Journal of Computational Methods in Sciences and Engineering 7 (2007) 45-54 45
10S Press

Gene-finding with the VOM model

K.O. Shohat-Zaidenrai8eA. Shmilovici** and I. Ben-Gdl

aDepartment of Information Systems Engineering, Ben-Gurion University, P.O. Box 653, Beer-Sheva
84105, Israel

bDepartment of Industrial Engineering, Tel-Aviv University, Ramat-Aviv, Tel-Aviv 69978, Israel

Abstract. We present the architecture of an elementary gene-finding algorithm that is based on a Variable Order Markov model
(VOM). The VOM model is a generalization of the traditional Markov model that can cope with varying memory dependencies.
The VOM model is more efficient in terms of its parameterization and therefore can be trained on relatively short sequences.
Experiments with the proposed gene-finder (GF) on three prokaryotic genomes indicate its potential advantage on the detection
of short genes.

Keywords: Gene finding, Variable Order Markov models, sequence analysis

Mathematics Subject Classification: 92D20, 60J20, 91B82, 60-08

1. Introduction

Due to automatic sequencing techniques, the number of sequenced bacterial genomes that are publicly
available is growing rapidly. It has been estimated that only 60%—-80% of the genes in newly sequenced
organisms have known homologues in other species [1]. Thus, comparative genomics by itself is not
sufficient for automating the gene-finding procedures. Computational gene finding exploits the statistical
difference in codon (base triplets coding for amino acids) usage between coding and non-coding regions
of DNA [2]. A gene prediction (or gene-finder) algorithm takes as input a DNA sequence and produces
as output a feature table describing the location of all candidate genes — protein-coding regions — in
the sequence, including those that can not be found with a homology match to known proteins. The
reliability of the gene prediction must be questioned since only a relatively small number of genes have
been verified in laboratories [3].

A computational gene-finder (GF) usually consists of two stages:

a) Recognizing Open Reading Frames (ORF). ORFs are sections of DNA that contains a series of
codons located between the start codon (a known initiation codon) and a stop codon (a known
terminating codon). An ORF represents a potential location of a gene that encodes a protein.

b) Gene parsing due to recognition of motifs and start/stop codons. Gene parsing attempts to resolve
overlapping ORFs.

*Corresponding author. E-mail: armin@bgumail.bgu.ac.il.
!Over 100 microbial genomes were published by the beginning of 2003.

1472-7978/07/$17.000 2007 — IOS Press and the authors. All rights reserved

46 K.O. Shohat-Zaidenraise et al. / Gene-finding with the VOM model

Although many GF programs exist, the identification of genes is far from being trivial even for relatively
simple bacterial genomes. Some examples for the complex issues involved in the identification process
are:

— RandomORF. Any random sequence, as well as hon-coding regions in real sequences, might contain
a large number of ORFs. It is difficult to discriminate between random ORFs and short genes,
therefore, many genomes are over-annotated. Skovgaad et al. [3] estimate that the verified number
of protein-coding genes in organisms that were analyzed experimentally is smaller by 10%—30% in
comparison to the number of genes annotated by a GF.

— Organism-specific vs. organism-generic gene finding. Annotating recently-sequenced genomes is
often attempted by utilizing GF programs that were trained on datasets of sequences taken from
different organisms. Long ORFs that are found in this manner are assumed reliable, and their specific
codon usage is often used to bootstrap a GF retraining process [4]. Yet the obtained accuracy of
such a GF procedure strongly depends on the characteristics of the training dataset and its similarity
to the target genome.

— Resolving overlapping ORFs. Some genomes contain ‘real’ gene overlaps that might be mistakenly
identified as a byproduct of an under-trained or an over-trained GF.

Statistical GF algorithms initially construct different statistical models for the coding and the non-
coding regions of DNA and use these models in a later stage to annotate the ORFs. An over parameterized
model needs unpractical large and highly-accurate training dataset, and yet may over-fit this training
set. An under-fitted model, on the other hand, can not capture some of the available information in the
training sequences and might result with short ORFs of a limited reliability. This paper focuses only on
improving the basic ORF detection process. Other algorithms (such as [4,5]) can be used for resolving
overlaps between adjacent ORFs.

Markov models are well-applied to the analysis of microbial sequences. Roughly speaking, a Markov
chain is a sequence of random variahlés for which the conditional probability distributions depends
only on afixed number of preceding variablesX; 1, ..., X;_x. In DNA sequence analysis, the Markov
chain contains the conditional probability of any base{ A, C, G, T} in the sequence given iksprior
bases. These precedikgoases are commonly referred to as tbentext’ of baseb in the sequence.

For example, a fifth-order Markov model, which is the underlying modebéneMark [6], uses the

five previous bases in the sequence to predict the next base. The number of parameters in the Markov
model grows exponentially with its order. In generakth-order Markov model of a DNA sequence
requires the estimation af**! probability parameters from the training data (e.g., 4096 probability
parameters for a fifth-order model). Ideally, larger valuesifare preferable. However, for small
training datasets such parameterization often results in model over-fitting to the training set and poor
variance-bias tradeoff [7]. To estimate the model’s probability parameters, many occurrences of almost
all the possiblei-mers must be present in the training dataset. Yet, in a typical microbial genome the
frequencies of different sequences of variable length might change considerably. For example, some
4-mers will not occur too frequently in the genome to obtain a reliable estimate of the probability of
the next base, while some 8-mers may occur frequently enough to obtain very reliable estimates. Thus,
constructing such fixed-order models accurately is a difficult task when there is insufficient training data.
In fact, the parameterization for the coding regions is even more difficult — the estimation of probabilities
is inhomogeneous, thus, depend on the base position in the codon. Accordingly, gene-finders construct
three separate models, one for each codon position. This is known as a 3-periodic Markov model [6].

The Variable-Order Markov (VOM) Model overcomes the frequency changes by enabling a variable
memory order for each base in the sequence, depending on its context. The VOM model is a true

K.O. Shohat-Zaidenraise et al. / Gene-finding with the VOM model 47

generalization of the traditional fixed-order Markov model [7] and is more efficient in terms of its
parameterization. Therefore, the VOM model can be trained on relatively small datasets in comparison
to the fixed-order Markov models. Given a context of lerfgtthe VOM model estimates the conditional
probability distribution for the {+1)th base, by using as many of the preceding bases in the training
dataset as required. Different algorithms were proposed for training VOM-like models from datasets.
Begleiter et al. [8] describes six different VOM-like algorithms. For example, the Interpolated Markov
Model (IMM), which is implemented in th&limmer GF [4,9], uses a combination of 3-periodic
nonhomogenous Markov models, weighing each model according to its predictive power.

In this paper we present a new approach for gene finding, based on a VOM model that was trained via
the context tree algorithm of Rissanen [10]. Unlike the heuristic justification for the use of the IMM,
the use of the VOM is justified by the superior convergence properties of the context tree algorithm as
studied in Ziv [11]. Furthermore, a related scheme of the proposed model — Prediction by Partial Match
(PPM) —was found to be one of the two outperforming algorithms in sequence prediction tasks [8]. The
contribution of this paper is twofold. First, it demonstrates the potential use of VOM models to annotate
DNA sequences. Second, it showcasesthe ability to predict short genes that may be undetectable by other
GF programs. We expectthat the proposed VOM GF, when integrated with other gene parsing algorithms
and applied to newly sequenced bacterial genomes, can contribute to conventional gene-finders that are
based on the fifth-order Markov models.

The rest of this paper is organized as follows: Section 2 introduces the VOM training algorithm and
the VOM-based GF; Section 3 presents some comparative genome experiments; and Section 4 concludes
with a short discussion.

2. Computational methods

This section sketches the implementation of the VOM GF. It outlines the context tree algorithm, its
implementation within a simple GF, and describes some preliminary experiments for the optimization of
the algorithm’s parameters.

2.1. The context tree model

Following the notation in Ziv [11], consider finite-alphabet sequences of symidly,

X nN,...,Xo,...,X,, (sequence bases in our case) emitted by a stationary source with unknown
properties, where each symh¥| belongs to an alphabet with cardinality|A|. Thecontext tree [10]

can be viewed as a data structure which is used to store the probability of the different symbols condi-
tioned on their prefix contexts. The tree assigns a context for each symbol in the sequence. It has a root
node on top, from which the branches are developed downwards. Each node has |at| robgtiren

with differently labelled ingoing edges. The tree is not necessarily balanced (i.e., not all the branches
need to be of the same length) nor complete (i.e., not all the nodes need to haveAltthiklren). Each

node containgA| conditional probability parameters of symbols given the context, which is represented
by thereversed path from that node to the root (see also [7,12]).

The construction of the context tree contains two stages. In the first stage, the tree is grown from
its root downwards based on the training sequekig,. During this stage, counts in each node are
updated to represent the conditional frequency of the symbols given their context. The counts denote the
number of instances where symhb®} follows the contextXZ 11 K. N the training sequenck’ .

Khax is the initial tree depth prior to any pruning, and it is determined by practical memory capacity

48 K.O. Shohat-Zaidenraise et al. / Gene-finding with the VOM model

Outline for the Construction of the Context-Tree (VOM algorithm)

Tree growing stage:
Step 0. Start with the root as the initial tree, with all symbol counts equal to zero.

Step 1. Counter update: Recursively, having constructed the current tree from the
current sequence, read the next symbol x; in the sequence. Traverse the tree along

the path defined by the context x° . and increment the count of the symbol ; in all
nodes until the deepest node is reached.

Step 2. Tree growth: If the last updated count is at least 1 and the depth of the node is

k<K, Where K log(N +1)/log(|4]), create a new node of depth k =k +1 and

max max <

initialize all symbol counts to zero except for the symbol X; whose count is set to 1.
Tree pruning stage:

Step 3. Estimate the KL divergence of the distribution of symbols between a leaf of

depth k(leaf) and its parent node of depth k(leaf)-1:

i-1
Xk (tear)))

P(X,
KL(leaf)= 5 P(X, -
.
i £ (X" Xi—k(/ear‘)—l)

i1
X Lk(!ea.f‘)) log, (

Repeat for all leaves.

Step 4. Prune the leaf if KL(leaf)> C(\A\H)log(N +1), where the logarithm is to the
base 2, and the default value for the pruning coefficient C is C=2. Practically, this
pruning step keeps the leaf only if its symbols’ distribution. is sufficiently different

from the symbols’ distribution in its parent node.

Step 5. If all leaves are left unpruned stop. Otherwise, go back to step 3 and repeat

for all the pruned leaves.

Fig. 1. Outline of the context-tree algorithm.

constraints [7]. In the second stage the tree is pruned to obtain its variable-length branches. The pruning
is based on th&ullback-Leibler (KL) divergence measure for the conditional probabilities of symbols
between a child node and its parent node. Ifkthedivergence measure is smaller than a pre-selected
pruning threshold, the child node is pruned. A snidlldivergence implies that there is no significant
change in the symbols’ distribution when using the reduced order of the model, or in other words, that
the larger model order, which is represented by the child node, does not add much information and can
be pruned without practically affecting the prediction probability.

Once the context tree is pruned, a pseudo-count is added to all the tree counts to compensate for
unobserved subsequences with zero counts in the tree [7,12]. Finally, the obtained counts in the pruned
tree are used to estimate the conditional probahitigy ;| X ") for prediction or compression purposes.

The outline of the context-tr&®¥OM algorithm, which we use in this paper, is given in Fig. 1 below.

The complete details of the algorithm that has a linear complexity in the sequence length can be found
in Ben-Gal et al. [12].

The pruned context tree model is equivalent to a set of conditional probabilities of symbols, along

with their conditioning contexts. The size of the final context tree model is determined by the value of

K.O. Shohat-Zaidenraise et al. / Gene-finding with the VOM model 49

Node 1
(0.28,0.19,0.19,0.33)
I

Al C I G | Ir
Node 2 Node 3 Node 4 Node 5
(0.13,0.25,0.38,0.25) (0.01,0.49,0.01,0.49) (0.14,0.14,0.01,0.71) (0.57,0.01,0.33,0.08)

|

A | r

Node 6 Node 7
(0.01,0.01,0.01,0.97) (0.01,0.24,0.25,0.5)

I
c | Ic IT

Node 8 Node 9 Node 10

(0.01,0.01,0.01,0.97) (0.49,0.01,0.01,0.49) (0.01,0.97,0.01,0.01)

Fig. 2. The VOM tree generated from a DNA sequence. The empirical probabilities of the nucleotides in each node are ordered
alphabetically asA, C, G, T).

the pruning coefficien€’. Rissanen [10] recommended a pruning coefficient valu€ et 2 for best
compression (this value was also found to be a good choice in our experiments [13]). The truncation
process is intended to avoid over-fitting of the model to the training sequence. If the truncation process
is too aggressive (selecting a high valueddr it removes contexts that represent the occurrences of rare
events with small count values, smoothes out their predictions, and reduces the overall prediction quality
of the model.

In our experiments, the VOM algorithm was implemented by a MATLAB script wWith., = 9.

Figure 2 represents an example of a VOM tree of a certain training set of sequences.

For illustration purpose, let us compute the likelihood of the sequence TATGT based on the VOM
tree in Fig. 2: P(TATGT) = P(T) - P(A|T) - P(T|TA) - P(G|TAT) - P(T|TATG) = P(T) -
P(A|T)- P(T|A) - P(G|T) - P(T|TG) = 0.33 - 0.57-0.25 - 0.33 - 0.5 = 0.078 (respectively, by the
bolded parameters in nodes 1, 5, 2, 5, & 7). In comparison, the likelihood of the sequence based
on the unconditioned distribution of the symbols (a Z&rorder Markov model) is much smaller:
0.33-0.28-0.33-0.19 - 0.33 = 0.0019. Note that given a certain context (leaves) there are nucleotides
that are very likely to occur. This probability is strengthened as the tree deepens and may be used for
correcting sequencing errors as explained in [14].

2.2. The VOM based gene-finder

The following section outlines the required steps to annotate the ORFs using the VOM model. First,
the sequence is annotated into non-coding regions and coding regions of different reading frames. Then,
the coding regions are matched with start and stop codons. Finally, some conflicts between the ORFs
are resolved. The main steps are discussed below (further details on these steps can be found in [14]):

— Initialization: Prepare both the coding sequences and the non-coding sequences for the training set.
Construct a VOM model for the non-coding regions and a 3-periodic inhomogeneous VOM model
for the coding regions.

— Initial annotation (adapted from [14]): compute a likelihood measure for each sequence, by a
sliding window of sizeW = 54 nucleotides — starting 26 nucleotides upstream and ending 27
nucleotides downstream of the current nucleotide. The likelihood of the window is evaluated by

50 K.O. Shohat-Zaidenraise et al. / Gene-finding with the VOM model

using four alternative VOM models: the non-coding VOM model, and three phased realization of
the 3-periodic inhomogeneous VOM model (since the codons can start at any reading frame). The
maximum likelihood model defines whether the sequence is considered as coding or non-coding.

— Smoothed annotation: Neighboring transitions in the reading frames are eliminated with a Viterbi-
like algorithm. The annotation of a sequence is the path that maximizes the likelihood of that path
minus a cost penalty?, which is used to eliminate frequent frame shifts. The penalty effectively
eliminates regions shorter tharl2 codons. The coordinates of each coding sequence and its phase
are recorded.

— ORF congtruction: Record the location of potential start and stop codons in the three different
phases. Match each putative coding region with its proximal start and stop codons. Record its
coordinates. No information containing potential promoter sites or other motifs is used at this stage.

— Complementary sequence processing: the complementary sequence is constructed in the translating
direction (by converting every ‘A’ to ‘T’ and vice versa, and every ‘C’ to ‘G’ and vice versa) and
the ORF detection process is repeated for the complementary sequence and their coordinates are
recorded.

2.3. Optimization experiments for the VOM GF

The VOM GF contains several algorithms that can be further optimized. Now, we briefly describe
preliminary optimization directions that have been tested. Further details are given in [13].

The purpose of the first set of experiments was to improve the accuracy of distinguishing coding and
non-coding DNA segments. These experiments were based on the benchmark dataset of Fickett and
Tung [15], which contains representative segments of the human genome. First, the effect of the pruning
constant' in the VOM algorithm was investigated. It was concluded that a pruning constahtop
provides a better accuracy with respect to thexamer (fifth-order Markov) model, while using only
about half the number of parameters. Attempting to further improve the accuracy with architecture of
boosted multiple VOM classifiers (see [16]) resulted only in a marginal improvement. Accordingly, this
architecture was not implemented.

The purpose of the second set of experiments was to optimize the gene annotation algorithm. The
experiments were conducted by using combinations of four window sizes, W, four penalty costs, P, and
four different heuristics for matching the start/stop codons with the coding segments. The experiments
were applied to the genome &nechocystis PCC6803. Different versions of the VOM GF were
constructed to annotated the genome. Tamsitivity (Sh) and Specificity () of each annotation was
computed by comparing it to the annotation publishe@amBank that was considered as an accurate
benchmark source. It was concluded that the most accurate annotation is produced with a window size
of W = 54, a penalty value oP = 100, and the start/stop codons that are the closest ones outside the
coding segment boundary (and, thus, biased towards longer ORFs).

3. Compar ative genome experiments

Table 1 presents five bacteria genomes that were annotated by the proposed VOM-based GF — with
the best parameters found above. The annotation was compared with the ‘true’ annot@goBank,
which is considered here as an accurate source for validation purpose.

In the first set of experiments, the proposed VOM GF was compared with two other gene-finders
that are listed in Table 1: The dicodon GF of Kim [17] aGdneMark.fbf [6,18]. The VOM model

K.O. Shohat-Zaidenraise et al. / Gene-finding with the VOM model 51

Table 1
Genomes used for comparison experiments
Species Accession Number Length
Synechocystis PCC6803 (SP) ND0911 3,573,470
Pyrococcus horikoshii (PH) N©00961 1,738,505
Bacillus subtilis (BS) AL009126 4,214,814
Mycobacterium tuberculosis (MT) AL123456 4,411,529
Helicobacter pylori (HP) AE000511 1,667,867
Table 2
Comparing to Kim [17] and té&eneMark.fbf [6]
Genome Gene-finder Sn Sp S8p

SP VOM GF 0.9627 0.8774 1.8401
Kim GF 0.9640 0.9850 1.9490
GeneMark 0.9696 0.9970 1.9666

PH VOM GF 0.7356 0.8769 1.6125
Kim GF 0.9730 0.9390 1.9120
GeneMark 0.9777 0.9027 1.8808
VOM GF 0.7971 0.9630 1.7601

BS Kim GF 0.9750 0.9770 1.9520
GeneMark 0.9554 0.9917 1.9471

was trained on the GENIE [20] human genome and not on a bacteria database. The dicodon GF in
Kim [17] is based on an algorithm similar to the proposed GF, except that instead of a VOM model the
author uses a dicodon fifth-order Markov (Hexamer) model for the coding segments. Kim’'s GF also
includes a self-learning mechanism. T&eneMark.fbf is a state-of-the-art GF that combines various
algorithms, including motif identification [19]. The results of the first group of experiments based on the
first three organisms are presented in Table 2. There is no doubt that the proposed VOM GF is inferior in
comparison to the other two GFs. Possible explanation for this inferiority can be attributed to the lack of
a learning mechanism that the others GFs have, and to the fact that the current version of the VOM GF
has no mechanism for resolving overlapping genes. However, an interesting observation is that despite
the average inferior performance of the proposed VOM GF, surprisingly it outperforms the other GF
when searching short genes in these bacterial Genomes as described next.

Table 3 compares the annotated genes by both the VOM GF a@kttedark GF to the ‘true’ genes
annotation in GeneBank. The Table reveals an advantage of the VOM GF for the identification of short
genes, which are defined as coding regions with less than 120 base pairs. As seenin Table 3, considerably
more short genes were discovered by the proposed VOM GF th@eimMark.fbf. Table 4 compares
the percent (%) of nucleotide-wise false positive (FP) and the false negative (FN) rates of the VOM-based
GF andGeneMark.fbf. The FP rate of the VOM GF is higher or equal to that of@eaeMark.fbf, yet the
FN rate is much higher. These values partially explain the differences in the sensitivity and specificity
of the compared GFs as indicated in Table 2. Nevertheless, we claim that combining the VOM GF
algorithm with other identification features (such as motif detection) might improve the final accuracy
of the annotation.

In an initial analysis of a newly sequenced genome, the appropriate statistical models of the coding
and non-coding regions are unknown. Yet, one has to train the model based on a given training set
which is assumed “close” enough to the newly sequenced genome. Evidently, using an inappropriate
model reduces the accuracy of the GF. The purpose of the second set of experiments is to analyze
the performance of differently trained VOM models when implemented to annotate a new prokaryotic
genome. The following cross-validation experiment was performed for each genome listed in Table 1:

52 K.O. Shohat-Zaidenraise et al. / Gene-finding with the VOM model

Table 3
Short Genes Summary
Genome ldentification The VOM gene-finder Gene-Mark
SP Full identification 14 3
Partial identification 1 0
Un-identified genes 0 12
PH Full identification 24 0
Partial identification 17 0
Un-identified genes 7 48
BS Full identification 65 5
Partial identification 28 1
Un-identified genes 12 99
Table 4
Comparing the FP Rates (%)
SP PH BS
FP FN FP FN FP FN
GeneMark 0.26 2.65 8.87 1.87 0.72 3.99
VOM GF 11.7 3.24 8.68 22.25 2.74 18.13
Table 5

The total length of the coding/non-coding sequences used for training the foreground/background models and the resulting
number of parameters

Tested species Coding Non-coding #Par. #Par. #Par. Sn Sp +SBn
Coding Non-coding Total

1 SP 9,672,346 6,696,444 3421 2533 5954 0.5051 0.8835 1.3886
2 PH 10,502,504 7,700,097 3465 2548 6013 0.3366 0.8525 1.1891
3 BS 9,449,721 6,278,708 3545 2585 6130 0.8556 0.9081 1.7635
4 MT 5,037,648 6,171,476 1620 1441 3061 0.9999 0.9040 1.9039
5 HP 10,598,605 7,677,179 3397 2444 5841 0.3951 0.9415 1.3366
6 OnlyMT 6,277,558 2,459,500 2776 1372 4148 0.9990 0.9039 1.9039
7 OnlyBS 2,352,268 1,865,485 632 609 1241 0.9964 0.8936 1.8900
8 GENIE dataset 1,367,982 220,266 241 2341 2582 N/A N/A N/A

first, a VOM GF was trained on a combined training set consistiraj tfie other four genomes, then, the
obtained VOM GF was used to annotate fifith genome. The VOM GF annotation was compared with
the considered ‘true’ annotation @eneBank. We assumed that the motifs on the main strand and on the
complementary strand of the same organism have similar characteristics; therefore, we trained the model
based on data taken only from the main strand. Similarly, the non-coding sequences were extracted from
the ‘real’ non-coding sequence and were used for training the background model. The first five rows
in Table 5 present the annotation based on the combined training set. The lengths of both coding and
non-coding sequences that were extracted from the other four organisms are presented in columns 3 and
4, and the numbers of parameters of the respective VOM models are presented in columns 5 and 6. The
sensitivity and specificity of the VOM GF annotation with respedBameBank’s annotation are given
in the last three columns. Since the foreground model was constructed from the indicated genes, the
overlapping sequences of the overlapping genes were taken into account twice. For example, note that
Mycobacterium tuberculosis (MT) has a coding sequence that is almost 1.5 times its entire length. This
inconsistency resulted from the large number of overlapping genes in this organism.

Row #8 in Table 5 presents the size of the datasets used (in Table 2) for training the VOM models
on the GENIE human datasets [20]. Surprisingly, comparing the results (columns 8, 9, 10) to those of

K.O. Shohat-Zaidenraise et al. / Gene-finding with the VOM model 53

Table 2, reveals that the VOM models that were trained on the human dataset protigted accuracy

than the VOM models that were trained on the prokaryotic datasets. We do not have a full explanation
for this paradoxical result. Yet, note that the GENIE dataset — unlike the combined bacterium datasets
in the first five rows — is a smaller and a “cleaner” dataset. We suspect that the fact that repeating and
similar sequences were not filtered out from the bacterium training dataset, probably resulted in VOM
models that were over-fitted to the training set. To verify this assumption, further experiments (#6, #7)
were conducted, in which we cross-tested the VOM models for two different genokaobacterium
tuberculosis (MT) andBacillus subtilis (BS) — belonging to the same family of bacterium (gram-positive
bacterium). A significantimprovement was detected foBheillus subtilis, while no improvement was
observed for thélycobacteriumtuberculosis. Rows #6 and #7 in Table 5 present the lengths of both the
coding and the non-coding sequences taken from the MT and the BS genomes, respectively. Once again,
note that the sequences used for training the different VOM models in these rows do not have the same
sizes. The training dataset for the BS was considerably smaller than the training set of the MT — a fact
which may affect the accuracy of the fitted VOM GF. Moreover, note that most of the BS genes found
in GenBank are computationally predicted with no experimental evidence. This fact also may influence
the achieved accuracy when using this genome for training the VOM model since it contains noisier and
longer sequences.

4. Conclusions

We introduce a potential approach for gene finding based on the variable-order Markov (VOM) Model.
Although the VOM-based GF is relatively simple and self contained — e.g., it does not consider motifs
other than the start and the stop codons — it can be applied for gene finding along with the commonly
used Markov based GFs.

The VOM GF seems to detect some short genes even when the available training set is relatively
small. In presence of a large training dataset, however, the performance of the VOM GF seems to be
less competitive. Therefore, it is proposed to investigate a direction when the VOM GF is used as a
complementary tool to conventional GFs that excel in detecting longer genes. The current version of the
GF was implemented as semi-manual prototype software. Integrating it with other learning algorithms
(such as self learning, advanced gene parsing, motif detection, homology, detection, etc.) is expected to
improve its performance [21].

References

[1] D. Frishman, A. Mironov, H.W. Mewes and M. Gelfand, Combining diverse evidence for gene recognition in completely
sequenced bacterial genomisicleic Acids Research 26(12) (1998), 2941-2947.

[2] C.B. Burge and S. Karlin, Finding the genes in genomic DXBArrent Opinion in Structural Biology 8(3) (1998),
346-354.

[3] M. Skovgaad, L.J. Jensen, S. Brunak, D. Ussery and A. Krogh, On the total number of genes and their length distribution
in complete microbial genome&endsin Genetics 17(8) (2001), 425—-428.

[4] A.L. Delcher, D. Harmon, S. Kasif, O. White and S. Salzberg, Improved microbial gene identification with Glimmer,
Nucleic Acids Research 27(23) (1999), 4636-4641.

[5] T.S. Larsen and A. Krough, EasyGene — a prokaryotic gene finder that ranks ORFs by statistical signiibdDce,
Bioinformatics (2003), 4-21.

[6] M. Borodovsky and J. Mclninch, Genmark: Parallel Gene Recognition for both DNA Str@odsuters & Chemistry
17(2) (1993), 123-1333FeneMark, Available Online: http://opal.biology.gatech.edu/GeneMark/fbf.cgi.

54

7]
8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]
[21]

K.O. Shohat-Zaidenraise et al. / Gene-finding with the VOM model

I. Ben-Gal, A. Shani, A. Gohr, J. Grau, S. Arbiv, A. Shmilovici, S. Posch and |. Grosse, Identification of Transcription
Factor Binding Sites with Variable-order Bayesian NetwoBisjnformatics 21(11) (2005), 2657—2666.

R. Begleiter, R. El-Yaniv and G. Yona, On Prediction Using Variable Order Markov Modelsnal of Artificial
Intelligence 22 (2004), 85-421.

Glimmer gene-finder, Available Online: www.tigr.org/software/glimmer.

J. Rissanen, A universal data compression systBEE Transactions on Information Theory 29(5) (1983), 656—-664.

J. Ziv, A universal prediction lemma and applications to universal data compression and pretidfBiransactions

on Information Theory 47(4) (2001), 1528-1532.

I. Ben-Gal, G. Morag and A. Shmilovici, CSPC: A Monitoring Procedure for State Dependent Prodesseanetrics

45(4) (2003), 293-311.

K.O. Shohat-Zaidenraise, Gene finding via context learning models, Thesis submitted to Tel-Aviv University, Israel,
February 2004, available upon request.

A. Shmilovici and I. Ben-Gal, Using a Compressibility Measure to Distinguish Coding and Noncoding Ea&ast
Journal of Theoretical Satistics 13(2) (2004), 215-234.

J.W. Fickett and C.S. Tung, Assessment of Protein Coding Meadluelgjc Acids Research 20(24) (1992), 6441-6450.
O.R. Duda, P.E. Hart and D.G. Stofattern Classification, Chapter 9.5, John Wiley & Sons, 2001.

J. Kim, A Sudy on Dicodon-oriented Gene Finding using Self-Identification Learning, A thesis submitted to School of
Knowledge Science, Japan Advanced Institute of Science and Technology, February 2000.

A.M. Shmatkov, A.A. Melikyan, F.L. Chernousko and M. Borodovsky, Finding prokaryotic genes by the ‘frame-by-frame’
algorithm: targeting gene starts and overlapping geBiesnformatics 15(11) (1999), 874-886.

J. Besemer, A. Lomsadze and M. Borodovsky, GeneMarkS: a self-training method for prediction of gene starts in
microbial genomes. Implications for finding sequence motifs in regulatory reghutdeic Acids Research 29(12)
(2001), 2607-2618.

GENIE data-sets, from Genbank version 105, 1998. Available: www.fruitfly.orgfselg/datasets/Human/introrl05/.

A. Shmilovici and I. Ben-Gal, Using a VOM model for reconstructing potential coding regions in EST sequleniceal,

of Computational Satistics 22(1) (2007), 49-69.

