorithms (such as Alpha-Beta)

are suitable for games with a fixed network size. We found that,

when the graph size was larger than approximately 25-30

nodes, conventional search techniques became computationally

limited. To address this challenge, we used a Monte Carlo tree

search (MCTS) procedure. The MCTS method has been used in

games with large branching factors, such as Go [18], [19]. In

general, the MCTS method determines the most promising

action in any given situation by simulating a large series of

random moves (simulations). By relying on the results gathered

from multiple simulated games, the algorithm builds a partial

game tree until some predefined constraint (e.g., time or the

number of iterations) is reached. At this point the search is

stopped and the node with the most promising statistics is

selected. During the tree-building process, nodes are added

iteratively to the search tree and the algorithm maintains the

visit count and the win count for each node. MCTS inclines

toward high-scoring moves over low-scoring moves and

therefore more time is spent in examining optimal moves. The

UCT (Upper Confidence Bound for Trees) algorithm that was

originally formalized by Kocsis and Szepervari [20] is the most

common basis for MCTS implementation and was applied in

this study as a game agent. The following four phases are

performed per search iteration:

a) Selection: Selecting the best node to start exploration, until

the agent come across a node with unexplored child nodes

or it reaches the leaf node. In the case of the UCT

algorithm, the selection strategy is based on the UCB1

multi-armed bandit algorithm [21]. Thus, from node 𝑣, a

child node 𝑖 is selected to maximize:

 𝑈𝐶𝑇 = 𝑥�̅� + 𝑐 ∙ √
ln (𝑛𝑣)

𝑛𝑖

where 𝑥�̅� denotes the average score (i.e., the wining rate) of

node 𝑖, 𝑛𝑖 is the number of times node 𝑖 has been visited,

𝑛𝑣 is the number of times the (parent) node 𝑣 has been

visited and 𝑐 is an exploration constant.

b) Expansion: If the current selected node has unexplored

child nodes, select a child and add it to expand the tree.

c) Rollout: simulate the game till the end from the new

selected node(s).

d) Backpropagation: Results received by the simulations are

backpropagated through the selected nodes to update their

statistics.

By repeating these four phases iteratively, the search tree is

gradually constructed.

3) Dummy (Random) Agent. This Dummy agent places tokens

on random nodes in every turn and is being used mainly for a

benchmark purpose.

V. EXPERIMENTS AND RESULTS

This section describes the experiments used to rate the

overall performance of the implemented AI agents, as well as

the effecting scenarios. Over 22,000 experiments of complete

games were executed using the “Spread-It” Engine (“SPRITE”)

and analyzed later.

The section is organized as follows. Subsection V.A presents

the experimental settings. Subsection V.B describes the testing

methodology. Subsection V.C exhibits the results of the Zero

Loyalty variant. Subsection V.D exhibits the results of the Full

Loyalty variant. Subsection V.E examines the role of central

nodes. Subsection V.F examines the relation between the

node’s degree and its threshold. Subsection V.G summarizes

some of the main observations.

A. Experimental Settings

- Game Engine: an engine named “SPRITE” (Spread-It

Engine) was developed to simulate the “Spread-It” game. The

engine draws the graph layout, calculates the network

measures, and generates synthetic graphs for the experiments.

- Environment: The tests were performed on 4 Intel Xeon 2.27-

GHz Quad-Core virtual machines (VM), each with 8 GB of

RAM.

- Graph Data Set: A total of 15 synthetic undirected graph

networks were generated. The primary focus was on real-world

networks. Each graph (game board) was taken from a different

network class: Small-World Graph, Random Graph and

Preferential Attachment Scale-Free Graph (Barabási–Albert

model [22]). Five graphs were generated for each network class

with numbers of nodes and edges ranging from 14 to 88 nodes

and 19 to 258 edges.

- Parameters: The following parameters were set for all test

cases:

1) The starting player is black.

2) The chosen evaluation function (heuristic) for the Alpha-

Beta algorithm was the Linear Combination (LC) heuristic

described above. This heuristic was selected since it

achieved the most promising results in the preliminary

experiments and theoretically generalizes the proposed

heuristics. A complete report of the results of the different

Alpha-Beta heuristics is given in Appendix C.

3) The Linear Combination heuristic weights were set as

follows: 𝐿𝐶 𝑆𝑐𝑜𝑟𝑒 = 𝑤1 · 𝐻𝑝𝑎𝑟𝑖𝑡𝑦 + 𝑤2 · 𝐻𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑤3 ·

𝐻𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑤4 · 𝐻ℎ𝑢𝑏𝑠 + 𝑤5 · 𝐻𝑔𝑒𝑛𝑒𝑟𝑎𝑙 , 𝑤ℎ𝑒𝑟𝑒 𝑤1 =

0.27, 𝑤2 = −0.08, 𝑤3 = 0, 𝑤4 = 0.315, 𝑤5 = 0.495.

These weights were obtained by the learning algorithm

described in IV.A.1 and Appendix B.

4) The learning rate for finding the optimal set of weights for

the LC heuristic was set to 𝜂 = 0.05.
5) The Alpha-Beta algorithm’s search depth was set to 4.

6) The number of Monte Carlo tree search iterations was set

IEEE Transactions on Games - Manuscript ID: TCIAIG-2017-0046.R2 8

to 1000.

7) The exploration constant of the MCTS UCB1 formula was

set to 𝑐 = √2.
8) The MCTS rollout (simulation) policy used uniformly

random move choices.

9) Time limit for each agent was set to 2.5 seconds.

10) The threshold of each vertex in any graph was set to the

degree of the vertex. For the case where the threshold is not

equal to the degree, see subsection V.F.

B. Testing Methodology

The performances of the different AI agents were evaluated

against each other, and the number of wins, losses and draws

were counted for each AI agent, where 𝑤 counts the number of

black wins, 𝑙 counts the number of red (the opponent) wins (or

black losses), and 𝑑 counts the number of draws where the game

is infinite and where there is no convergence to one player’s

color (i.e., there is no winner). Based on experimentation, the

following rates were calculated for each game method:

— Win rate (WR): The percentage of games won over the total

number of games, given by
𝑤

𝑤+𝑙+𝑑
 .

— Draw rate (DR): The percentage of draws over the total

number of games, given by
𝑑

𝑤+𝑙+𝑑
.

— Win Loss ratio (WLR): This ratio ignores the draws and

represents the ratio between the number of wins to the total

number of wins and losses, given by
𝑤

𝑤+𝑙
.

The results are shown with their 95% confidence interval

along with the win percentage (WR).

C. “Spread-It” Zero Loyalty Results

TABLE I shows the performance of each agent against all the

other agents over different graph boards. The first column lists

the starting (black player) agent, while the second column lists

the red player agent (six agents’ combinations). The rest of the

columns (WR, DR, WLR) represent the performance of the

black player. Each set of players is matched up 500 times – 250

times as the first player (black) and 250 times as the second

player (red). These games were tested over 15 different graphs

played for a total of 22,500 games (6 ∙ 250 ∙ 15). A summary

of the performance results is presented in TABLE II.

TABLE I

ZERO LOYALTY VARIANT – AGENT RESULTS

Black Player Red Player WR% DR% WLR%

Alpha-Beta MCTS 31.0 ± 1.48 4.1 32.4

Alpha-Beta Random 97.5 ± 0.49 0.1 97.9

MCTS Alpha-Beta 70.1 ± 1.46 4.2 74.0

MCTS Random 99.6 ± 0.20 0 99.6

Random MCTS 0.7 ± 0.26 0.1 0.7

Random Alpha-Beta 4.0 ± 0.62 1.1 4.0

TABLE II

ZERO LOYALTY VARIANT – WIN RATE SUMMARY, OVER ALL GAMES PLAYED
MCTS Alpha-Beta Random

Win Rate (WR%) 85.3 ± 0.80 64.1 ± 1.08 2.38 ± 0.34

It is clear that the MCTS approach is by far the most powerful

stand-alone agent, as it wins (WR) ~99% against the Random

player and ~70% WR against the Alpha-Beta agent. The Draw

Ratio (DR) for MCTS is approximately 4% against the Alpha-

Beta agent. As expected, the Random agent is clearly the

weakest strategy with only 4% wins against the Alpha-Beta and

less the 1% against the MCTS agent. The Alpha-Beta agent has

a win rate of 31% against the MCTS agent and 97% WR against

the Random player.

As described in subsection “Graph Data Set,” the graph

classes included Small-world graphs, Random graphs and

Scale-Free graphs. TABLE Ⅲ below shows the win rate (WR)

for each agent per each graph class against all other agents. The

name of the agent listed in the first column is the starting (black)

player. While seemingly there are no meaningful differences

between these three graph families, the MCTS approach obtains

the highest win rate in the Barabàsi-Albert graph class at

~ 87%. It is possible that one could have seen greater

differences between the three graph classes with larger graphs

(having hundreds of nodes or more), but the high game’s

complexity makes it difficult to test such a scenario.

TABLE Ⅲ

ZERO LOYALTY VARIANT – AGENT RESULTS GROUP BY GRAPH CLASS

Agent Random

(𝑊𝑅%)

Watts-Strogatz

(𝑊𝑅%)

Barabàsi-Albert

(𝑊𝑅%)

Alpha-Beta 65.3 ± 1.86 63.7 ± 1.88 61.3 ± 1.90

MCTS 79.4 ± 1.58 82.5 ± 1.48 86.9 ± 1.32

Random 2.1 ± 0.56 3.0 ± 0.66 3.0 ± 0.66

D. “Spread-It” Full Loyalty Results

The Full Loyalty variation represents the case where

members do not change their alternative throughout the game;

therefore, a particular node in the graph can explode only once

during the game. As seen in TABLE Ⅳ and TABLE Ⅴ, the

superiority of the MCTS method is maintained throughout the

Full Loyalty variation as well, and reached a higher win rate

compared to the Zero Loyalty variant results presented in

TABLE I: ~74% WR vs. ~70% WR when the agent competed

against the Alpha-Beta agent. Furthermore, it seems that the

Alpha-Beta agent reaches considerably worse scores compared

to the results of the Zero Loyalty game. Both the Alpha-Beta

and MCTS agents in the Full Loyalty variation obtained higher

draw rates.

TABLE Ⅳ

FULL LOYALTY VARIANT – AGENT RESULTS

Black Player Red Player WR% DR% WLR%

Alpha-Beta MCTS 13.6 ± 1.09 17.6 16.5

Alpha-Beta Random 91.1 ± 0.91 7.8 98.9

MCTS Alpha-Beta 74.7 ± 1.39 14.1 87.0

MCTS Random 99.6 ± 0.20 0.2 99.8

Random MCTS 0.2 ± 0.14 0.4 0.2

Random Alpha-Beta 1.8 ± 0.42 8.9 1.9

TABLE Ⅴ

FULL LOYALTY VARIANT – WIN RATE SUMMARY, OVER ALL GAMES PLAYED
MCTS Alpha-Beta Random

Win Rate (WR%) 87.5 ± 0.74 50.0 ± 1.13 1.0 ± 0.22

TABLE Ⅵ shows the win rate (WR) for each agent over each

graph class against all other agents. As can be seen, the MCTS

IEEE Transactions on Games - Manuscript ID: TCIAIG-2017-0046.R2 9

agent obtains again (as seen for the Zero Loyalty variant in

TABLE Ⅲ) the highest win rate (WR%) over the Barabàsi-

Albert graph class with ~ 95% WR. The Alpha-Beta agent

achieved the highest WR over the Watts-Strogatz graph family

with ~56% and the lowest WR over the Random graph family

with ~37%.

TABLE Ⅵ

FULL LOYALTY VARIANT – AGENT RESULTS GROUP BY GRAPH CLASS

Agent Random

(𝑊𝑅%)

Watts-Strogatz

(𝑊𝑅%)

Barabàsi-Albert

(𝑊𝑅%)

Alpha-Beta 37.3 ± 1.89 56.7 ± 1.94 51.7 ± 1.95

MCTS 84.7 ± 1.41 83.0 ± 1.47 95.0 ± 0.85

Random 0.3 ± 0.21 1.7 ± 0.50 1.2 ± 0.42

E. Are Central Nodes important in “Spread-It”?

The following subsection inspects the influence of the central

nodes on the modus operandi of an agent and its winning rate.

From the experiments mentioned above, we checked whether a

particular agent (MCTS or Alpha-Beta) preferred nodes with

higher centrality metrics over other nodes. This scenario is

strongly related to real-world phenomena in which companies

or individuals compete for the influencers in social networks.

The common convention holds that investing more efforts to

gain control over influencers is an effective strategy that leads

to better influence through the social network [23], [24].

A representative scale-free graph (Barabási–Albert model

with 24 nodes and 70 edges) was selected from the graph data

set mentioned above. This graph class was chosen since the

topology of a scale-free network is dominated by a few highly

connected nodes (often called “hubs”) while the rest of the

nodes having very few connections. The games where the black

agent (first player) was the MCTS or the Alpha-Beta were

analyzed. The percentage of times a particular node was chosen

by an agent over all the other agent’s selections was recorded.

Different centrality metrics such as PageRank, eigenvector, etc.

were tested in order to rank the nodes. However, no meaningful

ranking differences were found in comparison with the degree

centrality metric. In this analysis, we focused on the top 20% of

nodes based on the degree (threshold) centrality metric. For this

group of nodes we summed up the percentage of times they

were selected.

Fig. 4 shows the percentage of times each agent selected the

top 20% nodes in two game sets (ⅰ) all games and (ⅱ) games

where the agent won for the Zero Loyalty variant of the game.

Fig. 5 presents the results of the same analysis for the Full

Loyalty variant. It is notable that the MCTS agent in the Zero

Loyalty variant does not have a strong preference for the top

20% nodes over the other nodes. In both game sets, the top 20%

of the nodes were selected by the MCTS agent approximately

in ~20% of the times, thus, in accordance with their overall

percentage in the population, as expected from a random

selection of nodes. Interestingly, the Alpha-Beta agent in the

Zero Loyalty variation, chose the central nodes less frequently

than could been expected if the choice was purely random. In

contrast, in the Full Loyalty variant, the MCTS agent had a

stronger preference for the top 20% of the nodes (selecting them

~30% of the times). The Alpha-Beta agent in the Full Loyalty

variant selected the top 20% nodes approximately ~20% of the

times, while in the Zero Loyalty variant, these central nodes

where only chosen ~9% of the times.

Fig. 4 Zero Loyalty – Number of times high central nodes (top 20%) and low

central nodes (bottom 20%) were chosen by the MCTS vs. Alpha-Beta agents.

Fig. 5 Full Loyalty - Number of times high central nodes (top 20%) and low

central nodes (bottom 20%) were chosen by the MCTS vs. Alpha-Beta agents.

F. The Effect of a Threshold Unequal to the Node’s Degree.

In all the experiments performed so far, the node’s threshold

was set to be equal to the node’s degree. In this experiment, we

inspected how the agent node’s selection is affected when there

are nodes with a threshold that is not equal to their degree.

Specifically, we aimed at investigating whether an agent would

prefer a more ‘central’ node (i.e., a higher-degree node) with a

lower firing threshold. This implies that a lower “investment”

(i.e., lower number of tokens) is required to potentially win this

node, although the “profit” remains the same, since the

exploded node distributes relatively more tokens than the

threshold to its neighbors. In the case where the node’s

threshold is lower than its degree, new tokens are created ex

nihilo for the agent who won at that node, while in the case

where the node’s degree is equal to the node’s threshold the

“energy conservation” is maintained in the system (as no new

tokens are created besides those on the board). To test this

hypothesis, we studied the same scale-free graph mentioned in

subsection V.E above. From this graph, we have selected the

two most central nodes (based on their degree-centrality metric)

with a degree equal to 10 and a threshold equal to 5 that was

arbitrarily determined to be equal to half of the degree. For each

agent (MCTS or Alpha-Beta) we executed 500 games on the

18.49 21.62 19.40 22.10

62.49 59.88 71.53 68.40

19.01 18.50
9.07 9.50

A l l G a m e s B l a c k W i n s A l l G a m e s B l a c k W i n s

M C T S A l p h a - B e t a

Lower 20% Rest Top 20%

11.78 11.86 10.65 11.54

57.57 57.7
69.63 69.56

30.64 30.41
19.70 18.88

A l l G a m e s A g e n t W i n s A l l G a m e s A g e n t W i n s

M C T S A l p h a B e t a

Lower 20% Rest Top 20%

IEEE Transactions on Games - Manuscript ID: TCIAIG-2017-0046.R2 10

graph board with the agents playing against the other agent and

the Random agent. The percentage of times each node with the

reduced threshold (from the two selected ones) was selected by

an agent was recorded and compared with the “regular” case

where the selected nodes had a threshold equal to their degree.

Fig. 6 and Fig. 7 present the results for the Zero Loyalty and

the Full Loyalty variants respectively. It is evident that the

dominant agent from the previous experiments (MCTS) clearly

prefers nodes with higher degree than their threshold (18% of

the agent moves) in comparison with the previous case in which

the threshold is equal to the node degree (7.7% of the agent

moves). A similar observation was obtained for the Alpha-Beta

agent. In the Full Loyalty variant of the game, both agents still

preferred the nodes where the degree is higher than the

threshold over nodes where these parameters are equal. Note

that the selection of nodes with a reduced threshold in the Zero

Loyalty variant was substantially higher (18% vs. 7.7% and

11.2% vs. 4.1%) in comparison to the Full Loyalty variant

where these differences were less noticeable (17.8% vs. 12.5%

and 11.5% vs. 9.6%).

Fig. 6 Zero Loyalty – Ratio of selection of nodes when the cost of capturing a

node is reduced (Threshold << Degree) or kept as it is (Threshold = Degree)

for both types of agents.

Fig. 7 Full Loyalty - Ratio of selection of nodes when the cost of capturing a

node is reduced (Threshold << Degree) or kept as it is (Threshold = Degree)

for both types of agents.

G. Conclusions and Main Observations

An interesting observation from the study is related to the role

of central nodes (hubs) in the “Spread-It” game. While

influencing the central hubs seem to be a good strategy in

general as indicated in the literature (e.g., [23], [24]), this is not

necessarily the case for the “Spread-It” game, and does not

always results in a win. One reason why the MCTS method

achieved a higher winning rate with respect to other agents is

since the MCTS does not use any predefined rules. Instead, it

adapts itself to the current network state and decides on the next

moves based only on that. This observation provides some

intuition on how decision-makers should act in situations

represented by the “Spread-It” game in the Zero Loyalty variant

- making decisions based on current states without predefining

any strategy a priori. The superiority the MCTS method are also

due to the relatively limited span of the Alpha-Beta agent. For

this method, a depth limit needs to be set, thus, the entire

development of the tree could not be fully anticipated in

advance.

As a general note, it is quite reasonable and intuitive to believe

that an allocation of budget to influential nodes would yield a

high rate of winning. Nevertheless, in this study it was found

that such a strategy does not yield a high winning rate in certain

cases. When analyzing the nodes chosen by the winning

strategy with respect to their influence (measured by their

degree), it was found that the winning strategy has no

preference for allocating tokens to nodes with higher centrality

measures in the Zero Loyalty variant of the game, while in the

Full Loyalty variant, in which extensive flips in the system’s

state are not possible, there was a clear preference by the

winning agents towards the central nodes. These results

contradict a common belief by which the nodes’ influence can

be derived from the network topology itself, relying mainly on

their centrality measures and less on the dynamics of spreading.

Indeed, in many simplified dynamics of spread (such as the Full

Loyalty), the centrality measures of a node provide good

predictions for its influence, but this is not necessarily the case

under some realistic information spread dynamics [25]. Some

of these dynamics, including the change of opinion that might

occur in scenarios associated with products that compete in

markets with low customer loyalty, are captured by the

“Spread-It” model.

Another observation emerges from the similarity between

“Spread-It” and the CFG. The CFG is based on the Abelian

sandpile model [11], which is often used for studying self-

organized criticality in dynamical systems that consist of a

sequence of cascades. As in the Zero Loyalty version of the

game, small perturbations in the system might result in

significant changes of the entire system’s states. This chaotic

phenomenon might explain the need for an extended look-

ahead estimation of future system states, as implemented by the

MCTS method.

Finally, let us note that some aspects of the “Spread It” game,

as a model of influence spread in social networks, should be

highlighted. These aspects do not relate to the implemented AI

solutions per-se but more to the contribution of the game itself

as an abstract model of influence.

VI. SUMMARY AND FUTURE WORK

This work introduces a game, called “Spread-It,” that captures

influence spread dynamics within a social network. Several AI

agents are analyzed to find an algorithm with a high wining rate

in the game. A Monte Carlo tree search (MCTS) method is

found to obtain the best winning rate among the studied agents.

Not only that the MCTS method obtains a better winning rate,

but also it reveals some interesting properties of the winning

strategy. One such property is related to the role of central

influencing nodes (“hubs”) in the network. Conventional

influence measures are often determined by the network

topology. These measures include the node’s Degree, its

PageRank, and the Eigenvector Centrality. These are

commonly used as valid measures for the nodes’ potential

influence within the network. Yet, they are found to be less

effective in the scenario of flipping opinions dynamics, as

characterized by the Zero Loyalty “Spread-It” model.

7.70%
4.14%

18%

11.19%

0%

5%

10%

15%

20%

MCTS % Alpha-Beta %

Threshold = Degree

Threshold << Degree

12.50%
9.60%

17.85%

11.48%

0%

5%

10%

15%

20%

MCTS % Alpha-Beta %

Threshold = Degree

Threshold << Degree

IEEE Transactions on Games - Manuscript ID: TCIAIG-2017-0046.R2 11

The reason for their inefficiency in the Zero-Loyalty game, is

related to the fact that nodes might flip their loyalty several

times, influencing the entire system state and generating

cascades of influence trajectory changes that are long and hard

to predict.

Future work on “Spread-It” could extend the current frame

to a multi-player game or a game played not only on undirected

graphs but also on directed ones. On such a digraph, the player

can face new game phenomena, such as a “sink node” (having

a zero out-degree) that ‘swallows’ tokens. One can also

consider a probabilistic framework where probabilities are

assigned to graph edges, by which tokens are fired on the node’s

neighbors. In this paper, we limit our study of the game to a

static network where the network’s structure does not change

over time. A more complex approach will look at “dynamic”

networks, where the topology of the network evolves over time.

Another property to study in the future is networks with

different modularity (i.e., networks with a presence of

communities); these networks can be generated and

benchmarked using, for example, the method developed by

Lancichinetti et al. [26].

“Spread-It” is a simple game designed for studying the

interactions involved in processes of collective decision-

making. In such cases, different players try to influence

decision-makers with known (and sometimes hidden) social

connections. Flips in the opinion of a majority can then occur

suddenly and unpredictably. These flips can be found in

parliament decision processes, in daily commercial agreements

or in jury trials verdicts, just to name few examples. While the

unlimited flipping of opinions, as it exists in the theoretical

model, is somewhat unrealistic, sequential flips of opinions can

be found in several real-life cases. Since group’s decision-

making processes have become the norm in many social

studies, the implications of this work can be related to several

group decisions processes.

APPENDIX A

Fig. 8 gives an example where the threshold of a vertex is not

equal to its degree. In such cases the properties mentioned in

subsection III.D.2 do not hold. In this graph,

— The degree of each vertex is 2 while the threshold is 1.

— The number of tokens in the graph (𝑁) is 1.

— The number of nodes in the graph (𝑛) is 3.

— The number of edges in the graph (𝑚) is 3.

According to the “infinity” property: if 𝑁 > 2𝑚 − 𝑛 (i.e. if

𝑁 > 3), then the game reaches a state of infinity (by series of

explosions). In the graph configuration below, the property

does not hold, since if 𝑁 ≥ 1 the game is infinite without

reaching a stable state. Accordingly, the token distribution 𝑚 −
𝑛

2
 property does not hold either.

Fig. 8 Example of “Spread-It” graph where the node’s threshold is not equal to

its degree.

APPENDIX B

The following outline summarizes how the learning

algorithm works for finding the optimal weights for the Linear

Combination (LC) heuristic. The learner has to learn a function

𝑉, called the target function, which is the ideal function for

choosing the best move in each game state. The target function

assigns a numerical score to any given game state, where higher

scores are assigned to better game states and vice versa. For the

final game states, the value of the target function is 𝑉(𝑠) = 100

if the agent won the game; 𝑉(𝑠) = −100 if the agent lost the

game; and 𝑉(𝑠) = 0 if the game ends in a draw, where 𝑠 is the

game state. For the intermediate states, an approximation

function �̂� is used, reflecting the real value of the game state.

The LC heuristic function is an approximation of the target

function 𝑉. The LC weights are modified throughout the

learning process, converging the function to the desired state.

In order to learn effectively, the agent needs feedback from a

critic procedure. In this case the feedback is given indirectly by

the value of a function called the training function 𝑉𝑡𝑟𝑎𝑖𝑛. For

every state 𝑠, the training function can be expressed in the

following way: 𝑉𝑡𝑟𝑎𝑖𝑛(𝑠) = �̂�(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠)), where

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠) denotes the next game state following 𝑠 for

which it is again the learner's turn to move. The weights are

recalculated every turn by using the Least Mean Square (LMS)

technique which can be viewed as performing a stochastic

gradient-descent search throughout the hypothesis space

(weight values) to minimize the error 𝐸. This error represents

the error made by the sum of the squared differences between

the target function and the training function. Each turn, for

every single training example, each weight is recalibrated using

the following function: 𝑊𝑖 = 𝑊𝑖 ∙ 𝜂 ∙ (𝑉𝑡𝑟𝑎𝑖𝑛 − �̂�(𝑠)) ∙ 𝐻𝑖

where 𝜂 is a small constant called the learning rate that

moderates the size of the weight update; 𝐻𝑖 is the i-th score of

a particular heuristic, and 𝑊𝑖 is the associated weight assigned

to this heuristic score, as explained in section IV.

Twenty simulations were executed, where each simulation

consists of 10,000 games. In each game the learner agent played

against a second copy of itself on a random synthetic graph

made up of 15-25 nodes (the size of the graphs was limited due

to time constraints). Following each simulation, the weights

vector, the number of wins, losses and draws were recorded. Of

the twenty simulations, eight simulations which achieved at

least a 70% wins rate by the first learner were selected. The

average of the 8 final weight vectors was used to determine the

final weight for each heuristic H.

Please refer to [17] for further details of the algorithm and

the learning model.

APPENDIX C

TABLE Ⅶ shows how each Alpha-Beta agent with a

specific heuristic performed against all the other agents

including the MCTS and the Random agents (7 combinations

per each heuristic) on different graph boards. The name of the

Alpha-Beta agent (with the specific heuristic) listed in the agent

column is the starting (black) player, while the second is the red

player. The second and third columns show the win rate (WR%)

IEEE Transactions on Games - Manuscript ID: TCIAIG-2017-0046.R2 12

of an agent in the two game variants. Each player competed in

100 games per heuristic combination (a total of 700). These

games were tested over 15 different graphs (a total of 15 ∙
700 = 15,000).

For further details on each heuristic, see subsection IV.A.1.

TABLE Ⅶ

ALPHA-BETA HEURISTICS RESULTS

Agent Heuristic Zero Loyalty WR% Full Loyalty WR%

Parity 37.7 ± 0.93 50.9 ± 0.96

Stability 14.1 ± 0.67 10.9 ± 0.60

General 38.4 ± 0.93 48.3 ± 0.96

Hubs 24.6 ± 0.82 28.6 ± 0.86

Lin Com. 49.4 ± 0.96 62.2 ± 0.93

Mobility 23.9 ± 0.82 21.8 ± 0.79

One can observe from these results that the Linear

Combination (LC) heuristic (with the Alpha-Beta agent)

achieved the highest win rate (WR%) in both game variants. In

the Zero Loyalty variant, the LC heuristic reached ~50% WR,

whereas other heuristics obtain win rates of under 40%. In the

Full Loyalty variant, the LC agent reached ~62% WR, whereas

other heuristics obtained win rates of under 50%.

REFERENCES

[1] A. Björner, L. Lovász and P. W. Shor, "Chip-firing

games on graphs," European Journal of Combinatorics,

vol. 12, pp. 283-291, 1991.

[2] A. Sela, "Information Spread in Social Networks

(Unpublished Doctoral dissertation)," Tel-Aviv, 2017.

[3] B. L. Bayus, "Word of Mouth-the Indirect Effects of

Marketing Efforts," Journal of advertising research, vol.

25, pp. 31-39, 1985.

[4] D. Kempe, J. Kleinberg and É. Tardos, "Maximizing the

spread of influence through a social network," in

Proceedings of the ninth ACM SIGKDD international

conference on Knowledge discovery and data mining,

2003.

[5] S. Bharathi, D. Kempe and M. Salek, "Competitive

influence maximization in social networks," in

International Workshop on Web and Internet

Economics, 2007.

[6] T. Carnes, C. Nagarajan, S. M. Wild and A. Van Zuylen,

"Maximizing influence in a competitive social network:

a followerś perspective," in Proceedings of the ninth

international conference on Electronic commerce, 2007.

[7] X. He, A. Prasad, S. P. Sethi and G. J. Gutierrez, "A

survey of Stackelberg differential game models in

supply and marketing channels," Journal of Systems

Science and Systems Engineering, vol. 16, pp. 385-413,

2007.

[8] A. Clark and R. Poovendran, "Maximizing influence in

competitive environments: a game-theoretic approach,"

in Decision and Game Theory for Security, Springer,

2011, pp. 151-162.

[9] N. Alon, M. Feldman, A. D. Procaccia and M.

Tennenholtz, "A note on competitive diffusion through

social networks," Information Processing Letters, vol.

110, pp. 221-225, 2010.

[10] V. Tzoumas, C. Amanatidis and E. Markakis, "A game-

theoretic analysis of a competitive diffusion process

over social networks," in Internet and Network

Economics, Springer, 2012, pp. 1-14.

[11] P. Bak, C. Tang and K. Wiesenfeld, "Self-organized

criticality: An explanation of the 1/f noise," Physical

review letters, vol. 59, p. 381, 1987.

[12] J. Desel, E. Kindler, T. Vesper and R. Walter, "A

simplified proof for a self-stabilizing protocol: A Game

of Cards," Information Processing Letters, vol. 54, pp.

327-328, 1995.

[13] C. Godsil and G. F. Royle, Algebraic graph theory, vol.

207, Springer Science & Business Media, 2013.

[14] N. L. Biggs, "Chip-firing and the critical group of a

graph," Journal of Algebraic Combinatorics, vol. 9, pp.

25-45, 1999.

[15] D. E. Knuth and R. W. Moore, "An analysis of alpha-

beta pruning," Artificial intelligence, vol. 6, pp. 293-

326, 1976.

[16] B. Brügmann, "Monte carlo go," Technical report, Max

Planck Institute of Physics, 1993.

[17] T. M. Mitchell, "Machine Learning," in Machine

Learning, McGraw-Hill Education, 1997, pp. 1-15.

[18] A. Levinovitz, "The Mystery of Go, the Ancient Game

That Computers Still Can’t Win", WIRED, 2014.

[Online]. Available:

https://www.wired.com/2014/05/the-world-of-computer-

go. [Accessed: 09- Sep- 2017].

[19] E. Lasker, Go and Go-moku, Courier Corporation, 2012.

[20] L. Kocsis and C. Szepesvári, "Bandit based monte-carlo

planning," in Machine Learning: ECML 2006, Springer,

2006, pp. 282-293.

[21] P. Auer, N. Cesa-Bianchi, and P. Fischer, "Finite-time

analysis of the multiarmed bandit problem," Machine

learning, vol. 47, no. 2-3, pp. 235-256, 2002.

[22] A.-L. Barabási and R. Albert, "Emergence of scaling in

random networks," science, vol. 286, pp. 509-512, 1999.

[23] J. Goldenberg, S. Han, D. R. Lehmann and J. W. Hong,

"The role of hubs in the adoption process," Journal of

Marketing, vol. 73, pp. 1-13, 2009.

[24] E. Katz and P. F. Lazarsfeld, Personal Influence, The

part played by people in the flow of mass

communications, Transaction Publishers, 1955.

[25] D. J. Watts and P. S. Dodds, "Influentials, networks, and

public opinion formation," Journal of consumer

research, vol. 34, pp. 441-458, 2007.

[26] A. Lancichinetti, S. Fortunato and F. Radicchi,

"Benchmark graphs for testing community detection

algorithms," Physical review E, vol. 78, p. 046110,

2008.

