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ABSTRACT
Motivation: We propose a new class of variable-order Bayesian
network (VOBN) models for the identification of transcription factor
binding sites (TFBSs). The proposed models generalize the widely
used position weight matrix (PWM) models, Markov models and
Bayesian network models. In contrast to these models, where for each
position a fixed subset of the remaining positions is used to model
dependencies, in VOBN models, these subsets may vary based on
the specific nucleotides observed, which are called the context. This
flexibility turns out to be of advantage for the classification and analysis
of TFBSs, as statistical dependencies between nucleotides in different
TFBS positions (not necessarily adjacent) may be taken into account
efficiently—in a position-specific and context-specific manner.
Results: We apply the VOBN model to a set of 238 experimentally veri-
fied sigma-70 binding sites in Escherichia coli. We find that the VOBN
model can distinguish these 238 sites from a set of 472 intergenic ‘non-
promoter’ sequences with a higher accuracy than fixed-order Markov
models or Bayesian trees. We use a replicated stratified-holdout exper-
iment having a fixed true-negative rate of 99.9%. We find that for
a foreground inhomogeneous VOBN model of order 1 and a back-
ground homogeneous variable-order Markov (VOM) model of order 5,
the obtained mean true-positive (TP) rate is 47.56%. In comparison,
the best TP rate for the conventional models is 44.39%, obtained from
a foreground PWM model and a background 2nd-order Markov model.
As the standard deviation of the estimated TP rate is �0.01%, this
improvement is highly significant.
Availability: All datasets are available upon request from the authors.
A web server for utilizing the VOBN and VOM models is available at
http://www.eng.tau.ac.il/∼bengal/
Contact: bengal@eng.tau.ac.il

1 INTRODUCTION
One problem in the analysis of DNA sequences is the identifica-
tion of transcription factor binding sites (TFBSs). The importance
of this problem stems from the fact that the combinatorial presence
and absence of TFBSs is—to a large degree—responsible for the
complexity of gene regulation in virtually every living organism
(Wingender et al., 2000, 2001; Pickert et al., 1998; Kel-Margoulis
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et al., 2003). The interest in the analysis of TFBSs dramatically
grown with the arrival of microarray gene expression data which
heralds an important advance in the identification of co-expressed
genes (Fickett and Hatzigeorgiou, 1997; Chu et al., 1998; Spellman
et al., 1998; Thijs et al., 2001; Ohler and Niemann, 2001; Hanisch
et al., 2002). While experimental techniques such as footprinting
experiments or chromatin immunoprecipitation experiments allow
the identification of TFBSs, these experiments are expensive and
time consuming, and require the availability of a well-equipped lab
together with professionally trained personnel. Today, the avail-
ability of computer hardware installed with cheap or often free
bioinformatics software has enabled bench scientists in almost every
research lab to run programs such as MatchTM (Kel et al., 2003) or
HMMgene and HMMPro (e.g. Baldi and Brunak, 2001) to predict the
location of TFBSs. While bioinformatics identifications are probabil-
istic in nature and cannot achieve the accuracy of ‘wet’ experimental
data, their value lies in the low cost and high speed with which these
identifications can be obtained. To expand on the above-mentioned
example, MatchTM, a publicly available and free-of-charge software,
can scan several megabytes of DNA for the presence of putative
TFBSs within minutes. Hence, TFBS identification programs are
extremely popular, despite their limited accuracy.

Most TFBS classification algorithms compute some numerical
score reflecting the degree to which a given sequence site matches
a given motif. In many TFBS classification algorithms, the underly-
ing scoring model is either a fixed-order Markov model or simply a
position weight matrix (PWM) model with no context dependencies
at all (e.g. MatchTM). The latter can be regarded as a fixed-order
Markov model of order 0. In the following, we note the main differ-
ences among the proposed variable-order Bayesian network (VOBN)
model, the PWM model, the fixed-order Markov model and the
Bayesian network (BN) model.

Presumably, the most common context-independent model is the
PWM (or the position specific score matrix—PSSM). The PWM
model has been successfully applied not only to the problem of TFBS
classification but also to other diverse problems in DNA and pro-
tein sequence analysis (e.g. Salzberg, 1997). Although other scoring
models have been able to improve the accuracy of the PWM model
in certain cases, they are not as prevalent as the simple PWM model
in the classification of TFBSs (Fickett and Hatzigeorgiou, 1997).

© The Author 2005. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oupjournals.org 2657

http://www.eng.tau.ac.il/


I.Ben-Gal et al.

Hence, many TFBS classification algorithms that are developed
today still rely on the PWM model that obtain a relatively good
performance, as will be seen below.

The basic assumption of the PWM model is that the basepairs at
different positions are statistically independent; hence, the joint prob-
ability of finding a multiple-position site factorizes into the product
of single-position probabilities (e.g. Djordjevic et al., 2003; Ewens
and Grant, 2001; Stormo and Fields, 1998). As indicated in Barash
et al. (2003) it is an open question whether the ‘strong’ independence
assumption of the PWM model is reasonable in view of recent res-
ults that point to the dependence between positions (e.g. Benos et al.,
2001; Bulyk et al., 2002). This dependence is used by fixed-order
models, such as Markov models, hidden Markov models (HMMs)
and interpolated Markov models to detect motifs in upstream regions
of co-regulated genes (Liu et al., 1995; Ohler et al., 1999; Hughes
et al., 2000; Thijs et al., 2001; Ohler and Niemann, 2001; Liu et al.,
2001; Salzberg et al., 1998, 1999). Although it is well known (and
intuitively clear) that the PWM assumption is violated in almost every
TFBS studied to date, this violation, nevertheless, does not prevent
the PWM model from being a leading model in the classification
of putative TFBSs. In fact, the PWM model, which is based on the
(unsupported) independence assumption, is often found to outper-
form fixed-order Markov models of higher order that are based on
the (reasonable and supported) dependence assumption.

In this paper, we show that the above-mentioned contradiction is
due to the unbalanced comparison between the PWM model and a
high-order Markov model with respect to their number of paramet-
ers. Although the PWM independence assumption is unsound and
results in an under-fitted model with a smaller-than-necessary num-
ber of parameters, it often outperforms fixed-order Markov models
that tend to be over-fitted due to their large dimensionality, given
the limited amount of training data. The solution presented here is
based on the development of a variable-order model that, in terms
of its order, stands in between these two types of models. We show
that the variable-order models do not ignore the statistical depend-
encies between basepairs, yet, they take into account only those
dependencies that are found to be statistically significant.

As an extension to fixed-order models, we suggest using the
inhomogeneous VOBN model. The VOBN model is a generalization
of the variable-order Markov (VOM) model, which was originally
proposed for data compression (Rissanen, 1983) and later applied
in various forms to prediction and identification (Weinberger et al.,
1995), statistical process control for finite-state processes (Ben-Gal
et al., 2003), text clustering (Vert, 2001), modelling of genetic texts,
including TFBSs and protein coding regions (Ron et al., 1996; Buhl-
mann and Wyner, 1999; Orlov and Potapov, 2000; Orlov et al., 2002;
Bilu et al., 2002, http://www.cs.huji.ac.il/∼johnblue/papers/; Zhao
et al., 2004) and modelling of protein families (Bejerano and Yona,
2001). In contrast to fixed-order Markov models, where the order is
the same for all positions and for all contexts, in VOM and VOBN
models, the order may vary for each position based on its context.
There are three main differences between the above VOM models
and the proposed VOBN model. The first are variations in the con-
struction of the models as seen in section 2. The second is the use
of inhomogeneous (position-dependent) VOBN models versus the
homogeneous VOM model—a crucial property for the classification
of Escherchia coli TFBSs. The third is the VOBN generalization
to contexts from non-adjacent positions in a manner similar to BN
models, which are discussed next.

inhomogeneous Markov model

fixed order
position dependent
adjacent dependencies

inhomogeneous VOM model

variable order
position dependent
adjacent dependencies

inhomogeneous VOBN model

variable order
position dependent
non-adjacent dependencies

Bayesian network model

fixed order
position dependent
non-adjacent dependencies

homogeneous Markov model

fixed order
not position dependent
adjacent dependencies

homogeneous VOM model

variable order
not position dependent
adjacent dependencies

Fig. 1. The generalization hierarchy of the variable-order models. The gen-
eralized variable-order Bayesian network (VOBN) model can be interpreted
as a generalization of the VOM model as well as of the Bayesian network
(BN) model.

The BN model is a graphical representation of probabilistic
dependence knowledge (Pearl, 1988) that was applied to the ana-
lysis of gene expression data (Friedman et al., 2000), genetic linkage
analysis (Heckerman et al., 1995) and the identification of TFBSs
and other functional DNA regions (Cai et al., 2000; Barash et al.,
2003; Castelo and Guigo, 2004). In the BN graph an edge is direc-
ted from an influencing position (parent) into an influenced position
(child). In contrast to fixed-order Markov models, in BN models
it is not assumed that dependencies are necessarily between adja-
cent positions. The difference between BN models and the proposed
VOBN is that, in general, the order of the model in BNs depends
only on the size of the parent’s subset, while in VOBN models it also
depends on the specific nucleotides observed in each parent sub-
set. As a result, the number of parameters that need to be estimated
from the data is substantially smaller, yielding a smaller chance for
over-fitting of the model to the training dataset. A class of models
which are closely related to VOBN models is the context-specific
Bayesian networks (CSBNs) (e.g. Boutilier et al., 1996; Friedman
and Goldszmidt, 1996). The main differences between CSBNs and
the proposed VOBN models are in the method of encoding and con-
structing the context-specific dependencies (e.g. complete versus
non-complete trees), parameter estimation and refinement methods,
and the manner in which the context-dependencies are integrated in
the model-learning phase (e.g. starting with an over-fitted model), as
described below.

The proposed VOBN model is a true generalization (rather than
a replacement) of PWM, fixed-order Markov and BN models in the
sense that these models are special cases of the VOBN model. This
means that in cases where the statistical dependencies are insigni-
ficant, the VOBN model ‘automatically’ degenerates to the PWM
model. If dependencies exist only amongst adjacent positions and
the ideal memory length for a position is identical for all basepairs,
the VOBN generalizes to a fixed-order Markov model. Similarly,
if the ideal memory length for a given position is identical for all
basepairs and depends only on the number of parents, the VOBN
generalizes to a BN model (Fig. 1).
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In the remainder of the paper we study the degree to which the
VOBN yields useful generalizations of the PWM and the fixed-order
Markov models in the context of TFBS classification.

2 METHODS
In this section we introduce the homogeneous and inhomogeneous models,
which we will apply, respectively, for modelling the DNA background not
containing TFBSs and for the TFBSs. We start with a homogeneous Markov
model of order zero, continue with homogeneous fixed-order Markov models
and end with homogeneous VOM models as generalizations of fixed-order
Markov models. We then introduce the VOM tree and outline the VOM
construction algorithm. Subsequently, we discuss different inhomogeneous
models, starting with the PWM and inhomogeneous VOM models and ending
with the proposed VOBN models. Finally, we introduce the classification rule
used, the stratified-holdout procedure used and the performance measure by
which we quantify the classification accuracy.

2.1 Homogeneous models
In the following, we adopt some definitions and notations from Buhlmann
and Wyner (1999), Ohler et al. (1999), and Ben-Gal et al. (2003). Let
xn

l = xl , xl+1, . . . , xn−1, xn define a sequence with n − l + 1 symbols over
a finite alphabet X of cardinality|X| = d. In case of the TFBS classification
problem, d = 4, X = {A, C, G, T } and xj is the nucleotide at position j , with
1≤ j ≤ N in the DNA sequence xN

1 of length N . The likelihood of sequence
xN

1 is computed by the multiplication chain rule (e.g. Ohler et al., 1999):

P
(
xN

1

) ≡
N∏

j=1

P
(
Xj = xj

∣∣∣Xj−1
1 = x

j−1
1

)
, (1)

where P(·) stands for probability, Xj is the random variable representing the

nucleotide at position j with xj as its realization, X
j−1
1 is a sequence of ran-

dom variables for the context with x
j−1
1 as the actually observed context of the

symbol xj containing its preceding j −1 symbols and x0
1 is the empty string.

Traditional models often consider only a small part of the available context
(or no context) in order to minimize the number of parameters to be estim-
ated and to avoid over-fitting the training dataset. Many papers suggest a
homogeneous zeroth-order Markov model (called also a Bernoulli model) as
a simple background model (e.g. Liu et al., 1995; Hughes et al., 2000). The
likelihood for this model, which we abbreviate by Markov(0), is computed
by multiplying the probabilities of the symbols, i.e.

P
(
xN

1

) =
N∏

j=1

P
(
Xj = xj

)
, (2)

because this model considers no context at all. Using a zeroth-order homo-
geneous model implies that P(·) is identical for all j . Other studies indicate
that such a model poorly reflects the complex structure of genome sequences
(Thijs et al., 2001; Liu et al., 2001) and suggest higher-order models.
Accordingly, in Lth-order Markov models, denoted here by Markov(L), the
likelihood of the sequence depends on the sequence of predecessors of a
fixed length L < N , i.e.,

P
(
xN

1

) =
N∏

j=1

P
(
Xj = xj

∣∣∣Xj−1
j−L = x

j−1
j−L

)
, (3)

where x
j−1
j−L = x

j−1
1 if j − L ≤ 0; i.e., the memory length cannot exceed the

number of the preceding symbols and the subscript j − L ≡ max(j − L, 1).
As indicated in Buhlmann and Wyner (1999) and Orlov et al. (2002), a

major problem of fixed-order Markov models is that the number of model
parameters grows exponentially with the model order L, resulting in a very
sharp and discontinuous transition from under-fitted models (that do not cap-
ture enough statistical dependencies in the data) to over-fitted models (that
contain too many parameters). For example, the number of free parameters
in fixed-order Markov models with d = 4 and L = 2, 3, 4, and 5 is equal to
63, 255, 1023 and 4095 respectively.

Some approaches to solving the above-mentioned problems look for the
optimal L, which maximizes the likelihood of the training dataset, or apply
the interpolation of different model orders, as suggested in Salzberg et al.
(1998, 1999) and Ohler et al. (1999). The difficulty with these approaches is
that the model order is averaged or weighted over different subsequences in
the training set, and thus might be either too short or too long for different
symbols in the set. Symbols along the sequence might depend on contexts
that are shorter than an averaged L, even if it has a relatively small value. We
suggest allowing a variable model order Lj that depends on the preceding
symbols to position j ; thus, the order of the Markov model becomes a function
of the context at each position,

P
(
xN

1

) =
N∏

j=1

P
(
Xj = xj

∣∣∣Xj−1
j−Lj

= x
j−1
j−Lj

)
, (4)

where the variable-order Lj = L(xj−1, xj−2, . . .) is itself a function of the
preceding symbols. An optimal value for Lj defines the shortest context
for which the transition probability of symbol xj is practically equal to the
transition probability of that symbol given the context of maximal order L, i.e.,

Lj = min
{
L̃

∣∣∣P
(
Xj = xj

∣∣∣Xj−1
j−L̃

= x
j−1
j−L̃

)

= P
(
Xj = xj

∣∣∣Xj−1
j−L = x

j−1
j−L

)}
. (5)

Note from Equation (3) that for the fixed-order Markov chain
L(xj−1, xj−2, . . .) = L for all xj , whereas, for the suggested variable-order
Markov model, Lj ≤ L, implying that some transition probabilities of the
Markov chains can be lumped together (e.g. Buhlmann and Wyner, 1999;
Orlov and Potapov, 2000).

2.2 The context tree representation
Variable-order Markov models, including fixed-order Markov models, can be
represented by a tree, which Rissanen (1983) calls context tree (called also
VOM tree in this paper).

For illustration purposes, let us start with simple examples of homogen-
eous VOM trees that will then be defined more formally. The trees were
constructed from the intergenic background dataset described in Section 3.
Figure 2a represents a (degenerated) tree that consists of a single root that
is equivalent to a Markov(0) model. The root contains four probabilities
for nucleotides A, C, G, and T , respectively. In this case the model has no
memory, and the likelihood is computed by multiplying the probabilities of
the nucleotides, as indicated in Equation (2). Figure 2b represents a more
developed tree that consists of a single root with four leaves. Each node in the
tree contains four parameters—the conditional probabilities of nucleotides—
ordered as P(A|xj−1), P(C|xj−1), P(G|xj−1), P(T |xj−1), where xj−1 is
the context corresponding to each of the nodes. The tree is equivalent to a
first-order Markov model. The tree root contains the (unconditional) nuc-
leotide probabilities, while the leaves contain 16 conditional probabilities
for each nucleotide given a preceding nucleotide. The likelihood is com-
puted by multiplying the transition probabilities of the symbols given the
previous symbol, as shown in Equation (3) with L = 1. For example,
P(TCCGGA) = P(T ) × P(C|T ) × P(C|C) × P(G|C) × P(G|G) ×
P(A|G) = 0.26 × 0.21 × 0.24 × 0.27 × 0.25 × 0.23. In a similar man-
ner, a tree that represents a fixed-order Markov(L) model contains dL leaves.
Figure 2c represents a VOM tree that consists of 14 nodes. In this case, the
depth of the tree is no longer fixed. All branches of the original tree (not
presented), which corresponds to a 5th-order Markov model, were pruned
by the VOM construction algorithm (see below). Note that the tree branches
from the root on top down to the leaves represent the reversed contexts.
Thus, an extension of a branch by adding a node represents the extension
of a context by an earlier observed symbol (Buhlmann and Wyner, 1999;
Ben-Gal et al., 2003). For example, the first level node for context A indic-
ates a 1st-order Markov model, which is used instead of the longer contexts
for all nucleotides except for context C. The single node at level 3 represents
a 3rd-order Markov model that consists of the context GAT. Although the
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(a)

(b)

(c)

A C G T
0.26 0.24 0.24 0.26

A C G T
0.32 0.19 0.20 0.28

A

A C G T
0.27 0.24 0.27 0.22

C

A C G T
0.23 0.31 0.25 0.21

G

A C G T
0.26 0.24 0.24 0.26

A C G T
0.23 0.21 0.25 0.32

T

P(C|C) P(G|C) P(A|G) P(G|G) P(C|T)

P(T)

A C G T
0.23 0.31 0.25 0.21

A C G T
0.18 0.31 0.29 0.22

A C G T
0.28 0.30 0.20 0.22

C T

A C G T
0.24 0.20 0.23 0.33

A C G T
0.21 0.29 0.20 0.30

A C G T
0.17 0.19 0.33 0.30

A C G T
0.25 0.19 0.21 0.35

A

A C G T
0.30 0.11 0.36 0.23

G

C T

A C G T
0.28 0.26 0.27 0.20

A C G T
0.20 0.21 0.34 0.25

A C G T
0.33 0.24 0.20 0.24

C T

A C G T
0.34 0.20 0.18 0.28

A C G T
0.27 0.17 0.28 0.29

A C G T

C

A C G T
0.26 0.24 0.24 0.26

Fig. 2. (a) A degenerated VOM tree represented by a root node, which is equivalent to a Markov(0) model. The tree is constructed from the intergenic
background dataset. The label of the node is the 4-dimensional probability vector of the single-nucleotide probabilities P (A), P (C), P (G) and P (T) in this
order. Note that in this and the following figures the sum of probabilities in a node might not sum exactly to 1 due to round off errors. (b) A homogeneous
unpruned VOM tree, which is equivalent to a Markov(1) model. The tree is constructed from the intergenic background dataset. The leaf nodes are labeled with
the transition probability vector given a single-nucleotide context. The root node is labeled with the unconditional probability vector of nucleotides. (c) The
homogeneous VOM(5, 0.65) tree. The tree is constructed from the intergenic background dataset. The nodes are labeled with the transition probability vector
given the context defined by the reverse path from the nodes to the root. The root node is labeled with the unconditional probability vector of nucleotides.

maximal order allowed in this case is 5, all branches are pruned to a lower
order. As a result, instead of using a full Markov model of order L = 5 with
dL+1 − 1 = 4095 free parameters, the VOM model in this example has only
14 × 3 = 42 free parameters. The likelihood of a sequence given a VOM
model depends on the contexts of a varying-order Lj , as seen in Equation (4).
Using the above example, P(TCCGGA) = P(T ) × P(C|T ) × P(C|TC) ×
P(G|CC)×P(G|CG)×P(A|G) = 0.26×0.20×0.24×0.34×0.29×0.23
(the difference in the probabilities in level 1 compared to Fig. 2b stems from
the probability adjustment explained in the pseudo code below). Thus, from
the fourth up to the sixth nucleotide, the order of the model, as represented by
the equivalent branches in the tree, is smaller than the number of preceeding
symbols. For example, the tree does not contain the full-order branch for
TCCGG, since for the last nucleotide P(A|TCCGG) ≈ P(A|G). Let us now
define the VOM tree more formally.

The VOM model assigns a context for each element in the sequence, and
defines the transition probability of each symbol xj given its context. Graph-
ically, the VOM tree has a root node on top, from which the branches are
developed downwards, with the constraint that each internal node has at most
d children, with differently labelled edges. The tree is not necessarily bal-
anced (i.e. not all the branches need to be of the same length) or complete
(i.e. not all the nodes need to have d children). Each node contains d trans-
ition probabilities of symbols given the context, which is represented by the
reversed path from that node to the root (this is why these trees are also
called suffix trees). Optimal contexts that satisfy Equation (5) are represented
by the reversed path xj−Lj

, xj−Lj+1 , . . . , xj−1 from the leaves to the root.

Sometimes an optimal context is represented by a partial leaf, which is an
internal node whose reversed path satisfies Equation (5) for some (but not
all) nucleotides (Ben-Gal et al., 2003; Buhlmann and Wyner, 1999).

2.3 Construction of the VOM tree
In the following, we describe the algorithm that we use for the construc-
tion of the VOM trees for sigma-70 sites (foreground set) and non-sigma-70
sites (background set). The algorithm consists of two main stages. First, it
constructs a complete and balanced tree of depth L, which corresponds to a
fixed-order Markov model of order L. Second, it iteratively prunes the tree by
a backward procedure. The initial order L of the models is estimated using
the number of samples in the training sets, such that on average each leaf
contains at least 10 data points (in our case approximately 40 data points per
leaf). Once an initial (complete and balanced) tree of order L is constructed,
its probability parameters are estimated (as denoted by the tilde sign) by the
frequencies of the respective subsequences, i.e.,

P̃
(
Xj = xj

∣∣∣Xj−1
j−L = x

j−1
j−L , �k

)
=

nk

(
x

j

j−L

)

nk

(
x

j−1
j−L

) , (6)

where nk(·) denotes the frequency of its argument in a training set taken from
class �k : �1 is the class of TFBSs (the foreground set) and �2 is the class
of non-TFBSs (the background set). To compensate for zero occurrences
of certain oligonucleotides, we use a pseudo-count, which is added to all
frequencies. The value of the pseudo-count depends on the level of the node
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Table 1. PWM and consensus sequences for the ‘−35 box’ and the ‘−10 box’, as derived from the sigma-70 foreground dataset

1 2 3 4 5 6 1 2 3 4 5 6

A 0.10 0.07 0.10 0.54 0.17 0.49 0.07 0.74 0.15 0.57 0.53 0.08
C 0.10 0.09 0.13 0.19 0.54 0.14 0.12 0.07 0.12 0.12 0.22 0.07
G 0.12 0.09 0.57 0.12 0.12 0.17 0.10 0.07 0.14 0.16 0.09 0.05
T 0.68 0.74 0.20 0.15 0.18 0.20 0.72 0.12 0.58 0.15 0.15 0.80

T T G A C A T A T A A T

in the tree. For the background model we assure that the sum of all pseudo-
counts in a level is 4096; for the foreground model the sum is 16. This rule
corresponds to an equivalent sample size (ESS) of 4096 and 16, respectively,
(i.e. each oligonucleotide obtains the same pseudo-count) as used in Bayesian
networks (Heckerman et al., 1995). It results in an effective pseudo-count of
1024 for each frequency in the root and a pseudo-count of 1 in the leaves of
a 5th-order tree as a background model.

Then, we compute the Kullback–Leibler (KL) divergence (Kullback, 1959)
of the conditional probabilities of symbols between each leaf and its parent
node. If the KL divergence is smaller than a pre-selected pruning threshold,
the leaf is pruned. A small KL divergence implies that there is no significant
divergence in the symbol distribution when using the reduced order of the
model, or in other words, that the larger model order, which is represented by
the leaf, does not add much information and can be pruned without affecting
the likelihood significantly. The pruning procedure is repeated until the KL
divergence is greater than the predefined pruning threshold for all the leaves
in the tree.

A simple pseudo-code to construct a VOM tree from a given (super-
vised) training set is now detailed. In our example we train two independent
VOM models, a foreground VOM model on TFBS oligonucleotides and a
background VOM model on non-TFBS oligonucleotides (for simplicity of
presentation, we omit the class notation, �k , since the algorithm is applied
to classes independently).

(1) Construct an initial complete and balanced Markov tree of a maximal
fixed-order L such that on average, each leaf counter contains 10 data
points. This rule yields L = 5 for the intergenic background set and
L = 1 for the foreground set.

(2) Estimate the conditional probabilities in the tree nodes by using Equa-
tion (6) and by adding a pseudo-count ε = ESS/(d ·dt ) to all counters,
with t being the depth of the node, starting from the root with t = 0.

(3) Estimate the KL divergence of the distribution of nucleotides between
leaves and their parent nodes:

�leaf =
∑
xj ∈X

P̃
(
xj

∣∣∣xj−1
j−Lj

)
log2


 P̃

(
xj

∣∣∣xj−1
j−Lj

)

P̃
(
xj

∣∣∣xj−1
j−Lj +1

)

 ,

for all leaves.

(4) Prune the leaves with a small KL divergence. The pruning process
is executed bottom-up from each leaf to the root according to the
following rule: If �leaf ≤ c · ψ , where c is a predefined pruning
parameter, prune that leaf by setting Lj = Lj −1. For the foreground
model we use ψ = 1 and for the background model we use ψ =
dt+1/n

(
x

j−1
j−Lj

)
. For such a ψ , the deeper a node is in the tree, the

easier it is to prune it, and the more samples that reach that node, the
harder it is to prune it. Otherwise, set Lj as the optimal order for that
leaf.

(5) If all leaves are left unpruned, stop. Otherwise, go back to step 3 and
repeat for all of the pruned leaves.

(6) Refine the probability parameters in the obtained VOM tree by intro-
ducing the pseudo-counts and subtracting the counts of each symbol

in the descendent nodes from the count of that symbol in the parent

node respectively, i.e. nk

(
xj

∣∣∣xj−1
j−Lj +1

)
−nk

(
xj

∣∣∣xj−1
j−Lj

)
for further

details, see Ben-Gal et al. (2003); Buhlmann and Wyner (1999).

Note again that in general Lj can be equal for all positions, as in the case
of a fixed-order Markov model, including the zeroth-order Markov model
with Lj = 0.

There are several variations for the construction of VOM trees (e.g.
Rissanen, 1983; Buhlmann and Wyner, 1999; Orlov et al., 2002; Ben-Gal
et al., 2003) that might affect their classification performance significantly.
For example, Orlov et al. (2002) use homogeneous (rather than inhomo-
geneous) VOM trees to model (rather than classify) TFBS oligonucleotides.
Their initial tree depth is set to 10 and does not depend on the size of the
dataset. They use different pseudo-counts and prune the VOM tree based
on a stochastic complexity measure, which is related to the KL divergence,
which we use, yet penalizes directly the model complexity. Instead, to avoid
model over-fitting, we use Equation (5) and search for a good value of the
pruning constant over a set of stratified-holdout experiments. Finally, Orlov
et al. (2002) do not refine the probability parameters as we do in step 6 above.

2.4 Inhomogeneous models
The TFBS oligonucleotides are often represented by inhomogeneous models
where a model is built for each position in the sequence. The PWM is pos-
sibly the most popular inhomogeneous model for binding sites (Fickett and
Hatzigeorgiou, 1997; Ewens and Grant, 2001; Mount, 2001; Barash et al.,
2003). The underlying independence assumption for this model implies that
the likelihood of a sequence can be computed by Equation (2) with a distinc-
tion that the marginal probability P(Xj = xj ) is estimated for each position
independently—based on the nucleotide frequencies at that position only.
Table 1 presents the probability parameters of the PWM model for the two
hexamers found respectively in the ‘−35 box’ and the ‘−10 box’, as estim-
ated from the sigma-70 foreground dataset. The last row in the table presents
the consensus sequence. We use this PWM model as a reference model to the
proposed inhomogeneous VOM tree, which is described next.

The construction of a foreground inhomogeneous VOM tree is performed
by applying the VOM pseudo code outlined above to each position of the set
of aligned binding sites. Thus, we construct 12 independent VOM trees, one
for each of the 12 positions of the sigma-70 binding site.

The proposed VOBN model extends the inhomogeneous VOM model by
allowing dependencies between non-adjacent positions. To obtain a VOBN
model we first learn a BN model, where a node corresponds to a position,
and a directed edge (an arrow) from node i to node j means that the nuc-
leotide at position i is considered part of the context of the nucleotide at
position j . Then, for each position the VOM tree is constructed given the
context of its parents in the graph. Subsequent to the trees’ construction,
we prune and adjust probabilities in every tree as in the original VOM
model. Minor modifications are necessary in order to adapt Equation (5)
for the VOBN model. The preceding symbols to position j in the sequence
X

j−1
j−L are replaced by the L parents in the BN dependence graph, denoted

by Pa(Xj )
1
L ≡ (Pa(Xj )1, Pa(Xj )2, . . . , Pa(Xj )L), where for every i and

given a dependence measure D(·,·): D(Pa(Xj )i , Xj ) ≥ D(Pa(Xj )i+1, Xj ).
We use mutual information between the positions as the dependence measure.
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Fig. 3. The BT/BN(1) dependence graph and the corresponding VOBN(1, 2−3.75) forest, as constructed from the sigma-70 foreground dataset. In the dependence
graph (top) the solid lines represent adjacent positions and the dashed lines represent non-adjacent positions. In the VOBN forest, the nodes are labeled with the
unconditional probability vector of nucleotides at that position in the box. The position is denoted by the upper numerical label (above the root). The position
in the context of which we split is labeled by the numerical label near the split. Nodes 1–6 represents the ‘−35 box’ and nodes 7–12 represents the ‘−10 box’.

The equivalent equation to Equation (5) for optimal order of positions in the
VOBN model is

Lj = min
{
L̃

∣∣∣P
(
Xj = xj

∣∣∣Pa(Xj )
1
L̃

= pa(xj )
1
L̃

)

= P
(

Xj = xj

∣∣Pa(Xj )
1
L = pa(xj )

1
L

)}
. (5a)

For the case of Bayesian tree (BT) models, an efficient algorithm exists to
learn the maximum likelihood graph structure from the data. This algorithm
is equivalent to finding the maximum spanning tree over a fully connected,
undirected graph using positions as nodes and mutual information between
positions as edge weights (Chow and Liu, 1968). For first-order VOBN
models we use the dependencies learned with the BT algorithm (e.g., Prim’s
algorithm). Figure 3 shows a first-order VOBN model constructed from the
foreground dataset of 238 sigma-70 binding sites. This example illustrates
an important property of the VOBN model: since insignificant branches are
pruned, the tree can serve as a compact and accurate exploratory tool for the
dependencies among the basepairs in the sequence. In Section 4, we com-
ment on some of the dependencies observed in the sigma-70 dataset. Note that
pruning a VOBN model is not equivalent to pruning edges of a BN depend-
ence graph, as the VOBN pruning is context-specific and allow for partial

leaves. The differences in the probabilities of symbols between the forest
roots and the PWM model result from the refinement process described in the
pseudo-code above. The performance of the VOBN model is further studied in
Section 4.

2.5 Classification rule
Once the foreground and background models are selected, the parameters
are estimated and refined from a training set, and the log-likelihood ratio of
these models is used for classification. In this TFBS classification, a site is
declared as a TFBS if the log-likelihood ratio is greater than a given threshold
T ; i.e. if

log2
P

(
xN

1 |�1
)

P
(
xN

1 |�2
) ≥ T . (7)

Specific biological knowledge, such as the low number of TFBS sequences
in the genome, can be taken into account to specify the threshold value T

to guarantee the balance of the specificity and the sensitivity of the classi-
fier. In the experiments presented in Section 4 we choose a value of T that
guarantees a true-negative (TN) rate of 99.9%. The E.coli genome consists of
approximately 4 × 106 basepairs (bp) containing approximately 4000 genes.
As we expect one gene per 1000 bp, a TN rate of 99.9% keeps the number of
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false predictions smaller than the expected number of true sigma-70 sites for
whole-genome analyses.

2.6 The performance measure
Our main performance measure is the mean true-positive (TP) rate (also
known as sensitivity), which is the ratio of the number of TPs and all positive
samples, for replicated stratified-holdout experiments having a fixed TN rate
of 99.9%. We also compute the standard deviation of the estimated mean TP
rate as a measure for the model robustness and the dependence of its accuracy
on the training dataset.

2.7 Stratified-holdout sampling
In order to minimize over-fitting effects, we conduct a 106-fold stratified-
holdout experiment by iteratively applying the following procedure. A
random 10% of all TFBS sequences are excluded from the foreground dataset
and a model is constructed based on all of the remaining sequences in the
dataset. A random 10% of all background sequences are excluded from the
background dataset and a model is constructed based on all other remaining
sequences in the set. Based on these models the likelihood of every sequence
in the excluded foreground and background sequences is calculated. Using
the model likelihoods, the score (7) is computed, according to which each
excluded foreground sequence is marked as either TP or FN, and each 12-mer
of each excluded background sequence is marked as either TN or FP.

3 DATASETS
Throughout the experiments we use three datasets: one foreground
dataset that contains 238 carefully selected E.coli sigma-70 binding
sites of length 12 bp, and two background datasets—one that contains
randomly permuted TFBS sequences and another that contains 12-
merssampledfrom472intergenic‘non-promoter’sequencesinE.coli.

3.1 The sigma-70 foreground dataset
Transcription initiation in E.coli is controlled to a large degree by the
binding of the RNA polymerase holoenzyme together with multiple
cofactors to the promoter region just upstream of the transcription
start sites. One of the cofactors, which is believed to convey a large
fraction of the DNA binding specificity, is the sigma-70 factor. Two
well-conserved cis elements, the ‘−35 box’ and the ‘−10 box’, can
be found —∼35 and ∼10 bp upstream—to the transcription start site
of many E.coli mRNA genes. In order to obtain a dataset of these cis-
element pairs (and likely sigma-70 factor binding sites) we perform
the following steps:

• We start with a dataset of 300 binding site pairs from PromEC
(Margalit et al., http://bioinfo.md.huji.ac.il/marg/promec/index.
html). Each of these binding site pairs consists of two hexamers,
so the motif length for all of the models discussed in this paper
is L = 12.

• We remove all binding site pairs that could not be found in the
database RegulonDB 3.0 (Salgado et al., 2000) created by Julio
Collado-Vides and coworkers, or which are not annotated there
as sigma-70 binding sites.

• We map the remaining binding site pairs to the E.coli gen-
ome, including the ‘spacer’ sequences between the two hexamer
boxes, and remove all binding site pairs that could not be
mapped uniquely to the E.coli genome (Blattner and Schroeder,
1984), or that got mapped to a protein-coding region (according
to the NCBI annotation).

Following the above procedure we obtain a dataset of 238 binding site
pairs, which we call the ‘sigma-70 foreground dataset’, or simply the

‘foreground dataset’. We choose the above-mentioned very stringent
rules to derive the ‘sigma-70 foreground dataset’ for a simple reason:
it is generally true that, for statistical analyses, a small dataset of high
quality is more valuable than a larger dataset of lower quality. Hence,
we would like to obtain a foreground dataset with a minimum amount
of contamination, and we are willing to sacrifice TP binding site pairs
in order to guarantee a very low number of false-positive binding site
pairs in the foreground dataset.

3.2 The background datasets
We generate two background datasets—the ‘random background set’
and the ‘intergenic background dataset’—for two different studies.
We use the random background dataset in order to study the degree
to which the VOM/VOBN models capture the existing statistical
dependencies in the sigma-70 foreground dataset. For this study it
is important (i) to eliminate possible correlations in the sequences
of the background dataset; and (ii) to eliminate a possible classi-
fication success simply due to a different nucleotide composition in
the foreground and the background datasets. We use the intergenic
background dataset in order to study the degree to which higher-
order background models can improve the classification of sigma-70
binding site pairs versus 12-mers sampled from intergenic regions.

3.2.1 The random background dataset The homogeneous zeroth-
order Markov model is a popular background model of intergenic
sequences (Liu et al., 1995; Neuwald et al., 1995; Hughes et al.,
2000; Thijs et al., 2001). In order to generate a dataset without ‘built-
in’ statistical dependencies among different positions, and in order
to eliminate any composition difference between the foreground and
the background sets, we generate the random background dataset
as follows: Learn a zeroth-order Markov model from the foreground
dataset. Use this Markov model to generate 427 random sequences of
length 182, which gives approximately the same number of 12-mer
windows as in the intergenic background dataset.

3.2.2 The intergenic background dataset Many experiments have
been performed to obtain sigma-70 factor binding sites in the E.coli
genome, but only little work has been devoted to identify—with
experimental rigour—sequences that are free of sigma-70 binding
sites. Hence, we adopt the following protocol (Gelfand, personal
communication; Thijs et al., 2001) to obtain sequences that are
unlikely to contain sigma-70 binding sites. Two neighbouring genes
are located either on the same strand or on opposite strands. If they
are located on opposite strands, they either overlap or share a com-
mon intergenic region. If they share a common intergenic region,
that region is either a common 5′ (or upstream) intergenic region of
both genes, or a common 3′ (or downstream) region of both genes.
Provided that the gene annotation is reliable, the common 3′ (or
downstream) intergenic regions between two neighbouring genes
should not contain sigma-70 binding sites. We extract the set of
common 3′ (or downstream) intergenic regions between two neigh-
bouring genes from the complete E.coli genome (according to the
NCBI annotation), and obtain a dataset consisting of 472 sequences
with a total of 77 644 nucleotides, which we call the intergenic
background dataset.

4 RESULTS AND DISCUSSION
The analysis of the above-mentioned data is performed in three
stages. First, we study the degree to which the VOBN model
is capable of capturing statistically significant (and perhaps
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biologically relevant) dependencies among the different positions
within sigma-70 factor binding sites, compared to inhomogeneous
fixed-order Markov models. Since we focus on the contribution of
the foreground set, we use the random background dataset and find
the zeroth-order Markov model as the best background model when
we train the VOM model on this dataset. Second, we study the degree
to which statistical dependencies present in the intergenic back-
ground dataset can improve the classification performance; hence,
we increase the order of the homogeneous Markov models for the
background from L = 0 to L = 5. Third, we apply VOBN models
constructed with different pruning constants to the ‘foreground data-
set’ and VOM models constructed with different pruning constants to
the intergenic background dataset, and compare the accuracy of these
models with the accuracy of fixed-order Markov models including
the PWM model and BTs.

We briefly describe the notations used in the following figures and
discussion.

(1) Inhomogeneous models: The model constructed from the
sigma-70 foreground dataset. Two types of inhomogeneous
models are considered:

(a) Markov(L)—the inhomogeneous Markov model of order
L, which includes the PWM model in case of L = 0.

(b) VOBN(L, c)—the generalized VOM model withLdenot-
ing the initial maximal order and c denoting the pruning
constant, equivalent to the PWM model in the case of
L = 0 and c = 0. The VOBN(L, c) model is equivalent
to a BN model of order L for c = 0. We frequently use a
BT model—equivalent to a VOBN(1,0)/BN(1) model.

(2) Homogeneous models:—The model constructed from the
background dataset. Two types of background models are
considered:

(a) Markov(L)—the homogeneous Markov model of order
L.

(b) VOM(L, c)—the homogeneous VOM model with L

denoting the initial maximal order and c denoting the
pruning constant, which is equivalent to the Markov(L)

model in case of c = 0.

(3) Mean TP: The obtained mean TP rate for a fixed TN level
of 99.9%. The standard deviation of the estimated mean TP
(in Figs 4–6) equals S/

√
106 ≈ 0.01%, where S denotes the

sample standard deviation that is obtained from the 106 fold
replicated stratified-holdout sampling experiment. The stand-
ard deviations of each experiment are not shown as they are
similar.

(4) Number of nodes: The average number of nodes in the model
over the stratified-holdout experiments.

In the first stage of the experiment we study the classification
performance of foreground inhomogeneous VOBN models versus
inhomogeneous Markov models, including the widely used PWM
model (e.g. Fickett and Hatzigeorgiou, 1997; Ewens and Grant, 2001;
Mount, 2001). We use the random background dataset and obtain a
homogeneous Markov(0) as the best background model. We find
that inhomogeneous Markov(2) and Markov(3) models are over-
fitted and that the inhomogeneous Markov(1) model achieves the
highest classification performance of the fixed-order models with a
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Fig. 5. Pruning of the foreground VOBN(1, c) model for different values of
the pruning constant c for a Markov(3) background model. The number of
nodes in the foreground model is presented on the abscissa to show the size
of the model.

mean TP rate of 29.4%. Pruning the inhomogeneous VOM models by
different pruning constants does not result in considerable improve-
ments over fixed-order models: the VOBN(1, c) with c = 0.210
achieves a statistically significant improvement with a mean TP rate
of 30.7%.

Next, we analyse the performance of higher-order Markov models
based on the Sigma-70 foreground dataset and the intergenic back-
ground dataset. We summarize the results in Figures 4–6. Figure 4
focuses on fixed-order models. It shows the performance of different
combinations of foreground and background models. Figure 5 shows
the enhancement from pruning the foreground model to obtain a
VOBN, where the background model is fixed to Markov(3). Figure 6
shows the improvement from pruning a 5th-order VOM model in
the background with the foreground model fixed to the best VOBN
model from Figure 5. The experiment details now follows.

Figure 4 presents the classification accuracy for different combin-
ations of fixed-order foreground (PWM, inhomogeneous Markov(1),
and a BT) and background models (homogeneous Markov L = 0 up
to L = 5). For a PWM model as the foreground model, a Markov(2)
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Fig. 6. Pruning the background VOM(5, c) model for different values of the
pruning constant c. The foreground model is the VOBN(1, 2−3.75) model,
which was found to be the best model in Figure 5 and has ∼36 nodes. The
number of nodes in the background model is presented on the abscissa to
show the size of the model.

model is the optimal background model, yielding a mean TP rate of
44.39%. We also find that, if an inhomogeneous Markov(1) model is
chosen as foreground model, then a Markov(3) model is the optimal
background model with a mean TP rate of 43.5%. Finally, with
a BT model as the foreground model, a Markov(3) model is the
optimal background model, resulting in the highest mean TP rate
over all fixed-order models of 45.65%. All findings are in qualit-
ative agreement with previous studies, such as, Thijs et al. (2001)
and Barash et al. (2003), that indicate that homogeneous Markov(0)
models may not be optimal for modeling genomic DNA. Clearly,
the optimal Markov model order for the background depends on the
foreground model chosen as well as on the measure of classifica-
tion accuracy. In addition, we caution that one cannot infer from
Figure 4 the optimal Markov model order for other datasets or other
classification problems. One interesting observation from Figure 4
is that for all background models, the mean TP rates of the PWM as
foreground models are higher than of the inhomogeneous Markov(1)
model. Thus, for all background models tested, the PWM model is
superior to the inhomogeneous Markov(1) model. This finding is
consistent with the high popularity of the PWM model for TFBS
recognition and explains why the weight array model proposed by
Zhang and Marr (1993), which corresponds to an inhomogeneous
Markov(1) model and which has been shown to be more accurate
than the PWM model for splice site recognition, has not replaced the
PWM model for TFBS recognition. The unimodal behaviour of the
TP rate as a function of the number of model parameters might reflect
the trade-off between over-fitted models and under-fitted models. It
can also be seen from Figure 4 that for third and higher order back-
ground models, the BT/BN(1) outperforms the PWM model. For
lower order background models, there is no clear dominance.

Although for certain background models, the BT models achieve
better results than PWM models, it is not clear whether the BTs
are overfitted. In the following, we test for such an overfitting,
scrutinizing VOBN models for different pruning constants since
these models have the potential of modeling only a few (signific-
ant) statistical dependencies, while neglecting statistically insignifi-
cant ones.

Figure 5 presents the classification performance of different fore-
ground VOBN models for different choices of the pruning constant

c (including the PWM model) for a background Markov(3) model,
which was found to be the best model in Figure 4. The mean TP rate is
given as a function of the mean number of nodes in the VOBN(1, c).
Note that increasing the pruning constant decreases the mean number
of nodes in the VOBN. The behavior of the mean TP rate is nearly
unimodal except for models very similar to PWM model. The best
foreground model is a VOBN(1, 2−3.75) achieving a mean TP rate of
46.46%. This is an improvement of 0.8% over the BT/BN(1) model.
As one can see from Figure 5, the best VOBN(1, c) foreground model
has approximately half the number of nodes compared to the full
model, yet reaches a significantly higher mean TP rate.

To further explore the dependencies between foreground and
background models, we now fix the foreground model to a
VOBN(1, 2−3.75) and turn to homogeneous VOM models for the
background. Figure 6 presents the improvement gained by pruning
a background VOM model with maximum order 5. The plot
has again an essential unimodal shape as in Figure 5. The best
background model found is a VOM(5, 2−5.5), which has 94 nodes
(it is too large to be presented in the paper, but it is available upon
request from the authors). This best combination of a foreground
VOBN(1, 2−3.75) with a background VOM(5, 2−5.5) achieves a mean
TP rate of 47.56%. This is an improvement of 3.17% compared to
the combination of PWM/Markov(2) models in Figure 4.

It is interesting to note that this mean TP rate can only be
gained if we use a maximal order of 5 for the VOM. In the
VOM(5, 2−5.5) model, there are still contexts up to the 5th order
(e.g. GCCGG, TCCGG), while others are already pruned down to
order 3. These long contexts seem to be responsible for the high clas-
sification accuracy of the background model, as pruning a Markov
model of initial order 4 or 3 reaches significantly lower mean TP
rates.

As can be seen from Figure 6, for low pruning constants (models
with more than 300 nodes) the mean TP rate is even below that of
the combination of PWM and Markov(L). The VOM(5, c) models
between c = 2−10 and 2−9 still have 400–600 nodes, which is more
than for a 4th order Markov model (with 341 nodes) and causes a
strong over-fitting effect. The best mean TP rate is reached for a
pruned model (with 94 nodes) that has only a few more parameters
than the fixed Markov(3) model, but utilizes those parameters more
efficiently. If the pruning constant is further increased, the classifica-
tion accuracy decreases again, as now significant contexts are pruned
from the model and fixed-order Markov models.

To summarize, the variable-order concept applied to foreground
Bayesian networks (obtaining the VOBN model) and to background
Markov models (obtaining the VOM model) is shown to outperform
the PWM model.

Figure 3 shows the foreground VOBN(1, 2−3.75) model which
reached the highest TP rate. Note that more than half the edges in the
dependency graph are between non-adjacent positions, and that two
of the edges are between positions from separate boxes (the ‘−35
box’ and ‘−10 box’). Approximately half of the edges were found
to be insignificant and were pruned.

5 CONCLUSIONS
Varible-order Baynesian network models are one promising general-
ization of the widely used PWM model, fixed-order Markov models
and BN models. In this paper we show that VOBN models are use-
ful for predicting the location of TFBSs. Specifically, we show in
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stratified-holdout experiments that a VOBN model can predict the
location of sigma-70 binding sites in E.coli with higher accuracy
than a PWM model, a fixed-order Markov model and a BN model.
We speculate that VOBN models might be useful for predicting the
location of TFBSs in other genomes.

ACKNOWLEDGEMENTS
We thank Hanspeter Herzel and Lev Levitin for valuable discussions
and the German Ministry of Education and Research (BMBF Grant
No. 0312706A), and the Minerva Foundation (Short Term Research
Grant) for financial support.

REFERENCES
Baldi,P. and Brunak,S. (2001) Bioinformatics: The Machine Learning Approach, 2nd

edn. The MIT Press, Cambridge, MA.
Barash,Y., Elidan,G., Friedman,N. and Kaplan,T. (2003) Modeling dependencies in

protein–DNA binding sites. In Proceedings of the Seventh Annual International
Conference on Computational Molecular Biology (RECOMB), NY, ACM.

Bejerano,G. and Yona,G. (2001) Variations on probabilistic suffix trees: statistical
modeling and prediction of protein families. Bioinformatics, 17, 23–43.

Ben-Gal,I. and Shmilovici,A. (2001) Promoters recognition by variable-length Markov
models. In Workshop on Artificial Intelligence and Heuristic Methods for Bio-
informatics, San-Miniato, Italy.

Ben-Gal,I., Morag,G. and Shmilovici,A. (2003) CSPC: a monitoring procedure for state
dependent processes. Technometrics, 45, 293–311.

Benos,P.V., Lapedes,A.S., Fields,D.S. and Stormo,G.D. (2001) SAMIE: statistical
algorithm for modeling interaction energies. In PSB’01.

Bilu,Y., Linial,M., Slonim,N. and Tishby,N. (2002) Locating transcription factors
binding sites using a variable memory Markov model. Leibintz Center TR 2002-57.

Blattner,F.R. and Schroeder,J.L. (1984) A computer package for DNA sequence analysis.
Nucleic Acids Res., 12, 615–617.

Boutilier,C., Friedman,N., Goldszmidt,M. and Koller,D. (1996) Context-specific inde-
pendence in Bayesian networks. In Proceedings of the 12th Conference on
Uncertainty in Artificial Intelligence, August 1–4, 1996, Reed College, Port-
land, Oregon, USA, pp. 115–123. Also appears at http://www.informatik.uni-
trier.de/∼ley/db/conf/uai/uai1996.html

Buhlmann,P. and Wyner,A.J. (1999) Variable length Markov chains. Ann. Statist., 27,
480–513.

Bulyk,M.L. et al. (2002) Nucleotides of transcription factor binding sites exert interde-
pendent effects on the binding affinities of transcription factors. Nucleic Acids Res.,
30, 1255–1261.

Cai,D. et al. (2000) Modeling splice sites with Bayes Networks. Bioinformatics, 16,
152–158.

Castelo,R. and Guigo,R. (2004) Splice site identification by idlBNs. Bioinformatics, 20,
i69–i76.

Chow,C.K. and Liu,C.N. (1968) Approximating discrete probability distributions with
dependence trees. IEEE Trans. Inform. Theory, 14, 462–467.

Chu,S. et al. (1998) The transcriptional program of sporulation in budding yeast. Science,
282, 699–705.

Djordjevic,M. et al. (2003) A biophysical approach to transcription factor binding site
discovery. Genome Res. 13, 2381–2390.

Ewens,W.J. and Grant,G.R. (2001) Statistical Methods in Bioinformatics: An Introduc-
tion. Springer-Verlag, New York, Inc.

Fickett,J.W. and Hatzigeorgiou,A.G. (1997) Eukaryotic promoter recognition. Genome
Res., 7, 861–878.

Friedman,N. and Goldszmidt,M. (1996) Learning Bayesian networks with local Struc-
ture. In Proceedings of the 12th Conference on Uncertainty in Artificial Intelligence,
August 1–4, 1996, Reed College, Portland, Oregon, USA, pp. 252–262. Also appears
at http://www.informatik.uni-trier.de/∼ley/db/conf/uai/uai1996.html

Friedman,N. et al. (2000) Using Bayesian networks to analyze expression data.
J. Comput. Biol., 7, 601–620.

Hanisch,D. et al. (2002) Co-clustering of biological networks and gene expression data.
Bioinformatics, 1, 1–10.

Heckerman,D., Geiger,D. and Chickering,D.M. (1995) Learning Bayesian networks.
The combination of knowledge and statistical data. Machine Learning, 20, 197–243.

Hughes,J.D. et al. (2000) Computational identification of cis-regulatory elements asso-
ciated with groups of functionally related genes in Saccharomyces cerevisiae. J. Mol.
Biol., 296, 1205–1214.

Kel,A.E. et al. (2003) MATCH: a tool for searching transcription factor binding sites in
DNA sequences. Nucleic Acids Res., 31, 3576–3579.

Kel-Margoulis,O.V. et al. (2003) Composition-sensitive analysis of the human genome
for regulatory signals. In Silico Biol., 3, 13.

Kullback,S. (1959) Information Theory and Statistics. Wiley, New York (reprinted in
1978 by Peter Smith, MA).

Liu,J.S. et al. (1995) Bayesian models for multiple local sequence alignment and Gibbs
sampling strategies. J. Am. Stat. Assoc., 90, 1156–1170.

Liu,X. et al. (2001) BioProspector: discovering conserved DNA motifs in upstream
regulatory regions of co-expressed genes. Pac. Symp. Biocomput., 6, 127–138.

Mount,D.W. (2001) Bioinformatics, Sequence and Genome Analysis. Cold Spring
Harbor Laboratory Press, pp. 357–365.

Neuwald,A.F., et al. (1995) Gibbs motif sampling: detection of bacterial outer membrane
protein repeats. Protein Sci., 4, 1618–1632.

Ohler,U. and Niemann,H. (2001) Identification and analysis of eukaryotic promoters:
recent computational approaches. Trends Genet., 17, 56–60.

Ohler,U. et al. (1999) Interpolated Markov chains for eukaryotic promoter recognition.
Bioinformatics, 15, 362–369.

Orlov,Y.L. and Potapov,V.N. (2000) Determining Markov Model of Genetical Texts by
Stochastic Complexity Estimation. BGRS, Novosibirsk, pp. 71–73.

Orlov,Y.L. et al. (2002) Construction of stochastic context trees for genetic texts. In
Silico Biol., 2, 233–247.

Pickert,L. et al. (1998) Transcription regulatory region analysis using signal detection
and fuzzy clustering. Bioinformatics, 14, 244–251.

Pearl,J. (1988) Probabilistic Reasoning in Intelligent Systems: Networks of Plausible
Inference. Morgan Kaufmann, California.

Rissanen,J. (1983) A universal data compression system. IEEE Trans. Inform. Theory,
29, 656–664.

Ron,D. et al. (1996) The power of amnesia: learning probabilistic automata with variable
memory length. Machine Learning, 25, 117–149.

Salgado,H. et al. (2000) RegulonDB (version 3.0): transcriptional regulation and operon
organization in Escherichia coli K-12. Nucleic Acids Res., 28, 65–67.

Salzberg,S.L. (1997) A method for identifying splice sites and translational start sites in
eukaryotic mRNA. CABIOS, 13, 365–376.

Salzberg,S.L. et al. (1998) Microbial gene identification using interpolated Markov
models. Nucleic Acids Res., 26, 544–548.

Salzberg,S.L. et al. (1999) Interpolated Markov models for eukaryotic gene finding.
Genomics, 59, 24–31.

Spellman,P.T. et al. (1998) Comprehensive identification of cell cycle-regulated genes
of the yeast saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell,
9, 3273–3297.

Stormo,G.D. and Fields,D.S. (1998) Specificity, free energy and information content in
protein–DNA interactions. Trends Biochem. Sci., 23, 109–113.

Thijs,G. et al. (2001) A higher-order background model improves the detection of
promoter regulatory elements by Gibbs sampling. Bioinformatics, 17, 1113–1122.

Vert,J.P. (2001) Adaptive context trees and text clustering. IEEE Trans. Inform. Theory,
47, 1884–1901.

Weinberger,M. et al. (1995) A universal finite memory source. IEEE Trans. Inform.
Theory, 41, 643–652.

Wingender,E. et al. (2000) TRANSFAC: an integrated system for gene expression
regulation. Nucleic Acids Res., 28, 316–319.

Wingender,E. (2001) The TRANSFAC system on gene expression regulation. Nucleic
Acids Res., 29, 281–283.

Zhang,M.Q. and Marr,T.G. (1993) A weight array method for splicing signal analysis.
Comput. Appl. Biosci., 9, 499–509.

Zhao, X. et al. (2004) Finding Short DNA Motifs Using Permuted Markov Models.
Proceedings of the 8th Annual International Conference on Computational Molecular
Biology, 68–75, March 27–31, 2004, San Diego, California, USA, ACM.

2666

http://www.informatik.uni-trier.de/
http://www.informatik.uni-trier.de/

