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Abstract— Diffusion of information is a key factor in many 

social and political situations. This work presents a strategic game 

called “Spread-It,” which models the spread of information 

through social network structures. In the game, two competing 

parties must decide on the allocation and timing of their limited 

resources with the goal of increasing their influence in the 

network. Since present decisions affect the future level of network 

penetration, their effort allocation must be carefully planned. The 

work starts by defining the mathematical characteristics of the 

game, followed by analytical results derived by implementing 

several strategies for winning the game. Analyzing the 

experiments provides few observations regarding the role of 

influencers (‘hubs’) under different game conditions, the 

superiority of Monte Carlo tree search strategy over traditional 

game-tree search methods, and the budget required to guarantee 

the game’s finalization. 

 
Index Terms— B2B Marketing, Game Theory, Information 

Diffusion, Political Games, Social Network  

 

I. INTRODUCTION  

PREAD-IT is a proposed two-player zero-sum game aimed 

at analyzing strategic thinking in the art of acquiring 

influence through social networks. The game can be played 

on a virtual or physical board that represents an organization’s 

social graph, where the set of vertices (nodes) is associated with 

members in the network, and the set of edges defines the 

connectivity between these members. Two opposing parties 

(players) compete on the board to increase their dominance, as 

a single choice of the organization. “Spread-It” can be played 

over any undirected graph representing the game’s board, 

unlike other board games, e.g., Chess, Checkers and Othello, 

which are played on specific boards.  

The reality that the game simulates can be seen as a case of 

two opposing attitudes trying to win a group of decision-

makers. Such scenarios are seen, for example, in politics 

between two parties or in a bidding process where two suppliers 

are submitting competing proposals. Thus, the game can mimic 

two suppliers trying to win a bid within an organization by 

influencing different decision-makers to adopt their product / 

service. In large organizations, bids are applied regularly to 

choose between suppliers, and only one supplier is eventually 

chosen. Each of the two players represents an attitude 

(supplier), and the players are lobbyists of the supplier within 

the organization, trying to advance their attitude within the 

social graph of decision-makers. In each move, each player 

must decide on what node (key decision maker) to invest its 

convincing efforts, where each unit of ‘convincing effort’ is 

represented by a token, with different colors representing 

different attitudes for each of the lobbyists.  

Influencing someone to adopt an alternative is seldom 

completed in a single interaction and is instead often 

accomplished through repeated efforts. This logic is embedded 

in the proposed game, where each player adds a single unit of 

influence (a colored token) to a chosen node during his/her turn. 

The token represents a limited (e.g., marketing) resource, such 

as budget or energy, required to influence the selected member. 

Then, when the total number of tokens in a node reaches the 

node’s threshold, the node ‘fires’ or ‘explodes’ (we use both 

terms interchangeably), indicating that the associated member 

adopts the alternative of the player that gains the majority of 

tokens on the node. This adoption of an opinion by a node is 

named “an explosion” in the game’s terminology. When an 

explosion occurs, first, all the tokens on a node are changed to 

the color of the winning party. This represents the loss of the 

effort of the losing party, and the effort invested by the winning 

party that increases its strength by winning its opponent. 

Furthermore, when an explosion occurs, after having the color 

of the losing party changed to that of the winning party, the 

tokens are distributed to the neighboring nodes. This process, 

represented by the “explosion,” may repeat itself in a cascade 

manner, where one converted member influences another, thus 

representing the influence that the exploding node has on its 

neighbors toward adopting the alternative that it has. 

As in many games, this game is a simplified set of rules that 

mimics a certain aspect of a highly complex reality. This 

simplification clearly implies limitations for the scenarios that 

the game represents. For example, the game does not represent 

the scenario in which an effort to influence opinions is 

performed through mass media such as the use of TV, radio or 

billboards, but only an effort to influence opinions through a 

personal one-to-one contact. Moreover, “Spread-It” falls under 

the category of sequential games (sometimes called dynamic 

games), where players move at different points of time and can 

observe some, if not all, the choices of other players before 

deciding upon their optimal response. This contrasts with static 

games (or simultaneous game) where players making their 

moves simultaneously. A broader discussion of the limitations 

of the game’s model as well as the reality represented by its set 

of rules is discussed in subsection III.C. 

The game includes two variations that represent opposite real-

life scenarios: a Zero Loyalty variant and a Full Loyalty variant. 

In the Zero Loyalty variant, each node can flip and change its 

color (alternative) repeatedly without being “loyal” to any 

player, even the one that initiated the interaction with the node. 

This variant can represent a social dynamics case where people 
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can unlimitedly change their opinions. Typically, this model is 

used to simulate the diffusion of ideas and opinions, such as the 

attitude towards a news event or the support of different 

political proposals, which may switch back and forth based on 

new information that is gathered along the process. In the Full 

Loyalty variant, each node can select an alternative only once. 

That is, once the node (person) has selected a color (adopting 

an alternative), it remains loyal to this alternative and does not 

change it further. This model can be used, for example, to study 

the diffusion of the adoptions of new products since these 

adoptions are typically associated with a purchase behavior or 

a significant investment and are not easily reversible. 

This paper studies the two game variants and mainly focuses 

on the Zero Loyalty variant. It addresses some mathematical 

properties of the proposed model that rely on earlier games, 

such as the chip-firing game [1], and based on these works, it 

defines some mathematical properties that can be relevant in 

real-life scenarios. Several strategies and heuristics are studied 

and benchmarked to find potentially good influential policies in 

certain networks. Among these methods, a Monte Carlo tree 

search (MCTS) method is found to provide relatively better 

results. Moreover, several interesting observations can be made 

based on the empirical study. Analyzing the conducted 

experiments provides some unintuitive observations regarding 

the limited role of influencers (‘hubs’) in the situation of no 

customer loyalty to an alternative (‘zero loyalty’); the 

superiority of probabilistic approaches (e.g., the MCTS) over 

traditional game-tree search methods; and the budget required 

to guarantee the game flow. Furthermore, the game provides a 

structured deterministic case, where the complex art of coalition 

formation can be studied, and demonstrates the difficulty of 

prediction in such scenarios where influence and decision-

making is performed within a set of interacting social 

connections.  

“Spread-It” was initially created as a board game in [2]. The 

game is freely available for non-commercial use and can be 

downloaded at http://tinyurl.com/md2tbke. 

II. BACKGROUND 

This section describes various diffusion models through 

social networks. We use the following notation throughout the 

paper. Let 𝐺 = 〈𝑉, 𝐸〉 be a graph that represents the social 

network, where the set of vertices 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} is 

associated with the individual users in the network, and the set 

of edges 𝐸 = {𝑒𝑖𝑗 = (𝑣𝑖,, 𝑣𝑗)|𝑣𝑖,, 𝑣𝑗 ∈ 𝑉} defines the 

connectivity between the users.  

Models for the processes by which information and influence 

propagate through a social network have a long history in social 

science studies. These information diffusion models have been 

widely applied in a “word of mouth” (WOM) context [3]. In 

marketing, WOM has been acknowledged as a major influencer 

in the promotion of new products. Traditionally, WOM has 

been specified as information exchanged through face-to-face 

interactions; though more recently, the term has been extended 

to online or to technology-enabled information exchange 

between individuals. The mathematical properties of 

information spread through social networks have been studied 

in the well-known work of Kempe et al. [4]. The authors 

considered two basic models of information spread: the Linear 

Threshold (LT) model and the Independent Cascade (IC) 

model. These models represent the core ideas of information 

spread by which the Linear Threshold model captures social 

influence, and the Independent Cascade model captures 

retention loss. More formally, the LT model assumes that a 

node 𝑣 can change from state 0, in which it is non-infected (or 

inactive), to state 1, in which it is infected (or active), and such 

a change depends on the mapping of weights and states of the 

node’s infected neighbors, denoted by the subset 𝛿𝑣. Thus, node 

𝑣 becomes infected and changes its state to 1 only if ∑ 𝑏𝑣,𝑢𝛿𝑣
≥

𝜃𝑣, where 𝜃𝑣 ~ 𝑈[0,1] is the threshold of 𝑣, and 𝑏𝑣,𝑢 represents 

the social influence of the infected neighbor 𝑢 on 𝑣. In the IC 

model, when node 𝑣 becomes infected, it has a single chance to 

infect each ‘currently non-infected’ neighbor 𝑢. The infection 

attempt succeeds with probability 𝑃𝑣,𝑢. Accordingly, the 

influence maximization problem (IMP) is defined as a selection 

of 𝑘 seed nodes (the ‘seed set’) that maximizes the expected 

number of infected nodes by the end of the diffusion process. 

Kempe et al. [4] proved that the IMP problem under both IC 

and LT models is an NP-hard problem and showed that a greedy 

approach would reach a solution within 63% of the optimal 

bound. Unlike the “Spread-It” game with a Zero Loyalty 

variation, the LT model and the IC model do not consider 

recovery dynamics by which an infected node can reversely 

become uninfected. 

A trivial extension of the IC or the LT model is to introduce 

a competitive setting for the diffusion of influence through the 

social network. In real-world cases, for example, there is a 

competition among firms providing products or services that 

compete for the same market share. These firms compete for 

strategic members (influencers), aiming to maximize the 

adaptation of their products. These products are usually pricey, 

and in many cases, it is unlikely that a consumer will purchase 

more than one competing product within a short period of time. 

In recent years, several competitive influence propagation 

models have been studied. Bharathi et al. [5] proposed an 

extension to the IC model and showed that the last player to 

select the seed set can obtain at least a (1 −
1

𝑒
)-approximation 

to the optimal strategy. Carnes et al. [6] studied the available 

strategies of a company trying to introduce a new product into 

an existing market where a competing product already exists. 

Such a setting turns the problem into a Stackelberg game [7]. 

Clark and Poovendran [8] introduced a model called Dynamic 

Influence in Competitive Environments (DICE) and showed that 

the IC and the LT models can be derived as special cases of 

DICE. Like the proposed “Spread-It” game (with a Zero 

Loyalty variation), a node in the DICE model can switch 

between adopted alternatives over time. The second variant of 

DICE (simultaneous-move game) considers a game of 

incomplete information, in which neither player can observe the 

other’s moves. This setting is different from the proposed 

“Spread-It” model, in which a perfect information game is 

assumed, i.e., all players have access to the game information 

and know exactly at each time what are the influence efforts 

that are made by their opponent. This scenario not only allows 

a better strategic planning of the moves, but also fit the reality 

to a certain degree. 

http://tinyurl.com/md2tbke
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Influence was further studied through a game theoretic 

approach. In this direction, Alon et al. [9] introduced a model 

of diffusion of influence through a social network and studied 

the relation between the network diameter and the existence of 

pure Nash equilibria. Tzoumas et al. [10] generalized the model 

proposed by Alon et al., and considered a setting where each 

player tries to infect a set of 𝑘 seed nodes. While in the proposed 

“Spread-It” model, each player can only influence (by putting a 

color token) one node at a time in every turn. Another difference 

between Tzoumas et al.’s and Alon et al.’s models vs. “Spread-

It” is that in the former models, each node can have at most one 

alternative, i.e., a node that has adopted a particular alternative 

cannot alter its decision later on, while in the latter model (the 

“Spread-It” with Zero Loyalty variation), each node can flip 

and change its color repeatedly without being “loyal” to any 

alternative. Furthermore, in Alon et al.’s model, if two players 

compete for the same node at the same time, they “cancel out” 

each other, and the node is removed from the game (colored 

gray), while in “Spread-It,” such conflicts are allowed, i.e., 

different players can compete for the same node at the same 

time, as often happens in real-life settings. 

III. THE “SPREAD-IT” MODEL 

“Spread-It” is a game played on a finite graph. For purposes 

of simplicity, we have chosen to focus on a finite, connected, 

undirected graph without self-loops or parallel edges. Every 

vertex (𝑣) in the graph has a threshold value 𝑘𝑣, which is set to 

deg(𝑣) the degree of 𝑣 unless otherwise defined. Full 

information is assumed, and 𝑘𝑣  is thus pre-specified and known 

to both players. When the threshold is reached, the node “fires” 

(sends) one token to all its connected nodes. The players’ 

objective is to gain influence through the network by turning all 

(or the majority of) the nodes to their color. In this paper, we 

focus on a two-player game that represents a competitive dual 

diffusion through social networks. As indicated above, two 

game variants are considered, as follows: 

— In the Zero Loyalty variant, a member (vertex) can change 

its alternative (color) throughout the game, and a particular 

vertex in the graph can thus fire several times. 

— In the Full Loyalty variant, a member (vertex) can select an 

alternative (color) and fires only once. Once the node fires, it is 

colored by the winning color (according to a majority rule), and 

the players continue competing for the remaining vertices (if 

such exist), while the colored node remains unchanged. 

A. “Spread-It” Rules and Notations 

Let 𝐺 = 〈𝑉, 𝐸〉 be a finite connected undirected graph 

without loops with 𝑛 vertices and 𝑚 edges, in which each vertex 

has a predefined threshold value 𝑘𝑣. The function 𝑇: 𝑉 → ℕ is 

a token configuration. 𝑇𝑏(𝑣) is the number of black tokens on 

vertex 𝑣, and 𝑇𝑟(𝑣) is the number of red tokens on vertex 𝑣. 

Two players (black and red) play the following game: 

1) Initially, there are no tokens on the vertices: 𝑇𝑏(𝑣) =
0, 𝑇𝑟(𝑣) = 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑣 ∈ 𝑉. 

2) Each player receives a designated, equivalent number of 

tokens equal to 𝑚 −
𝑛

2
 (in subsection Ⅲ.D.2, an 

explanation for this number of tokens is given). 

3) Players alternate turns, each of which consists of two 

phases. In the first phase, the player puts his colored token 

on any vertex on the graph. If a vertex 𝑣 has as many tokens 

as its threshold (𝑇𝑏(𝑣) + 𝑇𝑟(𝑣) ≥ 𝑘𝑣), it fires (or 

“explodes”). In the second phase, following the explosion, 

the firing vertex distributes one token of the winning color 

to each of its neighbors.  

4) The player with the largest number of tokens at the time 

that the vertex reaches its threshold “wins” all the tokens 

on this vertex, coloring all of them. If the numbers of 

tokens on a node are equal and the threshold is reached, the 

color of the last token placed on the node defines the 

winning color. 

5) Formally, when 𝑣 explodes, 𝑇𝑐 is modified to a 

configuration 𝑇𝑐
′ such that: 

𝑇𝑐
′(𝑢) = {

𝑇(𝑣) − 𝑘𝑣                                  𝑖𝑓 𝑢 = 𝑣,

𝑇𝑐(𝑢) + 1                           𝑖𝑓 𝑢𝑣 ∈ 𝐸(𝐺),

𝑇𝑐(𝑢)                                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒;

  (1) 

where 𝑐 is the winning color (black or red) on 𝑣. Firing 

vertex 𝑣 means that we decrease 𝑇(𝑣) by 𝑘𝑣 tokens, and 

increase 𝑇𝑐(𝑢) by 1 for each neighbor 𝑢 of 𝑣. 

6) In the Full Loyalty variant of the game, the exploded vertex 

is marked (fixed) by the winning color and becomes 

inactive, which means that no player can place any more 

tokens on this colored vertex anymore. 

7) In the Zero Loyalty variant, the game is won when both 

players have finished their initial tokens and one player’s 

tokens are a majority or when the game reaches the infinite 

topple (“endless explosions”) and only one color of tokens 

is on the graph, giving that player a clear victory. In the 

Full Loyalty variant, the game is won by the player having 

the majority of vertices on the board with his/her color. 

Explosion Order. When an explosions cascade occurs after a 

player action, it follows an order defined by the dominance of 

that player. Technically, these vertices are sorted by the 

difference between the player’s colored tokens vs. the other 

colored tokens in descending order. Accordingly, the first 

exploded vertices are the ones where the player has the largest 

majority. Such ordering gives the player an advantage. An 

alternative order is to assign an index to each vertex in the graph 

such that if several vertices meet the criterion for explosion, 

they explode by their index order. 

B. Examples of Game Play 

Below, two examples are proposed - one per each “Spread-

It” variant. 

1) Zero Loyalty variant.  

The Zero Loyalty variant is presented in Fig. 1.  

 (a) The initial board state - each vertex is identified by an id. 

The vertex threshold is denoted by the number at the center of 

the vertex. The number of red tokens on a vertex is denoted by 

the number at the bottom left-hand side of the vertex. The 

number of black tokens on a vertex is denoted by the number at 

the bottom right-hand side of the vertex. (b) Black places 

his/her token on 𝑣1. (c-d) Red places his/her token on 𝑣1. An 

“explosion chain” starts on 𝑣1 since it reaches its threshold (2). 

Because Red was the last player to put a token on 𝑣1, he/she is 

the winner of this vertex. 𝑣1 explodes and fires one red token 

to each of its neighbors: 𝑣2 and 𝑣3. (e) Black places his/her 
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token on 𝑣3. Now, 𝑣3 has reached its threshold of 2 and 

explodes. When 𝑣3 explodes, it fires one black token to each of 

its neighbors: 𝑣1 and 𝑣2. (f) The “explosion chain” continues. 

𝑣2 reaches its threshold of 2. Black is the winner of this vertex 

as he/she was the last player to put a token on 𝑣2. 𝑣2 explodes 

and fires one black token to each of its neighbors: 𝑣1 and 𝑣3. 

(g) The “explosion chain” continues. 𝑣1 reaches its threshold of 

2. Black is the winner of this vertex as he/she has the majority 

of tokens in the vertex (2 vs. 0). The game ends. One obtains an 

infinite chain of Black explosions. The winner is Black, who 

has won all the tokens in the game. Red has lost all of his/her 

tokens. 

 

 
Fig. 1 An example of a Zero Loyalty game played on a small board. In this 

example, some nodes (𝑣1) change their alternatives. 

 

 

 
Fig. 2 An example of Full Loyalty game played on a small board. 

2) Full Loyalty variant. 

 The Full Loyalty variant is presented in Fig. 2. 

 (a) The initial board state. (b) Black places his/her token on 𝑣2. 

The vertex explodes since its threshold is 1. Black wins this 

vertex and “occupies” it. The vertex is now Black forever, and 

the players compete on all vertices except for 𝑣2. (c) Red places 

his/her token on 𝑣4. (d) Black places his/her token on 𝑣1. (e) 

Red places his/her token on v1. Red wins the vertex and 

“occupies” it. The players then compete on all vertices except 

for 𝑣2 and 𝑣1. (f) An “explosion chain” starts. 𝑣4 explodes in 

Red. While v1 is the neighbor of 𝑣4, this vertex is out of the 

game at this stage (since it is already occupied). It does not 

receive a token. One token remains in the “exploded” v4. (g) 

The “explosion chain” continues. 𝑣3 explodes in Red. Red wins 

this vertex and occupies it. All the vertices are “occupied” by 

the players. Red has won the majority of vertices in the game 

and is declared as the winner.  

C. “Spread-It” and Real-World Influence Diffusion 

Scenarios 

This subsection presents some of the properties of “Spread-

It” and explains how the game model fits (to a certain extent) 

real-world scenarios of influence diffusion through social 

networks. 

— Vertex coloring and node “explosion”. In the game, when 

a vertex reaches its threshold, all the tokens change their colors 

to the majority’s color before the vertex fires. Such a rule 

represents a situation where a few players (e.g., companies) are 

trying to convince a decision maker in an organization to adopt 

their alternative (e.g., product or service). When enough 

persuasion efforts have been invested, the decision maker 

threshold is reached, implying that the he reached a decision. 

Then, all efforts made by the non-winning player become 

obsolete. The “explosion” indicates that the person not only has 

adopted the winning alternative but also become an agent of that 

alternative and now influences his/her neighbors toward this 

alternative. A more realistic approach will consider the case 

where the nodes might, or might not, accept the influence 

following the “explosion” by some probability value, but this 

probabilistic approach is outside the scope of this paper and 

could be considered in future research.  

— The winner takes all. When a player wins a vertex, all 

efforts made by the losing player on that specific vertex become 

practically useless; moreover, these efforts serve the winning 

player. An equivalent scenario in real life occurs when two 

software companies compete for a new customer in a request 

for information (RFI) process. Each of the companies allocates 

efforts to answer the RFI, proposing new features and methods 

(effort is represented by tokens). When the customer decides to 

adopt one of the proposals, the winning company profits from 

the effort of the loosing company as well, e.g., by using parts of 

the features that are now integrated by the client in a single RFP 

(request for proposal) or by the publicity of such a win against 

a company that invested in the competition. However, even in 

the general case, the winning company gains a new customer, 

which improves not only its cash flow but also its 

competitiveness in comparison to the losing party. 

— The relation between the node’s threshold and its degree. 

Selecting the node’s threshold to be greater than or equal to its 

degree represents a scenario in which the required effort to win 



IEEE Transactions on Games - Manuscript ID: TCIAIG-2017-0046.R2 5 

a decision maker (node) is proportional to his influence 

(reflected by the node degree). For example, winning a bid in a 

large influential company requires, in most cases, greater effort 

compared to winning a bid in a smaller company. Naturally, the 

winning results (financial gains) are usually higher when 

winning a bid in a larger company than in a smaller one. 

Nevertheless, it is not at all certain that the relationship between 

influence and ease of access is linear as applied in the game. 

The linear relation between influence and ease of accessibility 

is modeled in the game’s dynamics mainly to provide an easy 

(and functioning) set of rules that apply to the game. In the 

Experiments section (see subsection V.F) we examine the case 

where the node’s threshold is smaller than the node’s degree 

and analyzed its effects on the player’s choices. 

— Token distribution. Let us note that the distributions of 

tokens at the beginning of the game are equal for both players. 

This setting represents an underlying assumption that the two 

competing players have relatively equivalent alternatives. For 

example, the products of the two firms are comparable in terms 

of price, features, branding and quality, such that the main 

factor that influences the purchasing decision depends on their 

strategic effort to influence the decision maker. Of course, this 

is not the case in many real scenarios, where one product 

outperforms the other in one or more aspects. Nonetheless, such 

a scenario where one product clearly outperforms the other is 

less relevant for the game since the customer’s choice is clearer. 

— Influencing several nodes at a time. Note that each player 

can use a single token per turn. This implementation results in 

a simpler game rule, speeds up the game and maintains a 

continuous game flow. An alternative is to allow players to use 

more than a single token at each turn. Note, however, that under 

such a scenario, before the player places its next token, it is 

necessary to apply the ‘firing rules’ on each node which is about 

to explode until a stable state of the game is reached. Following 

an experimentation of this alternative, we have concluded that 

applying a rule where a player may use more than one token in 

each turn tends to result in an abrupt game which is much harder 

to follow and to analyze, particularly for human players. 

D. “Spread-It” and the Chip-firing Game  

This section considers an important related model to “Spread-

It” known as the Chip-Firing Game (CFG) [1]. The CFG 

provides a broad base for better understanding the “Spread-It” 

game and its various characteristics. The model provides 

insights and properties regarding some of the “Spread-It” 

features. However, the games are inherently different, as 

discussed below. 

CFG is a widely used model in physics, economics, computer 

science and other science domains to illustrate dynamical 

systems. For example, in physics, CFG is often used to describe 

the phenomenon of self-organized criticality [11]; in economics 

and computer science, CFG was proposed as a model for 

resource distribution systems [12]. The classic CFG model is a 

solitaire game played on a graph [1]. The graph or game board 

is comprised of a set of interconnected vertices, some of which 

have multiple chips. The “degree” of a vertex is defined as the 

number of edges that directly connect it to other vertices. When 

the number of chips is greater than or equal to the degree of the 

vertex, the vertex “fires” its chips, and such firing sends one 

chip on a vertex to each of its connected neighboring vertices 

(see Fig. 3). Leftover chips remain in the original vertex. 

The game is played by firing a single vertex at each time step 

until a stable configuration is reached (that is, until no vertex 

has more chips than its degree) or until it is determined that 

stability cannot be achieved. The game is said to be in a stable 

configuration if none of the vertices are in the process of firing. 

One trivial example of a stable configuration is the empty 

configuration, in which none of the vertices contain any chips. 

A few of the CFG properties can provide insights into the 

dynamics of the “Spread-It” model. For example, the total 

number of tokens on each vertex, regardless of their colors, can 

reveal when the game has become stable. This point is further 

discussed later. Additional background on chip-firing games 

can be found in [13], [14]. 

 
Fig. 3 Example of CFG “Firing.” 

1) CFG vs. “Spread-It: Similarities and Differences.  

At the early stages of the “Spread-It” game in the Zero Loyalty 

variant, one can notice certain characteristics that distinguish 

both games: 

— Infinity: “Spread-It” can reach a state of infinity (a series of 

explosions in vertices) without reaching any stable state. 

— Periodicity: A series of recurring explosions in certain graph 

structures and game configurations that are worth further 

examination. 

The classic CFG is similar to “Spread-It” with several changes: 

(a) CFG is a solitaire game; “Spread-It” is a two-player game. 

(b) CFG uses one color of tokens; “Spread-It” uses two colors. 

(c) In CFG, the explosion order in a given turn does not matter 

as the same game state is eventually reached. In “Spread-It,” 

the order matters as two different colored tokens are used. To 

decide whom the winning player is at a given moment, the 

order of the explosions is important. 

2) CFG Properties Used in “Spread-It” Game. 

In most CFG models, including the classic one (Björner et al. 

model [1]), the threshold of each vertex 𝑣 is set to be the degree 

of 𝑣, 𝑑𝑒𝑔(𝑣). By applying this threshold to any vertex in the 

“Spread-It” graph, one can infer the following properties:  

Infinity. Based on CFG theory, it is known that reaching a 

state of infinity depends on a number of factors: 

— 𝑁 – The total number of tokens on the game board (one can 

ignore the color of the tokens and consider them as a single 

color). 

— 𝑛 – The number of vertices in graph 𝐺.  

— 𝑚 – The number of edges in graph 𝐺. 

Both 𝑛 and 𝑚 are static and known in advance to both players. 

𝑁 keeps changing in every turn as each player adds a token to 

the graph.  

If the total number of tokens (𝑁) is more than 2𝑚 − 𝑛, then the 

procedure cannot terminate. With this number of tokens, one 

node will have at least as many as its degree. If 𝑁 ≤ 2𝑚 − 𝑛, 

then a terminating position can occur. If the number of tokens 

is less than 𝑚, then the game always terminates. Furthermore, 
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if 𝑚 ≤ 𝑁 ≤  2𝑚 − 𝑛, then the game may or may not terminate, 

depending on the original configuration of the tokens. At every 

moment of the “Spread-It” game, one can calculate these 

parameters and determine, for example, whether the game is in 

an infinite state and declare the winner. One can deduce that if 

both players play at least 𝑚 turns, the game enters a stage in 

which it can end in an infinite topple. This can be a problematic 

situation for a computer agent. For example, a tree-search based 

agent generates a game tree to find the best next move, and if 

one of the tree nodes (game states) will lead to an infinity state, 

then the tree generation process may not terminate. To prevent 

such cases, these CFG properties can be used to identify the 

“infinity zone” and thus create a mechanism to stop the tree 

generation at this step. 

Token Distribution. The use of CFG properties enables the 

determination of the number of tokens each player will receive 

at the beginning of the game according to the characteristics 

presented above. Each player is given exactly 𝑚 −
𝑛

2
 tokens. If 

more tokens are given, the game will be endless (since, if the 

total number of tokens is greater than 2𝑚 −  𝑛, the game is in 

an infinity state). If the number of tokens (two colors together) 

is less than 𝑚, then one can reach the point where the players 

have used all their chips, but there is no explosion at all on the 

board. By the distribution choice we have made, we let the 

game be in the infinite or finite state. This depends on each 

player’s moves. 

Note that the above properties do not hold if the vertex’s 

threshold is not equal to its degree, which is a valid option of 

the “Spread-It” game. Please refer to Appendix A for an 

example demonstrating such a case.  

The “Spread-It” game is a challenging problem for a 

computerized agent. The methods used to build such an agent 

are presented in the next section. 

IV. METHODS 

A. AI Game Agents 

This subsection describes the search methods that were 

studied in order to find a good game strategy that wins “Spread-

It.” All these methods seek a promising seeding of nodes by 

tokens with respect to some decision criteria. A direct 

implementation of a brute-force search in “Spread-It” on a large 

network (hundreds or thousands of nodes) is computationally 

prohibitive. The main reasons are the game complexity and the 

lack of an adequate evaluation function. However, by solving 

“Spread-It” on smaller networks (of a few dozen nodes), one 

can assess some of the strengths and weaknesses of various 

game strategies. Moreover, optimal game strategies over small 

networks may be used as a benchmark for testing other 

searching techniques. For these small networks, an Alpha-Beta 

algorithm was utilized [15]. For larger networks (over 30 

nodes), where the branching factor is larger, the tree search 

methods (such as Alpha-Beta) are no longer a tractable strategy. 

Accordingly, a Monte Carlo tree search (MCTS) method, which 

was previously implemented to master the game Go [16], was 

utilized in “Spread-It.” Along with these two methods, a 

Dummy strategy (using a random player) was also implemented 

mainly for a benchmark purpose. The following subsections 

elaborate on each of these agents. 

1) Alpha-Beta Agent. Turn-based games can be represented as 

a “game tree.” Tree nodes represent network (board) situations, 

while branches are a possible board configuration following the 

players’ actions. The tree leaves represent possible game 

endings and contain information on the value (utility) to each 

of the players given the related ending. One theoretical method 

for searching for the best action is to generate the entire game 

tree for a given position and select the action that results in the 

highest utility. The problem with this approach is that the game 

trees for most of the board games, including “Spread-It,” are 

usually too large to be searched entirely in a reasonable time. A 

common approach for performing searches on game trees is 

based on the Minimax algorithm along with an optimization 

scheme [15]. The Alpha-beta pruning is a common optimization 

scheme of the Minimax algorithm. It limits the search space by 

avoiding searching sub trees of moves which won’t be selected, 

allowing for a relatively more powerful look-ahead search. In 

addition to the Alpha-beta pruning, iterative deepening strategy 

has been used as an enhancement for this agent.  

A vital requirement for game tree searches is the use of an 

evaluation function (heuristic) by which the Minimax algorithm 

operates. The heuristic function directs the search process by 

scoring various states of the game. Note that, since a perfect 

evaluation function is not given and often does not exist in a 

real setting, we inspected a handful of heuristics, including 

some combinations of functions. In particular, the following 

heuristics were studied: 

— Parity heuristic - Captures the token difference between the 

current player and opponent player. 

— Stability heuristic - Each player’s tokens are classified into 

three categories: 

(a) Stable: Tokens that cannot be flanked (alternate color) in 

the next game steps. 

(b) Semi-Stable: Tokens that might be flanked in the next 

game steps. 

(c) Unstable: Tokens that can be flanked in the next action. 

Weights are associated with each of the three categories, typical 

weights can be: 𝑤𝑠=1 for stable tokens (𝑇𝑠), 𝑤𝑢𝑠=-1 for unstable 

tokens (𝑇𝑢𝑠) and 𝑤𝑠𝑒=0 for semi-stable tokens (𝑇𝑠𝑒). The sum 

𝑇𝑠 ∙ 𝑤𝑠 + 𝑇𝑢𝑠 ∙ 𝑤𝑢𝑠 + 𝑇𝑠𝑒 ∙ 𝑤𝑠𝑒  defines the final stability value 

for each player. 

— Hubs heuristic - A common assumption relates the number 

of hubs in a region to the player’s stability in that region. In 

other words, it assumes a positive correlation between the 

number of hubs owned by a player and the probability of that 

player to win the game. Following this approach, a score is 

given to each node in the graph according to the player’s 

chances of winning that node (e.g., a high score was given to a 

node that is about to explode during the next move and the 

player is the winner of that node). Accordingly, each node’s 

score is multiplied by the PageRank value of that node, 

prioritizing hubs. The sum of the nodes’ scores defines the final 

Hubs value for each player. 

— Mobility Heuristic - The number of possible next moves. 

One can assess the player’s potential mobility, taking into 

account the number of beneficial and non-beneficial moves. 

— General heuristic - Two factors are used to rate the overall 

state of the game: the “counting factor,” which counts the 

number of majority nodes a player has and the “remaining 
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factor,” which calculates the player’s remaining tokens in each 

node required for it to “explode.” The remaining factor is given 

a larger weight. 

— Linear Combination (LC) heuristic - The LC consists of 

linear combinations of all the other heuristics and looks as 

follows: 𝐿𝐶 𝑆𝑐𝑜𝑟𝑒 = 𝑤1 · 𝐻1 + 𝑤2 · 𝐻2+. . . +𝑤𝑗 · 𝐻𝑗, where 𝐻𝑗 

is the score of a particular heuristic, and 𝑤𝑗 is the associated 

weight assigned to this heuristic score. To learn the weights, a 

learning algorithm was utilized, following Mitchell’s model of 

a computer agent for the game of checkers [17]. The learned 

weights determine the relative importance of the various 

heuristics. A detailed description of the implemented approach 

can be found in Appendix B. 

2) Monte Carlo Tree Search Agent. In “Spread-It,” the size of 

the board (graph) is theoretically unlimited. However, 

conventional game-tree search algorithms (such as Alpha-Beta) 

are suitable for games with a fixed network size. We found that, 

when the graph size was larger than approximately 25-30 

nodes, conventional search techniques became computationally 

limited. To address this challenge, we used a Monte Carlo tree 

search (MCTS) procedure. The MCTS method has been used in 

games with large branching factors, such as Go [18], [19]. In 

general, the MCTS method determines the most promising 

action in any given situation by simulating a large series of 

random moves (simulations). By relying on the results gathered 

from multiple simulated games, the algorithm builds a partial 

game tree until some predefined constraint (e.g., time or the 

number of iterations) is reached. At this point the search is 

stopped and the node with the most promising statistics is 

selected. During the tree-building process, nodes are added 

iteratively to the search tree and the algorithm maintains the 

visit count and the win count for each node. MCTS inclines 

toward high-scoring moves over low-scoring moves and 

therefore more time is spent in examining optimal moves. The 

UCT (Upper Confidence Bound for Trees) algorithm that was 

originally formalized by Kocsis and Szepervari [20] is the most 

common basis for MCTS implementation and was applied in 

this study as a game agent. The following four phases are 

performed per search iteration:  

a) Selection: Selecting the best node to start exploration, until 

the agent come across a node with unexplored child nodes 

or it reaches the leaf node. In the case of the UCT 

algorithm, the selection strategy is based on the UCB1 

multi-armed bandit algorithm [21]. Thus, from node 𝑣, a 

child node 𝑖 is selected to maximize: 

 𝑈𝐶𝑇 = 𝑥�̅� + 𝑐 ∙ √
ln (𝑛𝑣)

𝑛𝑖
  

where 𝑥�̅� denotes the average score (i.e., the wining rate) of 

node 𝑖, 𝑛𝑖 is the number of times node 𝑖 has been visited, 

𝑛𝑣 is the number of times the (parent) node 𝑣 has been 

visited and 𝑐 is an exploration constant. 

b) Expansion: If the current selected node has unexplored 

child nodes, select a child and add it to expand the tree.  

c) Rollout: simulate the game till the end from the new 

selected node(s). 

d) Backpropagation: Results received by the simulations are 

backpropagated through the selected nodes to update their 

statistics. 

By repeating these four phases iteratively, the search tree is 

gradually constructed. 

3) Dummy (Random) Agent. This Dummy agent places tokens 

on random nodes in every turn and is being used mainly for a 

benchmark purpose. 

 

V. EXPERIMENTS AND RESULTS 

This section describes the experiments used to rate the 

overall performance of the implemented AI agents, as well as 

the effecting scenarios. Over 22,000 experiments of complete 

games were executed using the “Spread-It” Engine (“SPRITE”) 

and analyzed later. 

The section is organized as follows. Subsection V.A presents 

the experimental settings. Subsection V.B describes the testing 

methodology. Subsection V.C exhibits the results of the Zero 

Loyalty variant. Subsection V.D exhibits the results of the Full 

Loyalty variant. Subsection V.E examines the role of central 

nodes. Subsection V.F examines the relation between the 

node’s degree and its threshold. Subsection V.G summarizes 

some of the main observations. 

A. Experimental Settings 

- Game Engine: an engine named “SPRITE” (Spread-It 

Engine) was developed to simulate the “Spread-It” game. The 

engine draws the graph layout, calculates the network 

measures, and generates synthetic graphs for the experiments.  

- Environment: The tests were performed on 4 Intel Xeon 2.27-

GHz Quad-Core virtual machines (VM), each with 8 GB of 

RAM. 

- Graph Data Set: A total of 15 synthetic undirected graph 

networks were generated. The primary focus was on real-world 

networks. Each graph (game board) was taken from a different 

network class: Small-World Graph, Random Graph and 

Preferential Attachment Scale-Free Graph (Barabási–Albert 

model [22]). Five graphs were generated for each network class 

with numbers of nodes and edges ranging from 14 to 88 nodes 

and 19 to 258 edges.  

- Parameters: The following parameters were set for all test 

cases: 

1) The starting player is black. 

2) The chosen evaluation function (heuristic) for the Alpha-

Beta algorithm was the Linear Combination (LC) heuristic 

described above. This heuristic was selected since it 

achieved the most promising results in the preliminary 

experiments and theoretically generalizes the proposed 

heuristics. A complete report of the results of the different 

Alpha-Beta heuristics is given in Appendix C.  

3) The Linear Combination heuristic weights were set as 

follows: 𝐿𝐶 𝑆𝑐𝑜𝑟𝑒 = 𝑤1 · 𝐻𝑝𝑎𝑟𝑖𝑡𝑦 + 𝑤2 · 𝐻𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑤3 ·

𝐻𝑚𝑜𝑏𝑖𝑙𝑖𝑡𝑦 + 𝑤4 · 𝐻ℎ𝑢𝑏𝑠 + 𝑤5 · 𝐻𝑔𝑒𝑛𝑒𝑟𝑎𝑙 , 𝑤ℎ𝑒𝑟𝑒 𝑤1 =

0.27, 𝑤2 = −0.08, 𝑤3 = 0, 𝑤4 = 0.315, 𝑤5 = 0.495. 

These weights were obtained by the learning algorithm 

described in IV.A.1 and Appendix B. 

4) The learning rate for finding the optimal set of weights for 

the LC heuristic was set to 𝜂 = 0.05. 
5) The Alpha-Beta algorithm’s search depth was set to 4. 

6) The number of Monte Carlo tree search iterations was set 
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to 1000.  

7) The exploration constant of the MCTS UCB1 formula was 

set to 𝑐 = √2.  
8) The MCTS rollout (simulation) policy used uniformly 

random move choices. 

9) Time limit for each agent was set to 2.5 seconds. 

10) The threshold of each vertex in any graph was set to the 

degree of the vertex. For the case where the threshold is not 

equal to the degree, see subsection V.F. 

B. Testing Methodology 

The performances of the different AI agents were evaluated 

against each other, and the number of wins, losses and draws 

were counted for each AI agent, where 𝑤 counts the number of 

black wins, 𝑙 counts the number of red (the opponent) wins (or 

black losses), and 𝑑 counts the number of draws where the game 

is infinite and where there is no convergence to one player’s 

color (i.e., there is no winner). Based on experimentation, the 

following rates were calculated for each game method: 

— Win rate (WR): The percentage of games won over the total 

number of games, given by 
𝑤

𝑤+𝑙+𝑑
 . 

— Draw rate (DR): The percentage of draws over the total 

number of games, given by 
𝑑

𝑤+𝑙+𝑑
. 

— Win Loss ratio (WLR): This ratio ignores the draws and 

represents the ratio between the number of wins to the total 

number of wins and losses, given by 
𝑤

𝑤+𝑙
. 

The results are shown with their 95% confidence interval 

along with the win percentage (WR). 

C.  “Spread-It” Zero Loyalty Results 

TABLE I shows the performance of each agent against all the 

other agents over different graph boards. The first column lists 

the starting (black player) agent, while the second column lists 

the red player agent (six agents’ combinations). The rest of the 

columns (WR, DR, WLR) represent the performance of the 

black player. Each set of players is matched up 500 times – 250 

times as the first player (black) and 250 times as the second 

player (red). These games were tested over 15 different graphs 

played for a total of 22,500 games (6 ∙ 250 ∙ 15). A summary 

of the performance results is presented in TABLE II. 

TABLE I 

ZERO LOYALTY VARIANT – AGENT RESULTS 

Black Player Red Player WR% DR% WLR% 

Alpha-Beta  MCTS 31.0 ± 1.48 4.1 32.4 

Alpha-Beta Random 97.5 ± 0.49 0.1 97.9 

MCTS Alpha-Beta 70.1 ± 1.46 4.2 74.0 

MCTS Random 99.6 ± 0.20 0 99.6 

Random MCTS 0.7 ± 0.26 0.1 0.7 

Random Alpha-Beta 4.0 ± 0.62 1.1 4.0 

     

TABLE II 

ZERO LOYALTY VARIANT – WIN RATE SUMMARY, OVER ALL GAMES PLAYED  
MCTS Alpha-Beta Random 

Win Rate (WR%)  85.3 ± 0.80 64.1 ± 1.08 2.38 ± 0.34 

    

It is clear that the MCTS approach is by far the most powerful 

stand-alone agent, as it wins (WR) ~99% against the Random 

player and ~70% WR against the Alpha-Beta agent. The Draw 

Ratio (DR) for MCTS is approximately 4% against the Alpha-

Beta agent. As expected, the Random agent is clearly the 

weakest strategy with only 4% wins against the Alpha-Beta and 

less the 1% against the MCTS agent. The Alpha-Beta agent has 

a win rate of 31% against the MCTS agent and 97% WR against 

the Random player. 

As described in subsection “Graph Data Set,” the graph 

classes included Small-world graphs, Random graphs and 

Scale-Free graphs. TABLE Ⅲ below shows the win rate (WR) 

for each agent per each graph class against all other agents. The 

name of the agent listed in the first column is the starting (black) 

player. While seemingly there are no meaningful differences 

between these three graph families, the MCTS approach obtains 

the highest win rate in the Barabàsi-Albert graph class at 

~ 87%. It is possible that one could have seen greater 

differences between the three graph classes with larger graphs 

(having hundreds of nodes or more), but the high game’s 

complexity makes it difficult to test such a scenario. 

TABLE Ⅲ 

ZERO LOYALTY VARIANT – AGENT RESULTS GROUP BY GRAPH CLASS 

Agent Random 

(𝑊𝑅%) 

Watts-Strogatz 

(𝑊𝑅%) 

Barabàsi-Albert 

(𝑊𝑅%)  

Alpha-Beta 65.3 ± 1.86 63.7 ± 1.88 61.3 ± 1.90 

MCTS 79.4 ± 1.58 82.5 ± 1.48 86.9 ± 1.32 

Random 2.1 ± 0.56 3.0 ± 0.66 3.0 ± 0.66 

    

D. “Spread-It” Full Loyalty Results 

The Full Loyalty variation represents the case where 

members do not change their alternative throughout the game; 

therefore, a particular node in the graph can explode only once 

during the game. As seen in TABLE Ⅳ and TABLE Ⅴ, the 

superiority of the MCTS method is maintained throughout the 

Full Loyalty variation as well, and reached a higher win rate 

compared to the Zero Loyalty variant results presented in 

TABLE I: ~74% WR vs. ~70% WR when the agent competed 

against the Alpha-Beta agent. Furthermore, it seems that the 

Alpha-Beta agent reaches considerably worse scores compared 

to the results of the Zero Loyalty game. Both the Alpha-Beta 

and MCTS agents in the Full Loyalty variation obtained higher 

draw rates.  

TABLE Ⅳ 

FULL LOYALTY VARIANT – AGENT RESULTS 

Black Player Red Player WR% DR% WLR% 

Alpha-Beta  MCTS 13.6 ± 1.09 17.6 16.5 

Alpha-Beta Random 91.1 ± 0.91 7.8 98.9 

MCTS Alpha-Beta 74.7 ± 1.39 14.1 87.0 

MCTS Random 99.6 ± 0.20 0.2 99.8 

Random MCTS 0.2 ± 0.14 0.4 0.2 

Random Alpha-Beta 1.8 ± 0.42 8.9 1.9 

     

TABLE Ⅴ 

FULL LOYALTY VARIANT – WIN RATE SUMMARY, OVER ALL GAMES PLAYED  
MCTS Alpha-Beta Random 

Win Rate (WR%)  87.5 ± 0.74 50.0 ± 1.13 1.0 ± 0.22 

    

TABLE Ⅵ shows the win rate (WR) for each agent over each 

graph class against all other agents. As can be seen, the MCTS 
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agent obtains again (as seen for the Zero Loyalty variant in 

TABLE Ⅲ) the highest win rate (WR%) over the Barabàsi-

Albert graph class with ~ 95% WR. The Alpha-Beta agent 

achieved the highest WR over the Watts-Strogatz graph family 

with ~56% and the lowest WR over the Random graph family 

with ~37%. 

TABLE Ⅵ 

FULL LOYALTY VARIANT – AGENT RESULTS GROUP BY GRAPH CLASS 

Agent Random 

(𝑊𝑅%) 

Watts-Strogatz 

(𝑊𝑅%) 

Barabàsi-Albert 

(𝑊𝑅%)  

Alpha-Beta 37.3 ± 1.89 56.7 ± 1.94 51.7 ± 1.95 

MCTS 84.7 ± 1.41 83.0 ± 1.47 95.0 ± 0.85 

Random 0.3 ± 0.21 1.7 ± 0.50 1.2 ± 0.42 

    

E. Are Central Nodes important in “Spread-It”? 

The following subsection inspects the influence of the central 

nodes on the modus operandi of an agent and its winning rate. 

From the experiments mentioned above, we checked whether a 

particular agent (MCTS or Alpha-Beta) preferred nodes with 

higher centrality metrics over other nodes. This scenario is 

strongly related to real-world phenomena in which companies 

or individuals compete for the influencers in social networks. 

The common convention holds that investing more efforts to 

gain control over influencers is an effective strategy that leads 

to better influence through the social network [23], [24].  

A representative scale-free graph (Barabási–Albert model 

with 24 nodes and 70 edges) was selected from the graph data 

set mentioned above. This graph class was chosen since the 

topology of a scale-free network is dominated by a few highly 

connected nodes (often called “hubs”) while the rest of the 

nodes having very few connections. The games where the black 

agent (first player) was the MCTS or the Alpha-Beta were 

analyzed. The percentage of times a particular node was chosen 

by an agent over all the other agent’s selections was recorded. 

Different centrality metrics such as PageRank, eigenvector, etc. 

were tested in order to rank the nodes. However, no meaningful 

ranking differences were found in comparison with the degree 

centrality metric. In this analysis, we focused on the top 20% of 

nodes based on the degree (threshold) centrality metric. For this 

group of nodes we summed up the percentage of times they 

were selected.  

Fig. 4 shows the percentage of times each agent selected the 

top 20% nodes in two game sets (ⅰ) all games and (ⅱ) games 

where the agent won for the Zero Loyalty variant of the game. 

Fig. 5 presents the results of the same analysis for the Full 

Loyalty variant. It is notable that the MCTS agent in the Zero 

Loyalty variant does not have a strong preference for the top 

20% nodes over the other nodes. In both game sets, the top 20% 

of the nodes were selected by the MCTS agent approximately 

in ~20% of the times, thus, in accordance with their overall 

percentage in the population, as expected from a random 

selection of nodes. Interestingly, the Alpha-Beta agent in the 

Zero Loyalty variation, chose the central nodes less frequently 

than could been expected if the choice was purely random. In 

contrast, in the Full Loyalty variant, the MCTS agent had a 

stronger preference for the top 20% of the nodes (selecting them 

~30% of the times). The Alpha-Beta agent in the Full Loyalty 

variant selected the top 20% nodes approximately ~20% of the 

times, while in the Zero Loyalty variant, these central nodes 

where only chosen ~9% of the times.  

 

Fig. 4 Zero Loyalty – Number of times high central nodes (top 20%) and low 

central nodes (bottom 20%) were chosen by the MCTS vs. Alpha-Beta agents. 

 

Fig. 5 Full Loyalty - Number of times high central nodes (top 20%) and low 

central nodes (bottom 20%) were chosen by the MCTS vs. Alpha-Beta agents. 

F. The Effect of a Threshold Unequal to the Node’s Degree. 

In all the experiments performed so far, the node’s threshold 

was set to be equal to the node’s degree. In this experiment, we 

inspected how the agent node’s selection is affected when there 

are nodes with a threshold that is not equal to their degree. 

Specifically, we aimed at investigating whether an agent would 

prefer a more ‘central’ node (i.e., a higher-degree node) with a 

lower firing threshold. This implies that a lower “investment” 

(i.e., lower number of tokens) is required to potentially win this 

node, although the “profit” remains the same, since the 

exploded node distributes relatively more tokens than the 

threshold to its neighbors. In the case where the node’s 

threshold is lower than its degree, new tokens are created ex 

nihilo for the agent who won at that node, while in the case 

where the node’s degree is equal to the node’s threshold the 

“energy conservation” is maintained in the system (as no new 

tokens are created besides those on the board). To test this 

hypothesis, we studied the same scale-free graph mentioned in 

subsection V.E above. From this graph, we have selected the 

two most central nodes (based on their degree-centrality metric) 

with a degree equal to 10 and a threshold equal to 5 that was 

arbitrarily determined to be equal to half of the degree. For each 

agent (MCTS or Alpha-Beta) we executed 500 games on the 
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graph board with the agents playing against the other agent and 

the Random agent. The percentage of times each node with the 

reduced threshold (from the two selected ones) was selected by 

an agent was recorded and compared with the “regular” case 

where the selected nodes had a threshold equal to their degree. 

Fig. 6 and Fig. 7 present the results for the Zero Loyalty and 

the Full Loyalty variants respectively. It is evident that the 

dominant agent from the previous experiments (MCTS) clearly 

prefers nodes with higher degree than their threshold (18% of 

the agent moves) in comparison with the previous case in which 

the threshold is equal to the node degree (7.7% of the agent 

moves). A similar observation was obtained for the Alpha-Beta 

agent. In the Full Loyalty variant of the game, both agents still 

preferred the nodes where the degree is higher than the 

threshold over nodes where these parameters are equal. Note 

that the selection of nodes with a reduced threshold in the Zero 

Loyalty variant was substantially higher (18% vs. 7.7% and 

11.2% vs. 4.1%) in comparison to the Full Loyalty variant 

where these differences were less noticeable (17.8% vs. 12.5% 

and 11.5% vs. 9.6%). 

 
Fig. 6 Zero Loyalty – Ratio of selection of nodes when the cost of capturing a 

node is reduced (Threshold << Degree) or kept as it is (Threshold = Degree) 

for both types of agents. 

 
Fig. 7 Full Loyalty - Ratio of selection of nodes when the cost of capturing a 

node is reduced (Threshold << Degree) or kept as it is (Threshold = Degree) 

for both types of agents. 

G. Conclusions and Main Observations 

An interesting observation from the study is related to the role 

of central nodes (hubs) in the “Spread-It” game. While 

influencing the central hubs seem to be a good strategy in 

general as indicated in the literature (e.g., [23], [24]), this is not 

necessarily the case for the “Spread-It” game, and does not 

always results in a win. One reason why the MCTS method 

achieved a higher winning rate with respect to other agents is 

since the MCTS does not use any predefined rules. Instead, it 

adapts itself to the current network state and decides on the next 

moves based only on that. This observation provides some 

intuition on how decision-makers should act in situations 

represented by the “Spread-It” game in the Zero Loyalty variant 

- making decisions based on current states without predefining 

any strategy a priori. The superiority the MCTS method are also 

due to the relatively limited span of the Alpha-Beta agent. For 

this method, a depth limit needs to be set, thus, the entire 

development of the tree could not be fully anticipated in 

advance.  

As a general note, it is quite reasonable and intuitive to believe 

that an allocation of budget to influential nodes would yield a 

high rate of winning. Nevertheless, in this study it was found 

that such a strategy does not yield a high winning rate in certain 

cases. When analyzing the nodes chosen by the winning 

strategy with respect to their influence (measured by their 

degree), it was found that the winning strategy has no 

preference for allocating tokens to nodes with higher centrality 

measures in the Zero Loyalty variant of the game, while in the 

Full Loyalty variant, in which extensive flips in the system’s 

state are not possible, there was a clear preference by the 

winning agents towards the central nodes. These results 

contradict a common belief by which the nodes’ influence can 

be derived from the network topology itself, relying mainly on 

their centrality measures and less on the dynamics of spreading. 

Indeed, in many simplified dynamics of spread (such as the Full 

Loyalty), the centrality measures of a node provide good 

predictions for its influence, but this is not necessarily the case 

under some realistic information spread dynamics [25]. Some 

of these dynamics, including the change of opinion that might 

occur in scenarios associated with products that compete in 

markets with low customer loyalty, are captured by the 

“Spread-It” model.  

Another observation emerges from the similarity between 

“Spread-It” and the CFG. The CFG is based on the Abelian 

sandpile model [11], which is often used for studying self-

organized criticality in dynamical systems that consist of a 

sequence of cascades. As in the Zero Loyalty version of the 

game, small perturbations in the system might result in 

significant changes of the entire system’s states. This chaotic 

phenomenon might explain the need for an extended look-

ahead estimation of future system states, as implemented by the 

MCTS method. 

Finally, let us note that some aspects of the “Spread It” game, 

as a model of influence spread in social networks, should be 

highlighted. These aspects do not relate to the implemented AI 

solutions per-se but more to the contribution of the game itself 

as an abstract model of influence.  

VI. SUMMARY AND FUTURE WORK  

This work introduces a game, called “Spread-It,” that captures 

influence spread dynamics within a social network. Several AI 

agents are analyzed to find an algorithm with a high wining rate 

in the game. A Monte Carlo tree search (MCTS) method is 

found to obtain the best winning rate among the studied agents. 

Not only that the MCTS method obtains a better winning rate, 

but also it reveals some interesting properties of the winning 

strategy. One such property is related to the role of central 

influencing nodes (“hubs”) in the network. Conventional 

influence measures are often determined by the network 

topology. These measures include the node’s Degree, its 

PageRank, and the Eigenvector Centrality. These are 

commonly used as valid measures for the nodes’ potential 

influence within the network. Yet, they are found to be less 

effective in the scenario of flipping opinions dynamics, as 

characterized by the Zero Loyalty “Spread-It” model. 
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The reason for their inefficiency in the Zero-Loyalty game, is 

related to the fact that nodes might flip their loyalty several 

times, influencing the entire system state and generating 

cascades of influence trajectory changes that are long and hard 

to predict. 

Future work on “Spread-It” could extend the current frame 

to a multi-player game or a game played not only on undirected 

graphs but also on directed ones. On such a digraph, the player 

can face new game phenomena, such as a “sink node” (having 

a zero out-degree) that ‘swallows’ tokens. One can also 

consider a probabilistic framework where probabilities are 

assigned to graph edges, by which tokens are fired on the node’s 

neighbors. In this paper, we limit our study of the game to a 

static network where the network’s structure does not change 

over time. A more complex approach will look at “dynamic” 

networks, where the topology of the network evolves over time. 

Another property to study in the future is networks with 

different modularity (i.e., networks with a presence of 

communities); these networks can be generated and 

benchmarked using, for example, the method developed by 

Lancichinetti et al. [26]. 

“Spread-It” is a simple game designed for studying the 

interactions involved in processes of collective decision-

making. In such cases, different players try to influence 

decision-makers with known (and sometimes hidden) social 

connections. Flips in the opinion of a majority can then occur 

suddenly and unpredictably. These flips can be found in 

parliament decision processes, in daily commercial agreements 

or in jury trials verdicts, just to name few examples. While the 

unlimited flipping of opinions, as it exists in the theoretical 

model, is somewhat unrealistic, sequential flips of opinions can 

be found in several real-life cases. Since group’s decision-

making processes have become the norm in many social 

studies, the implications of this work can be related to several 

group decisions processes. 

APPENDIX A 

Fig. 8 gives an example where the threshold of a vertex is not 

equal to its degree. In such cases the properties mentioned in 

subsection III.D.2 do not hold. In this graph,  

— The degree of each vertex is 2 while the threshold is 1. 

— The number of tokens in the graph (𝑁) is 1. 

— The number of nodes in the graph (𝑛) is 3. 

— The number of edges in the graph (𝑚) is 3. 

According to the “infinity” property: if 𝑁 > 2𝑚 − 𝑛 (i.e. if 

𝑁 > 3), then the game reaches a state of infinity (by series of 

explosions). In the graph configuration below, the property 

does not hold, since if 𝑁 ≥ 1 the game is infinite without 

reaching a stable state. Accordingly, the token distribution 𝑚 −
𝑛

2
 property does not hold either. 

 

Fig. 8 Example of “Spread-It” graph where the node’s threshold is not equal to 

its degree. 

APPENDIX B 

The following outline summarizes how the learning 

algorithm works for finding the optimal weights for the Linear 

Combination (LC) heuristic. The learner has to learn a function 

𝑉, called the target function, which is the ideal function for 

choosing the best move in each game state. The target function 

assigns a numerical score to any given game state, where higher 

scores are assigned to better game states and vice versa. For the 

final game states, the value of the target function is 𝑉(𝑠) = 100 

if the agent won the game; 𝑉(𝑠) = −100 if the agent lost the 

game; and 𝑉(𝑠) = 0 if the game ends in a draw, where 𝑠 is the 

game state. For the intermediate states, an approximation 

function �̂� is used, reflecting the real value of the game state. 

The LC heuristic function is an approximation of the target 

function 𝑉. The LC weights are modified throughout the 

learning process, converging the function to the desired state. 

In order to learn effectively, the agent needs feedback from a 

critic procedure. In this case the feedback is given indirectly by 

the value of a function called the training function 𝑉𝑡𝑟𝑎𝑖𝑛. For 

every state 𝑠, the training function can be expressed in the 

following way: 𝑉𝑡𝑟𝑎𝑖𝑛(𝑠) = �̂�(𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠)), where 

𝑆𝑢𝑐𝑐𝑒𝑠𝑠𝑜𝑟(𝑠) denotes the next game state following 𝑠 for 

which it is again the learner's turn to move. The weights are 

recalculated every turn by using the Least Mean Square (LMS) 

technique which can be viewed as performing a stochastic 

gradient-descent search throughout the hypothesis space 

(weight values) to minimize the error 𝐸. This error represents 

the error made by the sum of the squared differences between 

the target function and the training function. Each turn, for 

every single training example, each weight is recalibrated using 

the following function: 𝑊𝑖 = 𝑊𝑖 ∙ 𝜂 ∙ (𝑉𝑡𝑟𝑎𝑖𝑛 − �̂�(𝑠)) ∙ 𝐻𝑖 

where 𝜂 is a small constant called the learning rate that 

moderates the size of the weight update; 𝐻𝑖 is the i-th score of 

a particular heuristic, and 𝑊𝑖 is the associated weight assigned 

to this heuristic score, as explained in section IV. 

Twenty simulations were executed, where each simulation 

consists of 10,000 games. In each game the learner agent played 

against a second copy of itself on a random synthetic graph 

made up of 15-25 nodes (the size of the graphs was limited due 

to time constraints). Following each simulation, the weights 

vector, the number of wins, losses and draws were recorded. Of 

the twenty simulations, eight simulations which achieved at 

least a 70% wins rate by the first learner were selected. The 

average of the 8 final weight vectors was used to determine the 

final weight for each heuristic H.  

Please refer to [17] for further details of the algorithm and 

the learning model. 

APPENDIX C  

TABLE Ⅶ shows how each Alpha-Beta agent with a 

specific heuristic performed against all the other agents 

including the MCTS and the Random agents (7 combinations 

per each heuristic) on different graph boards. The name of the 

Alpha-Beta agent (with the specific heuristic) listed in the agent 

column is the starting (black) player, while the second is the red 

player. The second and third columns show the win rate (WR%) 
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of an agent in the two game variants. Each player competed in 

100 games per heuristic combination (a total of 700). These 

games were tested over 15 different graphs (a total of 15 ∙
700 = 15,000). 

For further details on each heuristic, see subsection IV.A.1. 

TABLE Ⅶ 

ALPHA-BETA HEURISTICS RESULTS 

Agent Heuristic Zero Loyalty WR% Full Loyalty WR% 

Parity 37.7 ± 0.93 50.9 ± 0.96 

Stability 14.1 ± 0.67 10.9 ± 0.60 

General 38.4 ± 0.93 48.3 ± 0.96 

Hubs 24.6 ± 0.82 28.6 ± 0.86 

Lin Com. 49.4 ± 0.96 62.2 ± 0.93 

Mobility 23.9 ± 0.82 21.8 ± 0.79 

   

One can observe from these results that the Linear 

Combination (LC) heuristic (with the Alpha-Beta agent) 

achieved the highest win rate (WR%) in both game variants. In 

the Zero Loyalty variant, the LC heuristic reached ~50% WR, 

whereas other heuristics obtain win rates of under 40%. In the 

Full Loyalty variant, the LC agent reached ~62% WR, whereas 

other heuristics obtained win rates of under 50%. 
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