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Abstract—We consider a foraging by a group of agents acting 

in heterogeneous environment, and suggest a new model of 
cooperative foraging, which implements biological signaling. In 
the model, the individual foraging follows Brownian walks and 
the Lévy flights with the varying parameters with respect to the 
observed states of the environment, and communication between 
the agents and their aggregation is defined on the basis of the Sir 
Philip Sidney game, which models the honest communication 
between animals. 

In our simulation, we find that a group of Brownian foragers 
with signaling behaves similarly to the group of Lévy flyers 
without signaling, and the resulting cooperative foraging 
outperforms the known models of foraging without signaling. We 
argue that it provides a simple yet competitive description of the 
observed behavior of the foraging animals. 

  
Index Terms—Search and foraging, cooperative behavior, 

autonomous mobile agents, probabilistic local search. 

I. INTRODUCTION 
The studies of search and foraging activity of the animals 

[2], [33], [34], [38] and artificial mobile agents [20], [22], [35] 
address two general problems. The first problem deals with the 
models of agents’ foraging activity and considers the 
processes, which govern the motion of the agents, and the 
second problem addresses the formation of the groups of the 
agents and the models of swarm dynamics. A working 
assumption in these studies is that natural foragers act 
optimally that is “in ways close to (i.e. statistically 
indistinguishable from) those that maximize their expected 
fitness, subject to any functional constraints” [26]. 

The modeling of aggregation of the mobile agents and 
formation of the animals’ groups, known as swarms, flocks, 
colonies, herds or schools, was initiated the pioneering paper 
by Reynolds [27], who suggested the basic rules of the 
simulated flock. Later these rules were detailed and extended in 
different directions [12], [16], in particular, the methods of 
aggregation and dynamics of the foraging agents also known as 
social foraging were suggested [16], [40] and the activity of the 
swarms of Lévy flyers was considered [1], [28]. In the simplest 
case, the group is considered as a set of individual particles 
moving according to the certain stochastic process, and it was 
demonstrated [9], [23] that the Lévy flyers cover greater 
territory than the Brownian walkers do. 

After the publication of the seminal paper on wondering 
albatrosses [36] and further arguing the optimality of search 

governed by the Lévy flight processes [37], it was widely 
accepted [10], [15] that while foraging the animals or at least 
some species “evolved to exploit Lévy flights” [39]. However, 
at the same time, it was also reported that the motion patterns 
like the Lévy flights can be explained by the influence of the 
environmental states [13], [14], [17] or by intermittent 
strategies, which include Brownian walks and ballistic motion 
[3], [4], [5]. 

In this report, we suggest a different approach of 
cooperative foraging, which does not require specific sensing 
and intellectual abilities of the foragers. In the model, we 
assume that the individual foraging follows Brownian walks 
and the Lévy flights with varying parameters [18], [25], [32] 
governed by the environmental states or by the target’s location 
probabilities. For definition of communication between the 
agents and their aggregation for cooperative foraging, we adopt 
the Sir Philip Sidney game [19], [31], which is widely accepted 
as a model of honest communication between the animals 
questing for help from the relatives [6], [7], [8]. In the cases of 
foraging in homogeneous environment and of individual 
foraging, the suggested model is reduced to the corresponding 
models of optimal foraging, in particular, to the widely 
accepted models of foraging in patchy environment based on 
the marginal value theorem [11], [24]. A detailed review of 
such models and general framework of optimal foraging theory 
are presented by Stephens & Krebs [33]. 

We demonstrate that the group of environmentally tuned 
Brownian foragers which include also direct signaling behaves 
similarly to the group of Lévy flyers without signaling. 

II. INDIVIDUAL FORAGING BY THE LÉVY FLIGHTS WITH 
VARYING PARAMETERS 

The Lévy flight in two dimensions is defined as follows 
[37], [38]. Assume that at time � the forager is in the point 
���� � ������� ������ and denote by ���� � � the length of 
the step, which the forager will do from its current location 
���� to the next location ��� � ��, and by ����, � � ���� �
��, the angle between the current heading of the forager and 
the direction to the point ��� � ��. In the ordinary Lévy flight, 
it is assumed that at each time � the value ���� is drawn from 
the Pareto distribution that is ���� � ������� � ������, or, 
more precisely [17], ���� � ��� � ���������� ���, ���� � � �
∞, where ���� � � is a minimal step’s length, and � � � � �, 
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where � � � � � is a stability or Lévy index; and the angle 
���� is drawn from the uniform distribution on the interval 
��� ���. For real foragers, both natural and artificial, the step 
length � has also a finite upper bound; so it is assumed that 
���� � � � ����, where the length ���� � � is specified 
with respect to the abilities of the considered forager. In the 
paper on wandering albatrosses [36] and further studies of 
Lévy flights search [15], [37] it is assumed that the parameter � 
is constant and the angles ���� are arbitrary. That corresponds 
to the nondestructive forging, in which the forager does not 
destroy the target (or the destroyed target is renewing at the 
same location like grass, vegetables and fruits) and revisits the 
previously visited locations [37], [38] and does not consider the 
environmental states [3], [4], [5].  

In our model, in contrast, we consider the Lévy flights with 
varying parameter � and assume that both � and the angles 
���� depend on the environmental states [18], [25], [32]. It 
implies that the forager is able to perceive the state of the 
environment in its location ���� and the distant environmental 
states, and allows implementing the destructive search, in 
which the forager is considered as a predator that eats the 
detected target and avoids revisiting the already visited 
locations [37], [38]. In the terms of the target’s location 
probabilities it means that the forger has errorless detection 
abilities and zeroes the target’s location probabilities in the 
visited locations. If the forager implements the nondestructive 
search in homogeneous environment, then the suggested model 
is directly reduced to the ordinary Lévy flights search [10], 
[15], [26], [37]. 

The foraging process according to the suggested model is 
outlined as follows. 

1. Being in the point ���� at time �, the forager observes 
the state ���� � � of the environment and decides whether to 
continue foraging or not. In the case of destructive foraging, 
the forager zeroes the value ���� (“eats” the prey) but stores 
the original value ���� in its memory up to obtaining the 
parameter ���� (see the next line) and then forgets it. In the 
case of nondestructive foraging the value ���� is remained 
without changes and is used in the calculation of the parameter 
�����. If the foraging continues, the forager conducts the 
following actions. 

2. The forager defines the value of the parameter ���� 
inversely proportional to the value ����, e.g. ����� �
������, where ���� is a maximal value of the environmental 
state, which the forager is able to perceive and distinguish by 
its sensors. 

3. Using the value ����, the forager draws the length of the 
next step ����, ���� � ���� � ����, from the Pareto 
distribution �����������. In the suggested model, we assume 
that ���� � � and ���� is equivalent to the maximal distance, 
at which the forager is able to perceive environmental states 
e.g. by smelling or direct vision. 

4. To define the direction of the next step, the forager 
screens the environment around at the radius of the obtained 
step ���� and specifies the direction that is the ���� that 

corresponds to the maximal value of the environment at the 
distance ���� from the forager. 

5. Having both step length ���� and the angle ���� the 
forager flies to the next point ��� � �� and the process 
continues from line 1. 

The suggested procedure does not assume long-term 
internal memory of the forager and requires only simple 
calculations that can be processed by analog gates [21], [22], 
[29], [30]. Certainly, it ���� is constant and ���� is random, 
the presented procedure is reduced to ordinary Lévy flight, and 
if ���� is constant and ���� is random, then the procedure 
represents a basic nondestructive Brownian motion, in which 
the forager is allowed to revisit the already considered points. 

Notice that the suggested on-line procedure results in the 
trajectory, which has the same form as trajectories of foraging 
by patches based on the marginal value theorem [11], [24], 
which provides an off-line solution of the problem of foraging 
under general assumption that the forager acts as economical as 
possible. 

III. HONEST SIGNALING BETWEEN THE AGENTS AND ACTIVITY 
OF THE GROUP 

For aggregation of the foragers acting according to the 
suggested above procedure (or any other procedure specifying 
an individual foraging), we adopt the model of honest 
communication between the animals based on the discrete Sir 
Philip Sidney game [19], [31]. Originally, this is a one stage 
game between two related players, in which one player, the 
signaler, decides whether to send a costly request for a 
resource, which will increase the sender’s fitness, and the 
second player, the donor, decides whether to provide the 
resource to the sender, and so to decrease the own fitness, or 
not. If the signaler is needy for the resource, then its fitness 
without the resource is �� � ��, and if signaler is not needy for 
the resource, then its fitness without the resource is �� � ��. If 
the donor decides to provide the resource to the signaler, then 
its fitness becomes �� � ��. In addition, it is assumed that the 
signaler and the donor are related with relativeness value �; the 
cost of sending the signal is denoted by �. For all these values 
it is assumed that � � �� �� �� �� � � �. 

In our model, we implement the special case in which the 
signaler signals only when it is needy, and the donor donates 
only if the signal received. The Nash equilibrium in such a 
game is provided by the following inequalities [6]: � � � �
�� � � and � � � �⁄ � �, which we adopt for making 
decisions about signaling and donating. The variables 
appearing in the inequalities are interpreted as follows. During 
the search, the forager screens the environment around it and 
obtains the sum of the values ����� over all points �� such that 
the distance between �� and forager location � is less than or 
equal to a screening radius ������� . This sum is a quantity of 
prey around the search and it is interpreted as � that is a value 
of the signaler’s necessity for help; we assume that � is 
proportional to the ratio of the indicated sum to the value 
�������� , where ������  is the radius of the checked area. The 
value of non-necessity is � � � that is the signaler sends the 
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signal only in the case that it needs the help. Notice that for 
individual foraging the agent does not need to screen the 
environment and does this for signaling only. Thus, the 
signaling cost � is proportional to the screened area that is 
����������� ����⁄ , where ����  is a maximal screened area that 
is a volume of the domain. If the donor receives the signal and 
decides to help to the signaler, it loses the possibility to 
encounter the prey around itself. Then, the value � is calculated 
similar to the value � as a sum of the values ����� around the 
donors location �. Finally, the relativeness � between the 
signaler and the donor is specified proportionally to distance 
between the signaler and the donor that is �� |� � �| ����⁄ , 
where ���� is a maximal signaling distance between the 
agents. In real situations, we assume that ���� � ���� that is 
the maximal distance, at which the foragers is able to sense the 
environmental state; also it is assumed that the signals are sent 
for the agents, which are close enough but not too close to the 
signaler. The scheme, which illustrates the introduced 
parameters, is shown in Fig. 1. 

 

 
Fig. 1. Parameters of the honest signaling in the probabilistic search. 

If the donor receives the signal and decides to leave its 
current location and to donate to the signaler, it walks or flies 
to the signaler’s location, and then acts as a signaler that is it 
screens the environment for prey and signals to donors if need. 

IV. SIMULATION RESULTS 
The actions of the suggested algorithm of search with 

signaling were simulated for different distributions of prey and 
different parameters of signaling. The results of these 
simulations demonstrate that, in spite of different quantities of 
eaten prey and trajectories length, the relation between the eat 
rates in considered search processes is preserved. Below, we 
present the results of simulated individual and collective search 
by ten agents. The domain is of the size � � 100 � 100 with 
impermeable bounds. Similar to previous examples, parameters 
of signaling and sensing are specified as follows: minimal and 
maximal distances are ���� � 1 and ���� � 12�5, 
respectively, the length of the step is � � �, the screening and 
checking radiuses are ������� � 1 and ������ � 5, and minimal 

and maximal signaling distances are ���� � 10 and ���� �
25, respectively The trajectories of the agents in different 
search processes are illustrated in Fig. 2 (individual search) and 
Fig. 3 (collective search). 

     
 

      
 

     
Fig. 2. Trajectories of the individual search according to different processes 
with constant and with varying parameters. 

It is seen that single agents that implement varying 
parameters, tend to stay in the regions of higher prey 
probabilities, however, if the agent has not arrived a prey rich 
region it continues searching with constant parameters. In the 
case of collective search, the agents mostly follow the basic 
processes with varying parameters, and tend to arrive to 
regions high probabilities due to the signals received from the 
neighboring agents. 

Numerical results of simulations for three different prey 
distributions are summarized in TABLE I. Each trial included 
1000 sessions, and for each session the prey distribution was 
generated randomly. In the Table, CP stands for constant 
parameters, VP – for varying parameters, NS means the search 
without signaling and S – the search with signaling. In the 
table, maximal values for each distribution are denoted by 
bold. 
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Fig. 3. Trajectories of the collective search by ten agents acting according to 
different processes with varying parameters and without and with signaling. 

TABLE I.  QUANTITIES OF EATEN PREY AND EAT RATES 

 
Brown walk  Lévy flight Lévy walk 

Eaten
prey 

Eat 
rate 

Eaten 
prey 

Eat 
rate 

Eaten 
prey 

Eat 
rate 

The prey distributed over a fourth part of the domain 

NS/CP 107.00 0.037 120.72 0.019 116.16 0.047 

S/CP 160.98 0.055 187.84 0.026 127.58 0.048
NS/VP ���. �� �. ��� 398.13 �. ��� ���. �� �. ���
S/VP 253.66 0.086 ���. �� 0.057 310.36 0.117

The prey distributed over a half of the points in the domain 

NS/CP 226.71 0.077 257.47 0.041 256.35 0.104
S/CP 320.17 0.109 361.82 0.048 247.42 0.091

NS/VP ���. �� �. ��� ���. �� �. ��� ���. �� �. ���
S/VP 567.29 0.192 800.79 0.102 510.45 0.191

The prey distributed over all points of the domain 

NS/CP 341.34 0.116 393.07 0.063 372.71 0.151
S/CP 431.01 0.146 482.56 0.062 330.07 0.120

NS/VP ���. �� �. ��� ���. �� �. ��� ���. �� �. ���
S/VP 730.20 0.246 887.05 0.112 600.29 0.224

As seen by simulations, best results measured by both total 
eaten prey and by eat rate were reached for the agents moving 
according to the processes with varying parameters (agents 
with sensing abilities). If signaling is added, than the search 
becomes less effective, but still strongly outperforms the 
foraging with constant parameters without signaling. The only 
exception is the foraging by Lévy flight over the domain, 
which is large empty regions, where sensing and bio-signaling 
results in slightly larger quantity of eaten prey; however, 
statistically this difference is insignificant. Signaling leads to 
larger quantities of eaten prey when the agents have no sensing 
abilities. If most of the regions do not contain prey, then the 
signaling results in greater eat rates, but if the domain is rich 
enough with prey, then the greater eat rate for the Lévy walk 
foraging is provided by the motion with constant parameters 
and with signaling. 

In addition, notice that in some cases it was observed that 
the Brownian foraging outperforms the Lévy walk foraging for 
both total eaten prey and the eat rates. Nevertheless, in the 
Brownian foraging the search often results in small or even 
zero eaten prey, while in the Lévy walk foraging such results 
are rather rare. 

V. CONCLUSION 
In the report, we suggested a new model of cooperative 

foraging with varying parameters and honest signaling based 
on the Sir Philip Sidney game, which is widely known as a 
model of honest communication between the animals. 

An application of the suggested model to the group of the 
simplest Brownian forgers demonstrates that such agents act 
similarly or even equivalent to the Lévy flight foragers, which 
is widely accepted as an adequate model of natural foragers.  

The simulations’ results show that, informally speaking, the 
signaling can disturb the effective activity of the smart enough 
agents (Lévy flyers or walkers with sensing), but can increase 
the effectiveness of the activity of less smart agents (Brownian 
walkers). However, the correct proportion of the agent’s 
smartness and the level of signaling are still not clear enough. 

The obtained results clarify the individual behavior of the 
animals acting in groups and the role of communication, and 
can form a basis for biomimetic navigation of artificial mobile 
agents. 
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