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ABSTRACT Condition-based maintenance (CBM) is increasingly applied

to operational systems to reduce lifecycle costs. Predicting the performance

of various CBM policies is a challenging task addressed in this work.

We suggest a CBM framework that is based on system simulations and a

targeted Bayesian network model. Simulations explore the robustness of vari-

ous CBM policies under different scenarios. The Bayesian network, which is

learned from the simulation data, is then used as an explanatory compact meta-

model for failure prediction. The framework is demonstrated through a study of

an operator of a freight rail fleet. This study demonstrates a significant profit

improvement compared to other methods.

KEYWORDS Bayesian networks, condition-based maintenance, meta-model,

simulation

INTRODUCTION

Man-made systems are prone to deterioration over time and therefore require

ongoing maintenance to avoid malfunctioning. Accordingly, it is essential to

undertake an effective preventive maintenance (PM) policy that minimizes the

life cycle cost (LCC) of the system and maximizes its operational profit.

A relatively simple PM approach is to use a time-based maintenance (TBM)

policy, which implies, for example, an a priori scheduling of various PM tasks

(based on elapsed time or system cycles). Over the years several extensions of

the traditional TBM were suggested, such as the reliability-centered mainte-

nance approach that studies and analyzes the functionalities of different oper-

ational tasks and their effects on the system reliability (Moubray 1991; Nowlan

and Heap 1978). Nevertheless, despite these developments, the TBM is known

to be suboptimal, because it does not account for the operational condition of

the systems in real time (Dubi 2000). As an alternative to the prescheduled

maintenance approach, the condition-based maintenance (CBM) schedules

themaintenance tasks according to system’s conditions and (partially) observed

system states (Jardine et al. 2006). This article focuses on such a predictive

approach; namely, addressing questions such as when a maintenance task

should be performed, to which system, and under which observed conditions.
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In small systems, an optimal PM policy can be

obtained by conducting an exhaustive search over all

feasible maintenance policies. In larger and more com-

plex systems, simulation-based approaches are often

used to obtain some estimation for satisfactory PM poli-

cies. Nevertheless, even with powerful simulators, the

exhaustive search is typically too time-consuming for

evaluating each potential PM setting (Dubi 2000).More-

over, even if a powerful simulator exists, it is not clear

how to efficiently use it to produce a good predictive

maintenance policy, as we shall propose in this article.

Condition-based maintenance methods attempt to

define a PM policy according to the state of the

system at various time periods. Previous works

showed that the CBM approach can improve the PM

plan considerably (Jardine et al. 2006; Peng et al.

2010). Nevertheless, the implementation of CBM

methods remains a challenging task, because it

requires generating reliable prognosis models that

analyze and predict the system operational availability

under various system conditions (Sheppard and Kauf-

man 2005). CBMmodels are often hard to formulate as

closed-form analytical models without relying on

physical models that are essentially feasible in simple

mechanical systems. As an alternative to the exact

modeling, it has been suggested to implement CBM

in an automated fashion by using metamodels backed

up by expert knowledge (Jardine et al. 2006). To

address this challenge, model-free approaches were

proposed for CBM optimization. For example, Marse-

guerra et al. (2002) optimized a CBM plan bymeans of

genetic algorithms and simulation. Other surrogate

models that could be used for PM were suggested

over the years (see, for example, Forrester and Keane

2009; Keane and Nair 2005; Queipo et al. 2005).

In this article, we follow these approaches and

suggest a CBM-based policy that combines both a

simulation model of the system and a predictive

metamodel. The simulation model of the system is

based on expert knowledge and historical data. Such

a model can be generated by conventional simulation

software, such as Arena or MATLAB and can be

further enriched by data that is gathered from an

operating system, if such data are available. The simu-

lator can be used to test various system settings, as

well as to introduce variability and noise into the

modeled system for evaluating the robustness of

various CBM plans. The main required inputs into

the simulation model are (1) the state-transition

distributions of individual system components, such

as the components’ failure-restoration distributions;

(2) an interaction scheme for these components that

can be expressed, for example, by a reliability block

diagram or another system architecture schema; (3)

an initial PM policy by which the system is serviced

and maintained that will be improved by the proposed

approach; and (4) cost parameters that are related to the

PM policy, for example, costs of unscheduled failures,

costs of PM operations, and costs of system downtime.

The simulation outputs are represented by system

operational measures, such as the system reliability,

availability, and maintainability, from which associated

costs under various environmental conditions can be

calculated. These measures, as well as the system set-

tings, are then used as an input to the targeted Bayesian

network (BN) model proposed by Gruber and Ben-Gal

(2011). The BN is learned from the simulation scenar-

ios, using the default parameters that are described in

Gruber and Ben-Gal (2011). It represents, in a compact

and descriptive manner, the effect of various system

conditions and settings on the potential failures of com-

ponents. The BN is then used as a metamodel for pre-

dicting system failures according to different system

attributes and PM setting. These attributes are associa-

ted not only with the state of the physical system but

can also be related to environmental, operational, or

other factors that can affect the system availability

(see, e.g., Prescott and Draper 2009).

Note that system failures can be viewed as a stoch-

astic process that cannot be anticipated precisely.

Nevertheless, often such a process can be charac-

terized by failure distributions of its individual com-

ponents and by their interactions. Such information,

together with a logistic support plan that includes

the PM policy, spare parts considerations, and

environmental conditions that affect the system avail-

ability can be captured by the BNmodel. Once the BN

model is constructed and its parameters are estimated,

it is used as a prognosis metamodel for failure predic-

tion of various system components. According to

these predictions, different PM scenarios can be

evaluated (e.g., triggering maintenance tasks to

components with a failure probability higher than a

certain threshold) and then an overall system perfor-

mance can be evaluated to select the best PM plan.

Using such an approach, the proposed CBM strategy

does not require any underlying closed-form formula.

Instead, it uses the targeted BN model, which is
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designed to predict a system failure by automatically

selecting the most influencing features for such a

prediction. Using a BN as a metamodel is also appeal-

ing because it is a general model that can cover a wide

range of systems. Systems that are suitable for the

proposed framework are those in which the exact

relations between components’ failure to the overall

system maintenance requirement are undefined and

unclear. Some examples for such systems include

(but are not limited to) rail, aircraft, wind turbines, ves-

sels, vehicles, nuclear reactors, and aerospace systems.

The rest of this article is organized as follows. The

next section overviews the challenges of PM optimiza-

tion in reliability–availability–maintainability (RAM)

models and refers to several methods for addressing

these challenges. The section also describes the

targeted BN learning and the motivation for using a

BN as a metamodel for prediction. The following

section provides a schematic framework for the

implementation of the proposed CBM approach. This

section demonstrates the implementation of the pro-

posed approach on a freight rail fleet based on a real

case study of a European operator. The penultimate

section analyzes some key features of the proposed

approach. Finally, the last section concludes the article

with a short discussion of potential future directions.

BACKGROUND

This section is divided into three subsections. The

first subsection overviews key principles of mainte-

nance plans and their implications on ageing systems.

The second subsection explains what a Bayesian

network is and emphasizes the properties of the

targeted BN approach, which is implemented in the

proposed framework. The third subsection briefly

describes the advantages of using Monte Carlo simu-

lation (MCS), particularly for modeling aging systems.

Maintenance Schemes

Maintenance is defined as a set of all activities and

resources needed to uphold an element’s specific

performance and condition in a given time period.

The precise definition of the term evolved with time

from the simplistic ‘‘repair broken items’’ (Tsang 1995

pp. 3–17) to a more complete definition: ‘‘Combination

of all technical, administrative, and managerial actions

during the life cycle of an item intended to retain it in,

or restore it to, a state in which it can perform the

required function’’ (Bengtsson 2004, p. 15).

Whenexamining thephrase ‘‘retain it in,or restore’’ in

the definition, it becomes clear that besides the activities

that are focused on repairing broken items after break-

downs (restore), there is an additional approach of per-

forming upkeep activities before the next breakdowns

happen in order to prevent them (retain).

Bengtsson (2004) defined corrective maintenance

and preventive maintenance as follows:

. Corrective Maintenance (CM): ‘‘Maintenance carried

out after fault recognition and intended to put an item

into a state in which it can perform a required func-

tion’’ (pp. 16–17). CM can be divided into two cases.

First, when the breakdown is critical and affecting

the functionality of the whole system it must be

repaired immediately. In many situations it is charac-

terizedby significant costs causedby thebreakdowns.

Second, as long as the breakdown is not affecting the

comprehensive function, the repair canbedelayed. In

these situations, sometimes it is possible to defer the

repair process to a more appropriate time, taking into

account the production capacity. The first case is

referred toas immediateCM,whereas the secondcase

is referred to as deferred CM (see Figure 1).

. Preventive Maintenance (PM): ‘‘Maintenance

carried out at predetermined intervals or according

to prescribed criteria and intended to reduce the

probability of failure or the degradation of the

functioning of an item’’ (p. 17). PM can be obtained

in two ways. The first is known as time-basedmain-

tenance, which is described as ‘‘preventive mainte-

nance carried out in accordance with established

intervals of time or number of units of use but with-

out previous condition investigation’’ (p. 17).

. The second is known as condition-based mainte-

nance, which is described as ‘‘preventive

FIGURE 1 Different maintenance strategies as described by

Bengtsson (2004). (Color figure available online.)
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maintenance based on performance and=or

parameter monitoring and the subsequent actions’’

(pp. 17–19). Note that the difference between perfor-

manceandparameter in this context is that theperfor-

mance is often regarded as a target variable, whereas

aparameter is considered tobeanyexplanatorymon-

itored variable. The described process of the CBM

parameter monitoring can be either continuous,

scheduled, or on request. When properly implemen-

ted, this approach enables one to combine the bene-

fits of preventive maintenance while suggesting a

way to reduce the costs of unnecessary or excessive

scheduled maintenance operations and still allowing

one to keep the maintained equipment in a healthy

operational condition (Jardine et al. 2006). For

example, a general formulation of the LCC within a

lifetime T is given below:

LCC ¼ Nf � Cf þNpm � Cpm

þ CTd

Z T

0

ð1� AðtÞÞ dt; ½1�

where Cf represents the cost of an unscheduled

failure, Cpm stands for the cost of a preventive

maintenance action, CTd is the downtime cost rate,

Nf is the number of unscheduled failures up to time

T,Npm is the number of PM actions undertakenwithin

time T, and A(t) represents the time-dependent avail-

ability,where the termavailability stands for theprob-

ability that the system will be in an operation state.

Figure 2 depicts in a qualitative fashion the general

behavior of the downtime of an aging system and of

the life cycle cost as functions of a PM policy in a

lifetime. The figure illustrates that though a

closed-form of these quantities is often unobtainable,

a global optimal PM policy lies between two extreme

policies. One extreme policy is to perform PMs

infrequently (following the ‘‘less maintenance’’ direc-

tion), resulting in an increasing failure rate, which

could lead to unplanned downtimes and high cost

of repair and restoration. The second extreme policy

is to perform PMs very frequently (following the

‘‘more maintenance’’ direction), resulting in an

unavailable system due to PM and excessive PM costs

yet again leading to high costs. Clearly, some other

policy exists that minimizes that cost, referred to as

the optimal policy, in a nonrigorous definition. A gen-

eral closed-form equation for obtaining the optimal

policy does not exist. The suggested framework,

presented here, attempts to approximate this policy

by detecting those cases where PM operation is truly

required while, on the other hand, avoiding

unnecessary PM operation. A general survey and

comparison of various maintenance policies of

deteriorating systems was provided by Wang (2002).

A CBM program contains three key phases: (1) data

acquisition: collection of the raw data that are con-

sidered relevant to system health; (2) data

processing: analysis of the collected raw data to allow

better interpretation; and (3) maintenance decision

making: recommendation of the efficient maintenance

activity based on previous phases (see Figure 3).

It is worth noting that CBM practices occasionally

distinguish between diagnostics and prognostics. The

first term refers to detection, isolation, and identifi-

cation of the failure when it occurs. The second

refers to the prediction of failures based on some

likelihood estimation before they occur.

The literature on the various aspects of the CBM

methodology is extensive and treats a variety of

systems, components parts, and approaches. A

review of different aspects of CBM implementation

and methodology was provided by Jardine et al.

(2006) and Peng et al. (2010).

This article belongs to a class of studies that can be

classified as an artificial intelligence–based approach

to CBM (Jardine et al. 2006). Among the artificial intel-

ligence–related methods for prognosis models, (e.g.,

Vining et al. 1993), there is a body of works using

FIGURE 2 Qualitative illustration of the association between

downtime and LCC vs. maintenance policy.

FIGURE 3 Three phases of CBM (Jardine et al. 2006).
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various types of artificial neural networks, as seen, for

example, in Paya et al. (1997), Samanta and Al-Balushi

(2003), Spoerre (1997), and Y. Li et al. (1999). Another

approach is implementing expert systems, where the

effort is concentrated on using domain expert

knowledge in a computer program allowing one to

perform a computerized inference on an engine that

is configured in advance for that task, such as demon-

strated by Deuszkiewicz and Radkowski (2003) and

Hansen et al. (1994). In addition, there are combina-

tions of the above-mentioned approaches, such as

Brotherton et al. (2000), Y. Li et al. (1999), and others,

as extensively reviewed by Jardine et al. (2006) and

Peng et al. (2010).

There are several related studies dealing with

applications of Bayesian networks for maintenance

and reliability. Sheppard and Kaufman (2005) pro-

posed a Bayesian framework for diagnosis and prog-

nosis, providing an illustration for the approach on a

stability augmentation system of a helicopter. Liu and

Li (2007) discussed a decision support system for

maintenance management using BNs. Arnaiz et al.

(2010) proposed a decision support system based

on operational risk assessment in order to improve

aircraft operability. All of these works, however, do

not specifically use the targeted BN approach. The

uniqueness of the proposed approach is in the use

of a targeted BN as a surrogate model to support

CBM prognosis and failure prediction.

Thenoveltyof theproposed framework compared to

the studiesmentioned above is that the learned targeted

BN model exploits merely the relevant information for

predicting the failures as gathered from simulation data

and uses the predictions by the CBM model within the

simulation for assessing the actual effect on the LCC,

as will be described in the next sections.

Targeted Bayesian Network Model

A BN is a probabilistic graphical model that encodes

the joint probability distribution of some domain in a

compact and explanatory fashion. A BN is a directed

acyclic graph, G, containing vertices (or nodes) and

edges and a set of parameters representing conditional

probability tables (CPTs), denoted by H, of discrete or

discretized random variables (Pearl 1988).

A BN B(G, H) can often be used to represent the

joint probability distribution of a vector of random

variables X¼ (X1, . . . , XN). The structure G (V,E) is a

directed acyclic graph composed of V, a vector of

nodes representing the random vector X, and E, a

set of directed edges connecting the nodes. An edge

Eji¼Vj!Vi manifests conditional dependence

between the variables Xj and Xi (given prior

knowledge about Xi). Eji connects the node Vj to the

node Vi (Heckerman 1995) and thus Vj is also called

the parent of Vi. We denote Zi ¼ fX1
i ; . . . ;X

Li
i g as

the set of ‘‘parent’’ variables of the random variable

Xi represented by the set of parent nodes

Vi ¼ fV 1
i ; . . . ; V

Li
i g in G(V,E), where for any literal,

the superscript j stands for its index in the correspond-

ing set and where Li¼ jZij is the size (cardinality) of

the subset Zi�X. The set of parameters H represents

the local conditional probabilities, p(xijzi), over X that

is estimated from observed data or given a priori by an

expert (see also Gruber and Ben-Gal 2011).

One of the advantages of BN models is that they

serve as an intuitive tool, due to their qualitative graphi-

cal representation, while maintaining a rigorous,

well-defined mathematical model that compactly and

efficiently represents the domain (Ben-Gal 2007). A

BN can be constructed manually, based on knowledge

and hypotheses about the relationship among the

domain’s variables, or constructed automatically from

the observed data, including the network-structure

learning and the CPT estimation (Ben-Gal 2007). The

latter practice has grown remarkably in recent years,

especially in the light of information technology, where

data availability is growingmassively in many industrial

domains. Because BN learning is an NP-hard problem

(Chickering et al. 1995), most BN learning methods

split the learning procedure into structure learning

(edges and their directions) and parameter learning

(CPTs), given the learned structure of the BN (Claes-

kens and Hjort 2003). Moreover, most of the methods

learn the BN model in a general fashion, namely,

encoding the joint probability distribution of the vari-

ables’ set, irrespectively to the application that will be

used; hence, such methods that learn a general BN

(GBN) are often referred to as canonical.

Though GBN learning methods attempt to best

approximate the joint probability distribution, they

address the tradeoff between the model complexity

versus the prediction error of the learned BN. Unlike

the canonical approach of GBN learning methods,

target-oriented methods learn the structure of the

BN specifically for marginal purposes, such as classi-

fication (Gruber and Ben-Gal 2011). These methods
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aim to be more effective for marginal purposes, rather

than approximating well the entire domain. The naı̈ve

Bayes model (see Duda and Hart 1973), for instance, is

one of the simplest and most well-known target-based

Bayesian classifiers, in as much as it does not require

structure learning. Instead, the structure is fixed a

priori, where the node representing the class variable

is predetermined as the common parent of all nodes

that represent the attribute variables. The naı̈ve Bayes

model is popular due to its simplicity, but it uses a

crude conditional independence assumption.

In the suggested framework, we employ the

targeted BN learning (TBNL) algorithm (Gruber and

Ben-Gal 2011) as the metamodel to reflect the

most influential failure causes, as well to produce

an interdependence among them. The TBNL follows

a targeted approach for accounting for the BN com-

plexity by allowing for the final objective as a target

variable while learning. The target variable in the cur-

rent application is an indicator of system failures in

the subsequent time interval (in the next month, for

example). Thus, rather than learning the joint prob-

ability distribution as a whole, the TBNL algorithm

aims at learning only the monitored variables out of

all of the simulated ones, as detailed in the sequel,

or that best predict possible system failures.

In general, the TBNL first attempts to obtain the

most influential set of variables with respect to the

target variable and then attempts to construct the

connection among these variables. The influence of

a variable or a set of variables on another variable

is reflected by their dependencies, obtained by using

mutual information measures that are well known in

information theory (Gruber and Ben-Gal 2011).

One of the advantages of using the TBNL for the

current endeavor is that it enables managing the

BN complexity and controlling it versus its prediction

accuracy. The TBNL refers to a common indicator of

model complexity, defined as the number of free

parameters that represent the network

k ¼
XN

i¼1
ðjXij � 1Þ

YLi

j¼1
jXj

i j; ½2�

where N denotes the total number of variables, Xi

represents the i th variable, and, accordingly, jXij
denotes the number of entries it can obtain. Denote

the parents’ set of Xi by Zi, then X
j
i 2 Zi represents

the j th parent of Xi. Similarly, jXj
i j represents the

number of values that the j th parent of Xi can have

(recall that the number of parents is Li).

Two input parameters of the TBNL that we shall use

later on in the example demonstration are the MinPRIG

and MaxPRIE. The MinPRIG stands for minimum

percentage relative information gain (PRIG), and the

MaxPRIE stands for maximum percentage relative

information exploitation (PRIE). These parameters trig-

ger the stopping conditions of the BN construction.

The MinPRIG determines the minimal step for adding

information, whereas the MaxPRIE determines the total

information to be cumulated about each variable. A

rather detailed discussion on the properties of the Min-

PRIG and the MaxPRIE parameters can be found in

Gruber and Ben-Gal (2011). These input parameters

of the TBNL enable selecting the most important and

relevant information about the target variable while

controlling the model complexity. This engineering

approach property of the TBNLmakes the resulting tar-

geted BN an efficient surrogate model in the sense that

it can be utilized particularly for predicting a system

failure, given a specific condition of the system. The

simulation model, on the other hand, provides a holis-

tic and generalized assessment of the system life cycle.

Modeling and Simulation in

RAM Problems

Monte Carlo simulation is an effective technique

for modeling typical RAM problems, in that it is

insensitive to their natural level of complexity (Wang

and Pham 1997; Wang 2002). The drawback of using

MCS (and simulation in general) while attempting to

optimize the PM policy of an aging system is that the

search space of possible policies is practically

unmanageable, requiring a considerable number of

computationally expensive simulations of system

availability and failures under various scenarios

(Dubi 2000; Gruber and Ben-Gal 2012). Barata et al.

(2002) suggested a CBM optimization method based

on a modeling and simulation approach and pro-

posed an innovative way for addressing such a prob-

lem. However, their approach to the optimization

requires the specific domain knowledge.

Proposed Framework

In this study we propose a framework architecture

and methodology based on a combination of MCS

375 Condition-Based Maintenance via Bayesian Network

D
ow

nl
oa

de
d 

by
 [

T
el

 A
vi

v 
U

ni
ve

rs
ity

] 
at

 2
0:

57
 2

0 
O

ct
ob

er
 2

01
3 



and targeted BN-based decision engine for RAM

optimization. The proposed methodology consists

of four main modules, as shown in Figure 4. The

framework can be applied to either a known oper-

ational system or to a new system in a design stage.

The underlying assumption is that the state transition

(such as operational-to-failed, failed-to-repair, and

repaired-to-storage, which defines a state where the

repaired part is delivered back to storage) distribu-

tions of the components are based on expert

opinion. Typically, the expert opinion is derived

both from the equipment manufacturer manual and

can be backed up by observed data analyses.

1. System modeling and simulation: Modeling the

system operational lifecycle using a simulator,

which is based on expert knowledge that can be

supported by data, and subsequently conducting

the necessary validation tests in order to ensure

that the simulation reliably represents the system

in various operational scenarios.

2. Learning the targetedBNmodel from simulated data:

Applying theTBNLalgorithm to the simulateddata to

generate an initial targeted BN. The BN is used as a

compactCBMprognosismodel for failureprediction.

3. Refining the CBM model by tuning the targeted

BN model using cross-validation: Performing

iterative refinement of the targeted BN model to

obtain a satisfactory failure prediction perfor-

mance (not necessarily optimal) by tuning the

parameters of the TBNL algorithm.

4. Searching for an effective maintenance policy based

on the developed CBM model: Using the BN model

to generate a class of maintenance policies that are

triggered by different thresholds on the predicted

failure probability of the system. Evaluating each

of these PM policies by the simulator and selecting

the best one with respect to a desired objective

function (e.g., min LCC, max profit).

Applying these four modules enables the selection of

a satisfactory CBM policy that can be adapted to the

real system.

Implementation Demonstration

The example simulation model is based on a real

case study of a European operator of a freight rail

fleet. For the sake of the CBM discussion, we demon-

strate a reduced model; thus, the demo does not

account for all the original components, processes,

and logistic considerations. The reason for the

reduced model is not due to scalability issues but

merely to help the reader gather the concept and

main principles of the proposed approach. Essen-

tially, the simulation model can scale up to thousands

of components of different types or thousands of

systems in the deployed fleet.

The simulation model was validated by benchmark-

ing it against the original model that was modeled by

the SPAR modeling platform (www.clockwork-

solutions.com). The SPAR is an advanced model devel-

opmentenvironment thathasbeendesigned toevaluate

the lifecyclemanagement of a systemorfleet of systems.

It is a discrete event simulator that is based on a Monte

Carlo engine that incorporate a robust solution capa-

bility. The Monte Carlo engine samples the time points

of all the modeled events, allowing for the modeled

dependencies. For example, if a component fails at a

certain time point, the subsequent process (e.g., the

restoration or removal) will start off by sampling its time

point from the current time point. In addition, anymod-

eled dependence rule will apply; for example, a failure

of a cooling subsystem can increase the failure rate of

another subsystem because the latter is designed to

work at some temperature boundaries. The simulation

is based on a free-flight kernel, which means that

between two subsequent events, all of the quantities,

states, and responses do not change; hence, the time

step of the simulation is not fixed. The output resolution

of the simulated case study is set to one day. SPAR simu-

lates the system lifetime until the time reaches a
FIGURE 4 Suggested architecture. (Color figure available

online.)
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predetermined service time. Because it is a Monte Carlo

application, the entire simulation is repeated for as

many iterations as the user has requested. In this case

study, 10 iterations were conducted and every numeri-

cal measure per each wagon within the fleet was aver-

aged over the iterations throughout the service time.

This enables a holistic prediction of asset operation

and support, where it supports the evaluation of

dynamic operations characteristics and supply scenar-

ios, equipment aging, condition-based maintenance,

partial repair, and finite resource capacities. The follow-

ing is a detailed description of the modeled case study.

Thefleet comprises 104wagonsof two frame types in

total (78 of type 1 and 26 of type 2). Each type is

deployed inadifferentfieldandcancarrydifferent loads

over a period of 20 years. Each component is critical to

the system (wagon) functionality; hence, the system

function is serial. Upon failure, the failed component

is repaired and inserted back, a process known as resto-

ration.During the restoration, thewagon is unavailable.

The state-transition distribution is determined by an

expert opinion, based on preliminary assumptions and

conventions. The common methodology is to use a

curve fitting on each of the state-transition mechanisms

exclusively. A common practice for a failure process of

an aging line replaceable unit (LRU; e.g., mechanical

assemblies) is to use a curve fitting of the Weibull dis-

tribution to obtain the scale and shape parameters of

the distribution. A common practice for a nonaging

process (e.g., foreign object damage or failure of elec-

tronic equipment) is to use a curve fitting of the expo-

nential distribution to obtain the mean time between

failures (MTBF). A common practice for a

repair-restoration process of a failed LRU is to use either

a curve fitting of the normal distribution or of the

log-normal distribution, depending upon the logistic

setup, to obtain the corresponding parameters (Balak-

rishnan and Varadan 1991; Kelton and Law 2000; Sar-

anga and Knezevic 2000). Using such input

distributions allows one to introduce another level of

uncertainty (e.g., by adding a noise component or

increasing the distribution variance) to obtain a robust

PM solution that accounts for input settings that were

not observed in the data. The use of a simulation

enables one not only to introduce variability into the

system but also to map it through the TBNL metamodel

to a component failures output. All of the components

in this example are considered to follow Weibull

time-to-failure distributions and normal time-to-resto-

ration distributions. The modeled components are

listed in Table 1 along with their properties.

The above estimates are given by the operator as a

coherent part of the model description. In addition,

are liability block diagram and other properties of

the system are provided, together with its operational

environment, which are provided as a part of the

model design. Corrosion is one of two failure modes

attached to the headstock (the second, shown as

headstock, is its wear and tear); therefore, corrosion

is the only virtual process and is not being ‘‘restored,’’

but this failure mode triggers and accelerates the wear

and tear of the headstock. Thus, only upon a

corrosion ‘‘failure’’ is the headstock failure process

activated. After the headstock has completed a

corrective maintenance operation, the corrosion is

‘‘repaired’’ ad hoc, the ‘‘failure’’ process associated

TABLE 1 List of the Modeled Components and their Corresponding Weibull Distribution Parameters of Failures

Failure

distribution

parameters (years)

Restoration

distribution

parameters (years) Costs(krona)
Component=

process Scale Shape Mean StD Removal Ship Repair Inspect Replace=build

Running gear 5.86 3.8 0.0014 0.0007 0 1,000 2,500 0 600

Wheelsets 11.05 3.8 0.3342 0.0002 0 670 1,500 0 400

Draw gear 9.96 3.8 0.0854 0.0014 0 400 2,000 0 600

Loading frame 1 9.00 3.8 0.0082 0.0001 0 500 5,000 0 1,200

Loading frame 2 9.05 1.9 0.5027 0.0001 0 500 5,000 0 1,200

Unloading 10.86 3.8 0.5027 0.0007 0 400 4,000 0 1,200

Headstock 9.05 1.9 0.5027 0.0001 0 0 0 0 0

Corrosion 10.14 1.9 n=a n=a n=a n=a n=a n=a n=a

PM frame 1 n=a n=a 0.0274 0.0014 2,000 0 0 2,000 0

PM frame 2 n=a n=a 0.0548 0.0027 2,000 0 0 2,000 0
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with it is reactivated, and the headstock in the failure

mode is set to passive. The restoration efficiency is

not perfect; thus, a restored component is not as good

as a new one. We use the term probabilistic age (or

simply age hereinafter) as the value of the cumulative

distribution function (CDF) of any stochastic process

apart from an exponential distribution (Dubi 2000).

After restoration, which is obtain by shifting the

CDF such that the hazard function represents a

younger component, the age of the repaired compo-

nent is ‘‘reduced’’ by 60% relative to its age prior to

the failure. Thus, after a component is repaired, its

next failure time is shifted by a time interval that is

equivalent to 60% of the failure CDF prior to the

repair (Dubi 2000).

Apart from the physical components, the list

includes some properties of the preventive mainte-

nance operations for type 1 frame and for type 2

frame. The PM restoration designates its duration.

The age reduction upon a PM operation is 100%,

namely, the component is considered as good as new.

For each component or process that is listed above,

a corresponding cost is shown and broken down into

subtasks. The operator operates the fleet under a

contract. The contract is summarized in Figure 5.

The penalty is not fixed because it grows linearly

with the average unavailability, should the

availability go below the satisfactory value. This

mechanism is considered in order to avoid cases

where the availability drops dramatically merely due

to maintenance considerations. The contract works

as follows: at the end of every month, the availability

over the past month is calculated and the operator

profits the amount shown next to the corresponding

figure if the actual availability met that requirement.

As mentioned above, the example model was

derived and reduced from a prototype model, charac-

terizing a European operation. In order to enable

integration with the BN models, the model was

rebuilt in Visual SPAR modeling platform (courtesy

of Clockwork Solutions Ltd.), which uses a .NET

environment. This environment enables communi-

cating with the MATLAB libraries and tools by which

the BN was learned and used. The TBNL library

includes all the necessary procedures to execute the

TBNL algorithm—the BNT library includes all the

necessary procedures to run a general BN learning

and the SLP library includes specific procedures of

learning algorithms and inference that were used in

this case study(see also Murphy 2004).

The simulation output was structured and

aggregated and then used as an input to the TBNL

algorithm. Operational data were aggregated on a

monthly resolution, so that at the end of each month

a new record of all operating systems was obtained.

A data record included features for each LRU, such

as the number of failures and the time since the last

restoration (the name of the LRU type with ‘‘_TSR’’

extension), as well as the following attributes: wagon

ID, TIME, wagon Type, wagon STATUS (i.e., whether

the system has currently failed or is available), PM_RE-

CENTLY (i.e., whether the wagon underwent PM in

the preceding month), TIME_SINCE_PM (i.e., the time

since last PM), PM_TOTAL (i.e., the number of PM

operations in the wagon’s history), accumulated

MILEAGE, and, as the target variable for the learning

algorithm, FAILURE, which indicates whether the

wagon has failed during the last month (even if it

was restored by the end of the month). Note that some

attributes do not necessarily cause a failure, but it is up

to the BN to determine whether they are statistically

dependent. It is also worth noting that the compo-

nents’ ages are not included in the model because in

practice it is not realistic to assume that they are

known. The ages are monitored within the simulation

and are often not obtained by the operator.

Because the focus of the metamodel is on failure

prediction given the system conditions’ vector (of

any wagon out of the fleet), the BN model uses the

wagon’s condition over a month to predict the

wagon’s state in the next month (classifying it either

as ‘‘failed’’ or ‘‘available’’). Modeling these sets of

input–output vectors determines whether or not a

given condition eventually leads to failure.

For compatibility with the BN form, continuous

data, such as the TIME_SINCE_PM and MILEAGE,

are discretized using a supervised discretization algor-

ithm (Ching et al. 1995). The supervised criterion used

by this algorithm aims at maximizing the mutual infor-

mation in the discretized variable about the target
FIGURE 5 Contract figure of the operator. (Color figure

available online.)
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variable, normalized by their joint entropy. During the

discretization, the number of symbols of each variable

is bounded (in this case up to 20). The scheduled PM

policy for the BN model was constructed from a

5-year policy. The main constraint with which the

TBNL was executed was a MinPRIG of 2% for the tar-

get variable, as well as for the rest of the attributes

(MaxPRIE value of 100%). The graph of the learned

BN following this learning process is shown in

Figure 6. Based on this network, the CPT were esti-

mated for the nodes conditioned on the parent nodes.

This resulted in a significantly smaller number of

probability estimates in comparison to the joint

probability table of all the variables (a detailed view

of a BN with CPT was provided by in Ben-Gal 2007).

The resulting BN included five features (in addition

to the target variable). The features that were selected

by the TBNL were the wagon status (referred to as

STATUS); the time since the last PM of the wagon

(referred to as TIME_SINCE_PM); the time elapsed

since the last restoration of the running gear of type

1 frame (referred to as Running_Gear_Uc_TSR) and

of the wheelsets of type 2 frame (referred to as

Wheelsets_Upp_TSR); and the wagon mileage

(referred to as Mileage). Recall that continuous vari-

ables were discretized using the algorithm of Ching

et al. (1995), and the number of distinct states may

vary accordingly. The PRIE of the failure expectancy

was slightly above 32%, which means that the selec-

ted attributes provided nearly a third of the potential

information about the failure prediction. All of the

rest of the features were not selected by the TBNL

and thus were not shown in the BN. If, for example,

the variables’ realizations in particular states were

Mileage¼ 88,020miles,Wheelsets_Upp_TSR¼ 15 years,

Running_Gear_Uc_TSR¼ 1 year, TIME_SINCE_PM¼
4.89 years (about 4years and 11months), and the

STATUS¼ 1 (namely, the wagon is currently available),

then the conditional probability of a failure would be

0.78, which would be classified as failed for a threshold

value of 0.5. Thus, in this case a PM task would be

performed on the observed wagon.

Note that the classification threshold in the above

example can be treated as a PM parameter and

modified by the user to trigger different PM policies,

as shown in Figure 7.

At this stageonecan furtherfine-tune theBNmodel to

obtain a better failure prediction performance by using,

for example, a five-fold cross validation test. Thus, the

data were divided into five subsets, where four-fifths

were used for training the BNmodel and the remaining

fifth was used as the test set in turn, as commonly done

with classification solutions (MaimonandRokach2005).

However, in this case we tested not only the classi-

fication accuracy but generated a receiver operating

characteristic (ROC) curve (see Figure 7) that draws

the recall versus the false-positive rate (FPR) of the

model (seeGreenandSwets 1966).The recall represents

the ratio of correctly predicted failureswhen suchoccur,

whereas the FPR is the ratio of falsely predicted failures

in cases where the system did not fail.

Having tested the TBNL resulting model as a

stand-alone element (module III), we integrated it

with the simulation. The integration was performed

FIGURE 6 Graph of the resulted BN model.

FIGURE 7 ROC curve of the learned BN and its CBM

consequences. (Color figure available online.)
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by plugging the CBM model into the simulation

module. Each month, the condition vector of every

single wagon was inputted to the CBM model, which

returned the corresponding failure probability of the

wagon for the following month. This probability was

then used for classifying whether the wagon should

be sent to a preventive maintenance operation

according to a predetermined PM policy. This

approach was found to yield the best performance

(in terms of profit) out of a batch of evaluated poli-

cies. Each policy was predetermined by a different

level of decision threshold, as described in module

IV. The best performance was achieved by a decision

threshold policy of 40% failure probability. Namely, if

the failure probability of a wagon was equal to 40% or

more, it was sent to PM (referred to as CBM-tbnl-

Thresh 40 policy). In this case study, all of the compo-

nents in a wagon underwent PM upon PM operation.

A performance bench mark of the resulted CBM pol-

icy was evaluated by comparing all of the decision

threshold policies with an upper bound result and with

a lower bound result of the profit. The upper bound

was obtained by simulating a scenario in which failures

are perfectly predicted and the corresponding PMs are

undertaken just beforehand. This can be artificially

obtained by exploiting the technical details of the simu-

lation; that is, accessing the stack of future events.

There are actually two lower bounds of the PM

policy or, more precisely, the lower bound is

obtained by the higher profit out of two extreme

PM policies. Recall that in Figure 2, one extreme pol-

icy is to seldom perform PMs (denoted in Figure 8 as

‘‘No PM’’), where as the second extreme policy is to

perform PMs every time the system is inspected

(denoted in Figure 8 as ‘‘Too often PM’’). The system

availability for all the above considered policies is

presented in Figure 8.

Note the slight difference between minimizing the

system downtime vs. minimizing the LCC, as shown in

Figure 2. The profit is obtained by the simulation

according to the contract detailed in Figure 5, while

the rest of the cost contributorsof the LCC, as formulated

in Eq. [1], are subtracted (the corrective and preventive

maintenance elements). This yields an objective func-

tion that can be positive or negative, while the goal is

to maximize it, as can be seen in Figure 9.

DISCUSSION

In this section we discuss the architectural choices

we made in the proposed solution. In order to over-

come previously mentioned difficulties in perform-

ing RAM optimization of real complex systems, we

combine two types of modeling tools in the pro-

posed methodology: MCS and the targeted BN. Each

of these tools has its pros and cons, leading to the

conclusion to use each tool for a different purpose.

The MCS is used to create the most accurate and

reliable model of the real-life system, expressing the

existing couplings and complex relations among dif-

ferent system components, as well as key perfor-

mance indicators. Apart from the ability to collect all

of the operational attributes that are required for the

prognostics, this type of modeling tool serves as an

experimental lab, enabling analysis of how different

settings might influence the system. These types of

experiments would be very risky and difficult, some-

times impossible, if performed on the actual system.

The targeted BN model, built by the TBNL algor-

ithm based on operational data, is a surrogate model

in the suggested framework; hence, it can be less

accurate in assessing the behavior of the entire sys-

tem, but it is a more efficient and descriptive model-

ing tool and more accurate in predicting the failures

using the selected variables (such as MILEAGE,
FIGURE 8 Wagon’s availability across various PM manage-

ment policies.

FIGURE 9 Operator profit across various PM management

policies.
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TIME_SINCE_PM, etc.) as descriptors. The TBNL

algorithm also takes into account the variables’

complex interactions and provides an interpretable

graphical representation, making the CBM model

accessible for experts’ inspection and validation.

The combination of the MCS and the TBNL enables

exploiting the advantages of each of these models

and to obtain a robust framework for a CBM appli-

cation. On the one hand, the TBNL is efficient in pre-

dicting the failures, given the conditions vector of the

wagon; thus, it is used mainly as a surrogate CBM

prognosis model in this framework. On the other

hand, the MCS is accurate in assessing the complex

system behavior and provides the necessary frame-

work for the examination of various key performance

indicators under different operational policies.

The tuning is performed in module III, in which the

targeted BN model is tuned to provide a good predic-

tion performance, by using cross-validation methods

with the provided operational data. This module,

which is performed outside of the simulation, is com-

putationally cheaper than using the full simulation

scheme, and it is used as a unit test for the prognosis

model. Module III is used for selecting the appropriate

descriptors, and tuning the parameters of the prog-

nosis model for the best possible performance.

In module IV, the prognosis model is plugged into

the MCS to examine its overall influence on the sys-

tem and to find the most suitable CBM-based oper-

ational policy that would provide the desired results.

The resulting BN clearly reflects the efficiency of

the TBNL for such purposes. Given a constraint of

a minimum 2% of information gain, with respect to

each variable, the network becomes very simple

and compact. This constraint of 2% minPRIG was

set after some parameter exploration, where it was

mainly set in order to avoid noise. Although the

resulted BN is very compact and exploits slightly

over 32% of information regarding the target vari-

able, it suffices to best predict failures under the

specified constraints. The advantage of the network’s

compactness is reflected by the cheap computational

complexity while using it for inference. The com-

plexity of the problem, as defined in Eq. [2], is 7M

bits, whereas the complexity of the resulted BN is

18K bits (99.7% less). It can be also indicated that

the selected features were a mixture of physical

components and some other expected attributes. It

would be extremely surprising if an expert could

point out this exact mixture.

The resulting BN was benchmarked against two

popular BN models: the Tree Augmented Network

(TAN) and naı̈ve Bayes algorithms. The accuracies of

each type of BNmodels were 96, 91, and 90%, respect-

ively. However, the ROC curve shown in Figure 7

further emphasizes the contribution of using the TBNL

as a decision support model for PMmanagement. Each

point on the ROC curve indicates a tradeoff between

the recall (a.k.a. sensitivity), which is the rate of

detected failures out of those failures that did occur ver-

sus the FPR, which are the cases in which failures were

falsely anticipated. In Figure 7 it is illustrated that by

increasing the recall (i.e., the true-positive rate) while

maintaining limited FPR pushes the CBM model to

the optimal PM policy. This stems from the fact that

there are two extreme policies that provide a lower

bound on the system’s performance. One extreme

PM policy is to maintain very unsatisfactory or not at

all. This could be regarded as if the CBM model under-

estimated failures, resulting in an increasing failure rate.

The second extreme PM policy is to over maintain. This

could be regarded as if the CBM model overestimated

failures, resulting in a highly reliable, yet unavailable

and expensive system. The more accurate the targeted

BN model is, the better the tradeoff achieved between

recall and FPR, pursuing the optimal PM policy.

The optimal PM policy is reachedwhen the profit is

maximized. We pursued this upper bound with the

policy that attempts to maximize the availability. More

precisely, the upper boundwas estimated by aborting

anticipated failures as closer as to their failure time.

Hypothetically, there might be situations in which

the profit could be higher, because the components

that put the profit together, namely, the availability,

failures, and PM actions, are all interdependent and

are hard to break down. However, the upper bound

was obtained via the simulation model, simply by

aborting each failure ad hoc and maintaining the sys-

tem instead. In between the upper bound and the two

lower bounds we ran two scheduled PMs, one every

10 years (referred to as the 10-year policy) and one

every 5 years (referred to as the 5-year policy). The

TBNL follows the 5-year policy but exploits more

information and manages better future analysis.

Therefore, although its overall availability is not as

good as that of the original 5-year policy, the profit
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related to it is boosted. Figure 10 shows the relative

profit cumulated throughout 20 years of service time.

The TBNL fulfills the contract in a more effective

manner with respect to the profit, mainly because it

spreads the PM actions slightly more than the 5-year

policy does. The 5-year policy suffers from profit

drops, because the penalty of maintaining a large

portion of the fleet altogether is high. As a result,

the TBNL improves the profit by 18% compared to

the 5-year policy, where the 100% line represents

the profit that could have been gained by the upper

bound policy. Note that the 10-year policy is con-

siderably minor in profit and the lower bound of

no PM represents a loss of 40%.

CONCLUSIONS AND FUTURE WORK

This article proposes a CBM framework based on

an MCS model of the system and on a predictive ana-

lytics engine. The latter is a targeted BN that learns

from data generated by the simulation, thus exploit-

ing possible contingencies that are essential for

determining the PM policy. On the other hand, the

targeted BN model is used solely for the specific pur-

pose of failure prediction and hence it is used as a

meta model in the framework rather the model itself.

As a result, the learned BN model is more effective

when considering the failure causes.

Although the proposed architecture does not

necessarily provide an optimal PM policy, this work

provides a proof-of-concept of a tool that enables

an effective design of a CBM policy. The added value

of the proposed architecture is twofold: (1) because

the CBM model is learned from simulation data of a

modeled system, it enables exploring PM policies

and scenarios that might not have been considered

by analyzing real operational data; (2) the TBNL

learns a predictive model from the simulation data

that efficiently focuses on failure prediction

conditioned on the system state, rather than learning

a model of the entire operational and environmental

system, and is used specifically as a CBMmeta model.

We anticipate two possible directions for future

work. One direction is using the approach’s concept

in a dynamic fashion, so that the BN model is learned

or updated in a timely manner. Another direction is

an exploration of more informative features that

would potentially yield more information and thus

improve the prediction efficiency.
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