
Bayesian Networks

Introduction

Bayesian networks (BNs), also known as belief net-
works (or Bayes nets for short), belong to the fam-
ily of probabilistic graphical models (GMs). These
graphical structures are used to represent knowledge
about an uncertain domain. In particular, each node
in the graph represents a random variable, while
the edges between the nodes represent probabilistic
dependencies among the corresponding random vari-
ables. These conditional dependencies in the graph
are often estimated by using known statistical and
computational methods. Hence, BNs combine princi-
ples from graph theory, probability theory, computer
science, and statistics.

GMs with undirected edges are generally called
Markov random fields or Markov networks. These
networks provide a simple definition of independence
between any two distinct nodes based on the concept
of a Markov blanket. Markov networks are popular in
fields such as statistical physics and computer vision
[1, 2].

BNs correspond to another GM structure known
as a directed acyclic graph (DAG) that is popular in
the statistics, the machine learning, and the artificial
intelligence societies. BNs are both mathematically
rigorous and intuitively understandable. They enable
an effective representation and computation of the
joint probability distribution (JPD) over a set of
random variables [3].

The structure of a DAG is defined by two sets: the
set of nodes (vertices) and the set of directed edges.
The nodes represent random variables and are drawn
as circles labeled by the variable names. The edges
represent direct dependence among the variables and
are drawn by arrows between nodes. In particular, an
edge from node Xi to node Xj represents a statistical
dependence between the corresponding variables.
Thus, the arrow indicates that a value taken by
variable Xj depends on the value taken by variable
Xi , or roughly speaking that variable Xi “influences”
Xj . Node Xi is then referred to as a parent of
Xj and, similarly, Xj is referred to as the child
of Xi . An extension of these genealogical terms
is often used to define the sets of “descendants” –
the set of nodes that can be reached on a direct
path from the node, or “ancestor” nodes – the set

of nodes from which the node can be reached
on a direct path [4]. The structure of the acyclic
graph guarantees that there is no node that can be
its own ancestor or its own descendent. Such a
condition is of vital importance to the factorization
of the joint probability of a collection of nodes as
seen below. Note that although the arrows represent
direct causal connection between the variables, the
reasoning process can operate on BNs by propagating
information in any direction [5].

A BN reflects a simple conditional independence
statement. Namely that each variable is independent
of its nondescendents in the graph given the state
of its parents. This property is used to reduce,
sometimes significantly, the number of parameters
that are required to characterize the JPD of the
variables. This reduction provides an efficient way
to compute the posterior probabilities given the
evidence [3, 6, 7].

In addition to the DAG structure, which is often
considered as the “qualitative” part of the model, one
needs to specify the “quantitative” parameters of the
model. The parameters are described in a manner
which is consistent with a Markovian property, where
the conditional probability distribution (CPD) at each
node depends only on its parents. For discrete random
variables, this conditional probability is often repre-
sented by a table, listing the local probability that a
child node takes on each of the feasible values – for
each combination of values of its parents. The joint
distribution of a collection of variables can be deter-
mined uniquely by these local conditional probability
tables (CPTs).

Following the above discussion, a more formal
definition of a BN can be given [7]. A Bayesian net-
work B is an annotated acyclic graph that represents
a JPD over a set of random variables V. The net-
work is defined by a pair B = 〈G, �〉, where G is the
DAG whose nodes X1, X2, . . . , Xn represents ran-
dom variables, and whose edges represent the direct
dependencies between these variables. The graph G

encodes independence assumptions, by which each
variable Xi is independent of its nondescendents
given its parents in G. The second component �

denotes the set of parameters of the network. This
set contains the parameter θxi |πi

= PB(xi |πi) for each
realization xi of Xi conditioned on πi , the set of par-
ents of Xi in G. Accordingly, B defines a unique JPD
over V, namely:
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PB(X1, X2, . . . , Xn) =
n∏

i=1

PB(Xi |πi) =
n∏

i=1

θXi |πi

(1)

For simplicity of representation we omit the sub-
script B henceforth. If Xi has no parents, its local
probability distribution is said to be unconditional,
otherwise it is conditional. If the variable represented
by a node is observed, then the node is said to be an
evidence node, otherwise the node is said to be hidden
or latent.

Consider the following example that illustrates
some of the characteristics of BNs. The example
shown in Figure 1 has a similar structure to the clas-
sical “earthquake” example in Pearl [3]. It considers a
person who might suffer from a back injury, an event
represented by the variable Back (denoted by B).
Such an injury can cause a backache, an event rep-
resented by the variable Ache (denoted by A). The
back injury might result from a wrong sport activ-
ity, represented by the variable Sport (denoted by S)
or from new uncomfortable chairs installed at the
person’s office, represented by the variable Chair
(denoted by C). In the latter case, it is reasonable to
assume that a coworker will suffer and report a sim-
ilar backache syndrome, an event represented by the
variable Worker (denoted by W). All variables are
binary; thus, they are either true (denoted by “T”)

or false (denoted by “F”). The CPT of each node is
listed besides the node.

In this example the parents of the variable
Back are the nodes Chair and Sport. The child
of Back is Ache, and the parent of Worker is
Chair. Following the BN independence assumption,
several independence statements can be observed
in this case. For example, the variables Chair
and Sport are marginally independent, but when
Back is given they are conditionally dependent.
This relation is often called explaining away. When
Chair is given, Worker and Back are conditionally
independent. When Back is given, Ache is con-
ditionally independent of its ancestors Chair and
Sport. The conditional independence statement of the
BN provides a compact factorization of the JPDs.
Instead of factorizing the joint distribution of all
the variables by the chain rule, i.e., P(C,S,W,B,A) =
P(C)P(S|C)P(W|S,C)P(B|W,S,C)P(A|B,W,S,C), the
BN defines a unique JPD in a factored form, i.e.
P(C,S,W,B,A) = P(C)P(S)P(W|C)P(B|S, C)P(A|B).
Note that the BN form reduces the number of the
model parameters, which belong to a multinomial
distribution in this case, from 25 − 1 = 31 to 10
parameters. Such a reduction provides great bene-
fits from inference, learning (parameter estimation),
and computational perspective. The resulting model
is more robust with respect to bias-variance effects
[8]. A practical graphical criterion that helps to
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Figure 1 The backache BN example
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investigate the structure of the JPD modeled by a BN
is called d-separation [3, 9]. It captures both the con-
ditional independence and dependence relations that
are implied by the Markov condition on the random
variables [2].

Inference via BN

Given a BN that specified the JPD in a factored form,
one can evaluate all possible inference queries by
marginalization, i.e. summing out over “irrelevant”
variables. Two types of inference support are often
considered: predictive support for node Xi , based
on evidence nodes connected to Xi through its
parent nodes (also called top-down reasoning), and
diagnostic support for node Xi , based on evidence
nodes connected to Xi through its children nodes
(also called bottom-up reasoning). Given the example
in Figure 1, one might consider the diagnostic support
for the belief on new uncomfortable chairs installed
at the person’s office, given the observation that the
person suffers from a backache. Such a support is
formulated as follows:

P(C = T|A = T) = P(C = T, A = T)

P(A = T)
(2)

where

P(C = T, A = T) =
∑

S,W,B∈{T,F}
P(C = T)P(S)

× P(W|C = T)P(B|S, C = T)P(A = T|B)

(3)

and

P(A = T) =
∑

S,W,B,C∈{T,F}
P(C)P(S)P(W|C)P(B|S,C)

× P(A = T|B) (4)

Note that even for the binary case, the JPD has
size O(2n), where n is the number of nodes. Hence,
summing over the JPD takes exponential time. In
general, the full summation (or integration) over dis-
crete (continuous) variables is called exact inference
and known to be an NP-hard problem. Some efficient
algorithms exist to solve the exact inference problem
in restricted classes of networks. One of the most pop-
ular algorithms is the message passing algorithm that
solves the problem in O(n) steps (linear in the number

of nodes) for polytrees (also called singly connected
networks), where there is at most one path between
any two nodes [3, 5]. The algorithm was extended
to general networks by Lauritzen and Spiegelhalter
[10]. Other exact inference methods include the cycle-
cutset conditioning [3] and variable elimination [11].

Approximate inference methods were also pro-
posed in the literature, such as Monte Carlo sampling
that gives gradually improving estimates as sam-
pling proceeds [9]. A variety of standard Markov
chain Monte Carlo (MCMC) methods, including the
Gibbs sampling and the Metropolis–Hastings algo-
rithm, were used for approximate inference [4]. Other
methods include the loopy belief propagation and
variational methods [12] that exploit the law of large
numbers to approximate large sums of random vari-
ables by their means.

BN Learning

In many practical settings the BN is unknown and
one needs to learn it from the data. This problem
is known as the BN learning problem, which can be
stated informally as follows: Given training data and
prior information (e.g., expert knowledge, casual
relationships), estimate the graph topology (network
structure) and the parameters of the JPD in the BN.

Learning the BN structure is considered a harder
problem than learning the BN parameters. More-
over, another obstacle arises in situations of partial
observability when nodes are hidden or when data is
missing. In general, four BN learning cases are often
considered, to which different learning methods are
proposed, as seen in Table 1 [13].

In the first and simplest case the goal of learning is
to find the values of the BN parameters (in each CPD)
that maximize the (log)likelihood of the training

Table 1 Four cases of BN learning problems

Case
BN

structure Observability
Proposed learning

method

1 Known Full Maximum-likelihood
estimation

2 Known Partial EM (or gradient ascent),
MCMC

3 Unknown Full Search through model
space

4 Unknown Partial EM + search through
model space
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dataset. This dataset contains m cases that are often
assumed to be independent. Given training dataset
� = {x1, . . . , xm}, where xl = (xl1, . . . , xln)

T , and
the parameter set � = (θ1, . . . , θn), where θi is the
vector of parameters for the conditional distribution
of variable Xi (represented by one node in the graph),
the log-likelihood of the training dataset is a sum of
terms, one for each node:

log L(�|�) =
∑

m

∑

n

log P(xli |πi, θi) (5)

The log-likelihood scoring function decomposes
according to the graph structure; hence, one can
maximize the contribution to the log-likelihood of
each node independently [14]. Another alternative is
to assign a prior probability density function to
each parameter vector and use the training data to
compute the posterior parameter distribution and the
Bayes estimates. To compensate for zero occurrences
of some sequences in the training dataset, one can
use appropriate (mixtures of) conjugate prior distribu-
tions, e.g. the Dirichlet prior for the multinomial case
as in the above backache example or the Wishart prior
for the Gaussian case. Such an approach results in a
maximum a posteriori estimate and is also known as
the equivalent sample size (ESS) method.

In general, the other learning cases are computa-
tionally intractable. In the second case with known
structure and partial observability, one can use the
EM (expectation maximization) algorithm to find
a locally optimal maximum-likelihood estimate of the
parameters [4]. MCMC is an alternative approach
that has been used to estimate the parameters of the
BN model. In the third case, the goal is to learn a
DAG that best explains the data. This is an NP-hard
problem, since the number of DAGs on N variables
is superexponential in N . One approach is to pro-
ceed with the simplest assumption that the variables
are conditionally independent given a class, which is
represented by a single common parent node to all
the variable nodes. This structure corresponds to the
naı̈ve BN, which surprisingly is found to provide rea-
sonably good results in some practical problems. To
compute the Bayesian score in the fourth case with
partial observability and unknown graph structure,
one has to marginalize out the hidden nodes as well
as the parameters. Since this is usually intractable,
it is common to use an asymptotic approximation
to the posterior called Bayesian information crite-
rion (BIC) also known as the minimum description

length (MDL) approach. In this case one considers
the trade-off effects between the likelihood term and
a penalty term associated with the model complexity.
An alternative approach is to conduct local search
steps inside of the M step of the EM algorithm,
known as structural EM, that presumably converges
to a local maximum of the BIC score [7, 13].

BN and Other Markovian Probabilistic
Models

It is well known that classic machine learning meth-
ods like Hidden Markov models (HMMs), neural
networks, and Kalman filters can be considered as
special cases of BNs [4, 13] Specific types of BN
models were developed to address stochastic pro-
cesses, known as dynamic BN, and counterfactual
information, known as functional BN [5]. Ben-Gal
et al. [8] defined a hierarchical structure of Marko-
vian GMs, which we follow here. The structure is
described within the framework of DNA sequence
classification, but is relevant to other research areas.
The authors introduce the variable-order Bayesian
network (VOBN) model as an extension of the posi-
tion weight matrix (PWM) model, the fixed-order
Markov model (MM) including HMMs, the variable-
order Markov (VOM) model, and the BN model.

The PWM model is presumably the simplest and
the most common context-independent model for
DNA sequence classification. The basic assumption
of the PWM model is that the random variables (e.g.,
nucleotides at different positions of the sequence)
are statistically independent. Since this model has no
memory it can be regarded as a fixed-order MM of
order 0. In contrast, higher fixed-order models, such
as MMs, HMMs, and interpolated MMs, rely on the
statistical dependencies within the data to indicate
repeating motifs in the sequence.

VOM models stand in between the above two
types of models with respect to the number of model
parameters. In fact, VOM models do not ignore statis-
tical dependencies between variables in the sequence,
yet, they take into account only those dependen-
cies that are statistically significant. In contrast to
fixed-order MMs, where the order is the same for
all positions and for all contexts, in VOM models
the order may vary for each position, based on its
contexts.

Unlike the VOM models, which are homogeneous
and which allow statistical dependences only between
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Figure 2 Hierarchical structure of Markovian graphical models [ OUP, 2005.]

adjacent variables in the sequence, VOBN models
are inhomogeneous and allow statistical dependences
between nonadjacent positions in a manner similar to
BN models. Yet, as opposed to BN models, where
the order of the model at a given node depends
only on the size of the set of its parents, in VOBN
models the order also depends on the context, i.e.
on the specific observed realization in each set of
parents. As a result, the number of parameters that
need to be estimated in VOBN models is potentially
smaller than in BN models, yielding a smaller chance
for overfitting of the VOBN model to the training
dataset. Context-specific BNs (e.g., [15, 16]) are
closely related to, yet constructed differently from,
the VOBN models [8].

To summarize, the VOBN model can be regarded
as an extension of PWM, fixed-order Markov, and
BN models as well as VOM models in the sense that
these four models are special cases of the VOBN
model. This means that in cases where statistical
dependencies are insignificant, the VOBN model
degenerates to the PWM model. If statistical depen-
dencies exist only between adjacent positions in the
sequence and the memory length is identical for
all contexts, the VOBN model degenerates to an
inhomogeneous fixed-order MM. If, in addition, the
CPDs are identical for all positions, the VOBN model
degenerates to a homogeneous fixed-order MM. If
the memory length for a given position is identi-
cal for all contexts and depends only on the number

of parents, the VOBN model degenerates to a BN
model. If the context-dependent statistical dependen-
cies in the VOBN model are restricted to adjacent
positions, the VOBN model degenerates to the inho-
mogeneous VOM model. If, in addition, the context-
dependent CPDs are identical for all positions, the
VOBN model degenerates to a homogeneous VOM
model. Figure 2 sketches these relationships between
fixed-order MMs, BN models, VOM models, and
VOBN models.

Summary

BNs became extremely popular models in the last
decade. They have been used for applications in var-
ious areas, such as machine learning, text mining,
natural language processing, speech recognition, sig-
nal processing, bioinformatics, error-control codes,
medical diagnosis, weather forecasting, and cellular
networks.

The name BNs might be misleading. Although
the use of Bayesian statistics in conjunction with
BN provides an efficient approach for avoiding data
overfitting, the use of BN models does not necessarily
imply a commitment to Bayesian statistics. In fact,
practitioners often follow frequentists’ methods to
estimate the parameters of the BN. On the other
hand, in a general form of the graph, the nodes
can represent not only random variables but also
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hypotheses, beliefs, and latent variables [13]. Such
a structure is intuitively appealing and convenient
for the representation of both causal and probabilistic
semantics. As indicated by David [17], this structure
is ideal for combining prior knowledge, which often
comes in causal form, and observed data. BN can
be used, even in the case of missing data, to learn
the causal relationships and gain an understanding of
the various problem domains and to predict future
events.
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