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Synthesis of Longitudinal Human Location Sequences:

Balancing Utility and Privacy
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Tel Aviv University

People’s location data are continuously tracked from various devices and sensors, enabling an ongoing anal-

ysis of sensitive information that can violate people’s privacy and reveal confidential information. Synthetic

data have been used to generate representative location sequences yet to maintain the users’ privacy. Nonethe-

less, the privacy-accuracy tradeoff between these two measures has not been addressed systematically. In this

article, we analyze the use of different synthetic data generation models for long location sequences, including

extended short-term memory networks (LSTMs), Markov Chains (MC), and variable-order Markov models

(VMMs). We employ different performance measures, such as data similarity and privacy, and discuss the

inherent tradeoff. Furthermore, we introduce other measurements to quantify each of these measures. Based

on the anonymous data of 300 thousand cellular-phone users, our work offers a road map for developing poli-

cies for synthetic data generation processes. We propose a framework for building data generation models

and evaluating their effectiveness regarding those accuracy and privacy measures.

CCS Concepts: • Security and privacy→Data anonymization and sanitization; • Computing method-

ologies→ Neural networks; • Information systems→ Location based services;
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1 INTRODUCTION

Location data are collected on a massive scale by mobile apps, cellular service providers, public
infrastructure providers, and connected cars. The accumulation of location data allows detailed and
longitudinal location sequences that reflect people’s schedules and whereabouts for long periods.
Long location sequences were shown to be very beneficial for scientific and industrial applications:
from urban planning [34, 48, 50, 52, 52] to traffic and mobility planning [47, 47, 51]. At the same
time, location sequences can pose a threat to privacy [14, 39]. Location sequence data are sensitive
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because people’s whereabouts might reveal confidential personal information or allow for the
reidentification of individuals in a database [12, 24, 40]. For example, it has been shown that just
four spatiotemporal points can be enough to uniquely identify 95% of individuals in a location
sequence dataset [14]. Aside from the user’s identity, data collectors can create an entire user
profile, including the user’s routine, acquaintances, favorite locations, and much more. This opens
a gate to many privacy threats that can be more intruding than just identifying a user [50].

Using synthetic data to allow privacy-preserving location analysis was used in the past for gen-
erating data in the form of location trajectories [26, 30, 45], which are concise representations of
behaviors of moving objects as sequences of regions frequently visited within a typical travel time.
The difference between generating trajectories and location sequences is whether the generation
model needs to process the timestamp. The added specificity and details of long location sequences
add additional complexity and may require new generation methods than the ones used in the liter-
ature. Since we are generating sequence-based data, we use models that have temporal properties.
We use a long short-term memory (LSTM) network to generate synthetic data. LSTM is a neural
network-based model with loops that allows information to persist. Since the model is built from a
neural network, it can learn complex patterns in data, enabling it to achieve high-quality synthetic
data. Another sets of models we employ are Markov-based models since they are the most used
models in mobility modeling and analysis. These models create good representations of the tran-
sition probabilities, and we use them to simulate mobility patterns. We use the position weight

matrix (PWM), Markov chains (MC), and variable-order Markov (VMM) chains , which have
proven to yield positive results [5, 20, 36].

We use a varied set of measures to assess the performance of the different models: privacy, statis-
tical similarity, per-instance similarity, and diversity.1 Where we could, we used known standards,
such as the framework of tracking attacks [43] to measure privacy. In some cases, such as for di-
versity, there are not many known measures, so we created a new estimate based on Bilingual

Evaluation Understudy (BLEU) from Natural Language Processing (NLP) [19, 32, 37]. We
show how each performance measure contributes to our understanding of the synthetic data and
the performance of the generation model. We use a Pareto analysis for the performance measures
to decide which generation model is best suited for a specific objective. Additionally, we use a
weighted average of the most relevant performance measures to choose the best model for the
current purpose. While the weighted average gives a definitive score for each model, the Pareto
analysis helps analyze if the score accurately indicates the model’s success. We explore how these
evaluation methods are needed to decide which model should be used [41].

2 BACKGROUND

2.1 Location Data Synthesis

Synthetic data generation can provide valuable insights about human mobility while preserving
confidentiality. Unlike obfuscation [3] and differential privacy [16], the data do not contain any
actual information about any real user. Studies that were focused on generating synthetic location
data (as shown in Table 5) were based on datasets of trajectories: vectors of tuples wherein each
tuple is a location and the corresponding timestamp. Short time trajectories are mostly for traffic
planning and similar applications [26, 30, 45, 53]. Location sequences are a longitudinal sequence of
locations, which are mostly used in behavioral applications that analyze people’s routines [50]. For
example, Ben Gal et al. [8] clustered human long location sequences to identify lifestyle choices.

1The code for performing the evaluation of the methods can be found at https://github.com/iWitLab/evaluating_synthetic_

data.
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There are several models for data synthesis that have been suggested in the literature. One of the
first data generation models that were proposed is the PWM [23]. The PWM is a basic model that
measures the distribution of users over different locations. It is mostly used in the field of genetics
[13, 29, 44]. On the other hand, the model does not measure sequential information, which is the
main quality of our data, for example, the conditional probability of being in a location given a
history of locations. That is why this model is often referred to as a zero-order Markov model. MC
models with higher order memory can help in modeling sequential information. In this model, an
object can move between different states, and the probability of the current state depends only
on the previous K states [46]. In location data, each state is a location, and each object is a user.
The probability of the next location would depend on the last K locations. However, this type of
model suffers from the exponential growth of the state space when using a high order (large K).
Therefore, a Markovian model that aims at addressing this problem is the VMM, which, on one
hand, can model sequential data of considerable complexity [5, 8]. However, on the other hand, the
computation of the algorithm still takes considerable time. These models have been shown to yield
good results, yet such techniques also ignore the presence of long-range dependencies inherent to
human mobility, including non-Markovian characters.

The continuous development of deep learning has led many researchers to use deep models
to generate synthetic data. Many studies have used generative adversarial networks (GANs)
[31, 42, 45]. When dealing with sequential data, the most prominent model in deep learning is the
LSTM network. The model was first suggested in 1997 by Hochreiter, and Schmidhuber [25], and
since then, it has been used in many applications, such as generating trajectories [1, 2, 42], and
text [18, 49]. LSTM has feedback connections and can process single data points (such as images)
and entire sequences of data (such as speech or video). A standard LSTM unit comprises a cell,
an input gate, an output gate, and a forget gate. The cell remembers values over arbitrary time
intervals, and the three gates regulate the flow of information into and out of the cell. These gates
can learn which data in a sequence are essential to keep or throw away. By doing so, it can pass
relevant information down the long chain of sequences to make predictions.

2.2 Evaluating Synthetic Data

Evaluating the quality of synthetic data is a challenging task for both theoretical and practical
reasons. When generating synthetic images, there is a clear set of measures for evaluating the
quality of a generated image, such as the inception score and maximum mean discrepancy [10].
These measures are used repeatedly and are a common standard when comparing generation
models since they have proven similar results for human tests. However, it is not always clear
how to evaluate synthetic data in our field, and every article uses different measures to do so. As
Table 5 shows, most studies use up to two performance measures to evaluate the quality of syn-
thetic data, and the performance measures are usually used without any justification from prior
works. However, each of these performance measures serves a specific purpose, and overlooking
one can lead to misleading results.

The first performance measure considered in the literature is statistical similarity. Similarity can
be measured through aggregated statistics, such as comparing the distributions of the most visited
locations, travel time, and work hours [9, 22]. However, the similarity of the statistics between
the synthetic and original data does not guarantee that each location sequence in the generated
data will be similar to the original location sequences. A visual test sometimes accompanies the
statistical similarity, simply going over the synthetic data with a human eye to see if the generated
data looks similar to the original data. [38, 45, 53].

Other studies focused on the performance measures of per-instance similarity and diversity [26].
Per-instance similarity means that each location sequence is similar to the location sequences
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in the original data. Diversity means that the distribution of the synthetic data is the same as
that of the original data. However, there can be a tradeoff between per-instance similarity and
diversity: a dataset could have a high similarity score by repeating one good instance over and
over again, which, in turn, would wield a shallow diversity score. Some studies focused on the
performance measure of privacy [31, 42], comparing it to the similarity of the data. Previous work
had shown the tradeoff between per-instance similarity and privacy, and this is also supported in
our work [31, 42]. Synthetic data with high per-instance similarity may be a copy of the original
data, which would not conserve any privacy. Since no study has used all the above performance
measures, the understanding of the results is partial. Missing one or more of the performance
measures might lead to a misunderstanding of the performances of the proposed models. Most
studies use up to two performance measures to evaluate the quality of synthetic data. However,
each of these performance measures serves a specific purpose, and overlooking one can lead to
misleading results. For example, if one does not look at the diversity of the given synthetic data,
the model can generate the same instance many times. The synthetic data will receive very high
per-instance similarity scores if an instance is similar to the original data. Therefore, the evaluation
will show very positive results, while in actuality, the synthetic dataset will not be helpful.

Since most studies used measures relevant only for short trajectories, we use known evaluation
measures originating from the mobility and NLP fields to evaluate our synthetic data. Text data
have similar temporal characteristics to location sequences, so some of their measures are very
well suited for our study. This is a relatively new approach to evaluating synthetic mobility data.
To measure the per-instance similarity, a widely used measure from the NLP field, the BLEU is
suggested [19, 32, 37]. To use measures from the text generation field, we consider a diary to be a
sentence and each location in the diary to be a word in a sentence; therefore, a set of diaries can be
considered as a corpus (a language resource consisting of a large and structured set of texts). The
BLEU evaluation measure counts the number of overlapping n-grams in the generated and original
text, divided by the total number of n-grams. The measure itself is straightforward to calculate and
understand.

A popular measurement method for per-instance similarity that also originates from the text
generation field is based on a practice in NLP where, to tell if a text generation model is good,
another model (usually a neural network) is created to distinguish the generated text from the real
text [4, 21]. This evaluation model is customized for the dataset that is being tested and therefore
gives a score that matches the problem at hand.

The most commonly used evaluation measure of per-instance similarity in the mobility field is
the Markov log-likelihood [36]. The likelihood computes the probability of a sample being drawn
from the same distribution as that of the original data. If the sample is of good quality, the proba-
bility is high. To measure the diversity of the synthetic data, we use the Kullback–Leibler (KL)
divergence measure, as demonstrated by Huang, D. et al. [26]. For privacy, Kulkarni et al. [31]
used the framework of tracking attacks [43]. Schematically, the adversary specifies a subset of
users, regions, and time instants and asks for information related to these subsets. If the adver-
sary’s objective is to determine the whole sequence (or a partial subsequence) of the events in
a user’s trace, the attack is called a tracking attack. These measures have not yet been used in
the field of synthetic mobility data as evaluation measures; in this study, we utilize them for our
evaluation process.

3 METHOD

This section discusses our methodology for processing the original data, creating data generation
models, and evaluating these models. The method with which we devise our models starts with
building the model; next comes the training of the model, followed by the model generating the
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Fig. 1. The flow chart describes the process of generating synthetic data. On the left, we start with the data

processing step, which constructs the original data in a diary format. The original data are used to build

and train our models. After the models are trained, they are used to generate synthetic data. Finally, the

synthetic data are evaluated against the original data to decide which model to use for a specific purpose.

This evaluation is done using various measures (some were developed as part of this study), which are later

used in a pareto analysis and weighted average.

synthetic data, as seen in the general flow diagram in Figure 1. Furthermore, each model needs the
data to be adjusted to process it, and this will be discussed with each model’s structure. After gen-
erating synthetic data, the data are evaluated against the original data using different performance
measures. Using these measures, we can compare the models to decide which model to use.

3.1 Location Sequence Data

3.1.1 Data Definitions. First, we formally define the format of our original data. LetG denote a
finite set of geographical locations in our data. Then, a location sequence is a vector X ∈ Gn , where
n is the number of time slots in which the location data are recorded. For example, considering
Figure 2,G contains Crown Heights, Columbia University, and Williamsburg, where n is 13. In our
data, n = hours per day ·week days . This definition was used in a few other studies, such as [6, 8].

A trajectory is formally defined as a column vector X = (G,T )m , where G denotes a finite set
of geographical locations, T is a timestamp, and m is the number of timestamps for which the
location data are recorded. An example of a location sequence and a trajectory can be seen in
Figure 2. Using location sequences instead of trajectories has several advantages. First, the visual
representation of the data makes it more compatible with human visual testing. The second issue
with using trajectories is that many trajectories can have different lengths for the same time period.
We have used a padding method to reach similar lengths: inserting additional unnamed data points
so that all data sequences are of the same size. In location sequences, all instances in the data are
of the same size and therefore do not need any alterations. Another issue is that most models in
the mobility field are sequential models.

3.1.2 Data Processing. We start the process with location data and use data processing methods
to transform them to a location sequences. The diaries are created in three steps: finding the users’
frequent locations, discretizing the location coordinates, and dividing the data into evenly sized
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Fig. 2. Same day for a user represented as both a location sequence and a trajectory. The trajectory contains

locations that were recorded, and therefore, the length of the trajectory can vary depending on the number

of recorded terms. In this case, the trajectory was recorded every 2 hours.

time periods. The frequent locations are found using DBSCAN clustering, as shown by Burkhard
et al. [11]. Since we did not have any additional data types to utilize in this case, we removed
the time tags from our data during the clustering process. We used only the location data, which
can be considered continuous and thus could fit DBSCAN to find the frequent locations per user.
DBSCAN was selected since it is known to be an efficient clustering scheme over big data for
arbitrary shapes and not-necessarily smoothed clusters (locations such as malls, junctions, stations,
etc, often have arbitrary shapes). DBSCAN was a good fit also since it is based on batch processing,
thus it does not require an entire rerun of the algorithm when new points are added to the dataset.
However, as indicated in the text, the clustering module is independent and therefore the DBSCAN
can be replaced by another clustering method as a module in the process. Since every user has a
different number of frequent locations, a clustering algorithm that does not require prespecifying
the desired number of clusters is needed. DBSCAN was found to be the best suited algorithm to
fulfill that requirement, and it offers two more benefits: robustness to noise and flag points that do
not belong to any cluster (tagged as “−1”). For mobility data, a “−1” location symbolizes traveling
between locations. After clustering the data, we need to discretize them to reduce their complexity.
To do that, we use statistical areas defined by the Central Bureau of Statistics. A statistical area
is the smallest statistical-geographical unit of a municipality for which census data are available.
Each statistical area contains between 3,000 and 5,000 residents, resulting in this case in 3,071 areas.
Statistical areas are used in many articles that study the differences between various populations
[17, 28, 33]. Let us note that, in general, if census data are available on smaller areas the proposed
method could be applied also to such cases. Our method could work for any type of discretization
of the coordinates, e.g., based on a grid, octagons, and so on, as long as the number of areas is not
too large. To create the final diaries, the data are aggregated the following way: for each hour and
weekday, the most prominent location is chosen. Night hours are, for the most part, uninformative
and therefore removed. Final diary examples are presented in Figure 3.

3.2 Markovian Models

As discussed in Section 2, we use the following baseline models for comparison purposes:

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 6, Article 118. Publication date: July 2022.



Synthesis of Longitudinal Human Location Sequences: Balancing Utility and Privacy 118:7

Fig. 3. Examples of five original diaries. The columns represent the day of the week (1 - Sunday, . . . , 7 - Sat-

urday), and rows represent the hour of the day (5:00–22:00). The location number is the statistical area ID,

and the cells marked in blue represent home, green represents work, and pink represents traveling. These di-

aries represent different lifestyles of different users. Users A and B are working people with different working

hours. User C is a user that travels for most of the day. User D is a user who mainly stays at home.

Position Weight Matrix (PWM)—This is a basic model that measures the distribution of users
over different locations. The PWM is an occurrence table, where each value is a weight represent-
ing the propensity of a given symbol to occur at a given position. Given a set X of N aligned
sequences of length L, the elements of the PWM matrix (Mk,l ) are calculated as follows:

Mk,l =
1

N

N∑
i=1

I (Xi,l = k ), (1)

where i ∈ (1, . . . ,N ), l ∈ (1, . . . ,L), and k ∈ K , where K is a finite set of symbols. Even though
the PWM is a very simple model, it is important for signals in biological sequences. [29]. In DNA
sequences, the PWM models nucleotides as symbols and therefore calculates the probability of
each nucleotide being in each location in the sequence. In our case, the sequences are diaries,
and thus, the locations are symbols. Using the PWM in this way provides a good representation
of the distribution of locations in time. Another possible use of the PWM could be to address
semantic locations (home, work, etc.), and doing so provides a representation of the distribution
of different semantic locations (which we do not use in this study). Looking at Figure 2, the symbols
are Crown Heights, Columbia University, and Williamsburg, and the PWM algorithm calculates
the probability of being at one of these locations in each time slot. This model is also viewed as
an MC of order 0, and it has been widely used due to its ability to decide which locations and
time slots the users are distributed in. The main limitation of the PWM is that it cannot model
correlations between symbols. If there is a common sequence of symbols, the model will not be
able to learn it.

Markov Chains of High Order (MC)—To solve the issue of finding the dependencies between
locations, a Markov process with an order higher than 0 is needed. A Markov process is a stochastic
process that satisfies the Markov property. A stochastic process has the Markov property of order
m, if the conditional probability distribution of future process states depends only upon the lastm
states. This can be seen in the following equation:

p (rt ) = p (rt |rt−m , . . . , rt−1), (2)

where rt is the location variable r at time t and m is the order of the MC. We define the states of
the MC to be the locations and the corresponding times that create a nonhomogeneous Markov
model. In this way, the transition probability is affected by location, the day of the week, and the
time of the day. Differentiating between days, weekends, hours, and so on, is more accurate in
terms of capturing the diaries at those slots, but will result in a significantly smaller amount of

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 6, Article 118. Publication date: July 2022.



118:8 M. Benarous et al.

training data. MC are straightforward models. However, they involve several modeling challenges.
For one, when the order increases, so does the complexity of the model. The higher the order is, the
higher the computation time and memory needed. Another issue is that for low Markov orders, the
model underfits and cannot represent highly complex trajectories. Furthermore, for high Markov
orders, the model overfits with smaller amounts of data. This implies that when the model does
not have enough variant patterns to learn from, it will repeat the same patterns as those in the
original data.

Variable-Order Markov Model (VMM)—The VMM is an extension of general Markov models,
and the states are defined similarly to their definitions in the MC model. In contrast to fixed-order
Markov models, where the orders are the same for all positions and all contexts, in VMMs, the
order may vary for each position based on its context. For example, the conditional distribution
of a set of users’ locations at 6:00, given the locations at 5:00, does not necessarily depend on the
locations at 4:00 (e.g., in most cases, if a user was at home at 5:00, he/she was there at 4:00 as well).
Thus, at 6:00, the required memory order can be limited to only 1 hour. However, the conditional
distribution of a set of users’ locations at 6 pm, given the locations at 5 pm, also usually depends
on the locations at 4 pm. Therefore, a model order of 2 or higher is required for this time slot.
Thus, VMMs provide the means for capturing both large and small orders. A VMM reduces the
memory needed to store the model (compared to MC of high memory orders); however, it requires
increased computation time. This model was used before on locations sequences by Ben-Gal and
Weinstock et al. [8] and has shown promising results.

3.3 LSTM Models

Our proposed models are based on an LSTM network. The ability of LSTMs to remember past
behavior for future predictions has proven to be valuable in the mobility field [1, 2, 30] and mo-
tivates us to use them for generating user mobility diaries. Similar to those of MC, the model’s
input is a sequence of locations, and the model’s output is the next location. Therefore, we need
to create a training set where the training input is a set of location sequences and the labels are
the next locations of the sequences. To use diaries as inputs for a neural network, we need to
convert the diaries to sequences and vectorize each sequence (embeddings). An embedding is a
mapping of a discrete variable to a vector of continuous numbers. We use two different methods
for embeddings: creating the embeddings before building the model and building the embeddings
as part of the model. On one hand, embedding the data before inputting them into the model is a
much faster process and has proven to yield good results. On the other hand, embeddings that are
created within the model are optimized for the specific problem the model is facing but take much
more time to compute. See a comparison of the algorithms in Figure 4.

Location2Vector LSTM (Loc2Vec)—This model requires embedding the diaries before in-
putting them into the neural network. To do that, we use the algorithm of Word2Vec [35], specif-
ically the Continuous Bag-of-Words (CBOW). Word2Vec creates word embeddings so that
words that share common contexts in the corpus are located near one another in the vector space.
Word2Vec originates from the NLP field, which means that to use it, we need to convert our data
to a text format. We use the definition we showed in Section 2, where we define a document to be
a list of all the diaries, each diary is a sentence in the document, and each location is a word in a
sentence. The resulting vocabulary is a list of all unique locations. Using Word2Vec on our data
converts all locations in the diaries to vectors of size v , resulting in diaries of size (n ×v), where n
is the number of time slots at which the location data are recorded. At this point, the data are well
formatted and can be used as inputs for the LSTM network. The network’s input sequence size
is set to be u so that the final input size for the network is u × v . Aside from the location vector,
another input for the network is the start time of the sequence t ∈ (1, . . . ,n). The first layer of
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Fig. 4. Proposed LSTM models architectures.

the network is an embedding layer for the time input, and an embedding converts the time to a
vector of size n ×v . Then, the location vector is multiplied by the time vector, and it goes through
two LSTM layers and an additional dense output layer of the vocabulary sizes. The loss function
is the categorical cross-entropy loss, which means that the output is a vector of probabilities for
each location. In this way, we can randomly choose the next location based on these probabilities
and create varying diaries for each initial input.

LSTM with Embedding Layers—In this model, we learn the embeddings as part of the neural
network model, which in theory creates more custom embeddings for the model than learning the
embeddings separately. As before, we use an input length of u, but here, the model’s inputs are
raw location data. Each location in the sequence goes through an embedding layer that turns the
location into a z-length vector. The embedding vectors are initialized randomly and are trained to
minimize the final loss function during model training. These low-dimensional dense embedding
vectors are then concatenated to create a vector of lengthm ×z and, as before, they are multiplied
by the embedded time vector. Following this, the multiplied vector goes through the LSTM layers
and an additional dense layer. The benefit of this method is its ability to learn the embeddings
while optimizing the neural network. On one hand, this should provide the optimal embeddings
for this problem. On the other hand, the chance of overfitting increases.

In Figure 5, we can see the synthetic diaries generated by the different models. The PWM diary
does not resemble any possible diary in the original data. While this algorithm ensures that many
of the statistical qualities of the original data are kept, it does not guarantee that the outcome
will be similar to the original data. The other models manage to generate very realistic diaries
representing different working day hours for the users. For further examples of generated diaries
see Figures 10–14.

3.4 Evaluation

The generated data are evaluated using four performance measures: statistical similarity, per-
instance similarity, diversity, and privacy. Each of these performance measures is analytically
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Fig. 5. Examples of four diaries generated by the different models. We can see that the models learn different

patterns of user behaviors, such as being at home in the evenings and on weekends, going to work, and so on.

calculated and assigned a numerical value for comparison against those of the other models. The
performance measures are also calculated on an original subsample dataset, which is a sample of
the original data with the same size as that of the generated synthetic data. This is done to account
for the effect of using a small dataset. A desired result would be considered a generated dataset that
yields similar results to those achieved by the original subsample in terms of the statistical simi-
larity, per-instance similarity and diversity performance measures, while preserving more privacy.
To calculate the evaluation measures for each of the models, we use the following procedure: we
generate 50 datasets, each containing 20,000 diaries, for each model. Each evaluation measure is
then calculated per dataset, resulting in 50 scores. The mean score is then calculated and assigned
as the evaluation measure score for each model accordingly.

After calculating the evaluation measures for each model, one use a weighted average of the
measures to assess the usefulness of each model for a specific objective. Each measure is put on
a scale between 0 and 1 and receives a weight of how important it is for the objective at hand.
For example, if the objective is to release a dataset for public use, the privacy measure will receive
the highest weight, while the similarity measures will receive lower weights. If the objective is to
create a dataset for human mobility analysis, statistical similarity and per-instance similarity will
receive the highest weights, while the privacy measure will receive the lowest weight. The final
weighted and averaged score indicates which of the tested models best suits the desired objective.
This is a powerful tool for application developers.

3.4.1 Privacy. When creating synthetic data, our main purpose is to synthesize data that would
not reveal the identities of users from the original data. This means that it should not be possible
to use the synthetic data to reidentify users or extract further information about them. For this
purpose, we use the following measures:

—Reidentification probability—This measure uses the framework of tracking attacks [43]:
The adversary specifies a group of users and a subset from a location sequence for each
user in the group, and the objective of the adversary is to extrapolate additional information
about the users in the group. The idea behind this measure is that given a set of known
locations, it is possible to identify the rest of the user’s diary and therefore identify the user.
The known locations are n locations with timestamps from a user’s original diary. They
are used to calculate the probability of inferring the rest of the original diary by using the
synthetic data. This reveals how probably it is to extract information about a user from the
synthetic diaries while having partial prior knowledge on the user from the original diaries.
Ideally, if the synthetic data preserve privacy well, the reidentification probability should be
low. If the probability is high, then the synthetic data are a copy of the original data and
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hence do not preserve privacy at all. Given a diary d from the original data and a subsample
dn of d , where |dn | = n, we set S to be the group of all synthetic diaries that match dn . The
reidentification score is defined as

ReIDn =
1

T

T∑
t=0

1

|S |
∑
s ∈S

I (s (t ) = d (t )), (3)

where T is the time span of diary d , d (t ) is the location of diary d at time t , and s (t ) is the
location of a synthetic diary s in S at time t . If the synthetic dataset is too similar to the
original dataset, then the reidentification of the diaries should be very accurate. This means
that the lower the reidentification score is, the less privacy we preserve.

—Proportion of identical diaries—Given a set of diaries, how many of them are completely
identical to an original data diary? This measure highlights the extent to which the model
creates direct copies instead of creating unique diaries. If an adversary can find the diaries
that are based on real people, it is very easy to identify the users from these diaries. The
measure is defined as

IdenticalDiaries (S ) =
1

|S |
∑
s ∈S

I (s ∈ D), (4)

where S is the set of generated diaries, s is a diary in S, and D is the set of original diaries.

3.4.2 Statistical Similarity. When generating synthetic data, we expect them to keep the statis-
tical properties of the original data [22, 27]. For example, we want users to have the same working
hours as the original users and the same location distribution. To understand if the synthetic data
have the same statistical qualities, we use different statistics that were used in previous articles
as evaluation measures. These statistics are of value to different applications and reflect the users’
mobility behaviors in the dataset:

—Statistical area distribution—This is the user distribution across various statistical areas
calculated per time slot. The purpose of this statistic is to ensure that synthetic users are
present in the same locations as those of the original users, and it is the most popular statis-
tical measure according to [9, 22]. For each statistical area a and time slot t , we calculate the
following probability:

StatAreaDist (a, t ) =
1

|S |
∑
s ∈S

I (s (t ) = a), (5)

where S is the set of generated diaries, s is a diary in S, and s (t ) is the location of diary s at
time t . The statistical area distribution is the set of StatAreaDist (a, t ) for all a in the set of
statistical areas A and t = 1, . . . ,T .

—Transition matrix—This is the share of users that move between every combination of
two different locations calculated per time slot. Many organizations use transition tables to
understand the flows of people between areas. These kinds of statistics help improve traffic
planning. For two statistical areas a1 and a2 and a time slot t , we calculate the following
probability:

TransMatrix (a1,a2, t ) =
1

|S |
∑
s ∈S

I (s (t ) = a1 & s (t + 1) = a2), (6)

where S is the set of generated diaries, s is a diary in S, and s (t ) is the location of diary s at
time t . The statistical area distribution is the set ofTransMatrix (a, t ) for all a1 and a2 in the
set of statistical areas A and t = 1, . . . ,T − 1.
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—Task hours distribution—This is the distribution of daily hours spent on a relevant task
(work, travel, home, etc.). This measure helps understand users’ daily routines, and it was
used by a previous article [9]. For a task b and number of hours n, we calculate the following
probability:

TaskHoursDist (b,n) =
1

|S |
∑
s ∈S

I �
�

T∑
t=1

I (d (t ) = a(b)) = n�
�
, (7)

where S is the set of generated diaries, s is a diary in S , s (t ) is the location of diary s at time
t , and a(b) is the statistical area that represents task b. The task hours distribution is the set
of TaskHoursDist (b,n) for n = 1, . . . ,N .

We measure each statistical similarity measure by calculating the distance between the statistics
of the synthetic and original data. This distance is calculated by the KL divergence , as seen in
Bindschaedler et al. [9]. The KL divergence is a natural way to compare distributions: It returns
a nonnegative real number, where a larger value denotes a greater distance between two discrete
probability distributions. Given P and Q , which are defined on the same probability space X , the
KL divergence from Q to P is defined as

DK L (P | |Q ) =
∑
x ∈X

P (x )loд

(
P (x )

Q (x )

)
. (8)

Given a random variable X , P is the distribution of the synthetic data over X , while Q is the
distribution of the original data over X . For example, if the statistic used is the statistical area
distribution, then x ∈ X is a statistical area from the statistical areas list.

3.4.3 Per-instance Similarity. An important performance measure is per-instance similarity.
Each diary in the synthetic data should be similar to the original diaries. This means that each
generated diary, when evaluated, should have a score close to the original subsample score. For
example, in the field of image analysis, a similarity test could be similar to a visual test if a tester
looked at a generated image and could not tell if it was generated or real. While various studies use
different methods to measure per-instance similarity [26, 31, 42], we use the following measures:

—Log Likelihood—This measures the “goodness of fit” of a model to a sample of data. This
is the log of the probability that a set of synthetic data is from the same distribution as the
original data. This measure is based on the work of Ohler et al. [36] and has been used in
many studies [7, 8, 50]. It assumes that the original data behave according to a MC, and using
the transition matrix from the MC model, the likelihood is calculated by applying the law of
total probability, that is, multiplying the conditional probabilities:

L(θ ) = −LOG
⎡⎢⎢⎢⎢⎣

T∑
i=1

P (ri |ri−1, . . . , ri−15)
⎤⎥⎥⎥⎥⎦
, (9)

where T is the sequence’s length, ri is the location at time i, and P (ri |ri−1, . . . , ri−15) is the
conditional probability that the user is in location ri given that he/she followed a trajectory
specified by the sequence ri−1, . . . , ri−15. If the diary contains frequent sequences from the
original data, its log likelihood score should be close to 0.

—Time-based BLEU—The main objective of this measure is to determine how many se-
quences of words are repeated in the generated text and the original text. The BLEU mea-
sure was proposed by Papineni et al. [37] and was originally used to evaluate the quality of
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generated text [19, 32, 37]. The BLUE measure is defined as

BLEUN =
Matched (N )

S (N )
, (10)

where Matched (N ) is the number of overlapping n-grams in the original data and synthetic
data, and S (N ) is the number of n-grams in the synthetic data. Overall, it measures the col-
lective synthetic dataset against the original dataset. In this way, we can understand whether
a pattern in the synthetic data exists in the original data. Traditionally, the BLEU measure-
ment would use n-grams of words that would translate to n-grams of the locations in location
sequences. However, in location sequences, when looking at the locations, it is also impor-
tant to know when the user was there. This is why we tweak the BLEU measure by adding
timestamps to the n-grams

TimeBLEUN =

∑T
t=0 Matched (N , t )∑T

t=0 S (N , t )
, (11)

where Matched (N , t ) is the number of overlapping n-grams in the original data and the
synthetic data at time t , and S (N , t ) is the number of n-grams in the synthetic data at time t .

—Discriminator—This measure is based on a deep neural network assigning scores to diaries.
It is based on a common practice in NLP where, to find if a text generation model is good,
another model is created to distinguish the generated text from the real text [4, 21]: Let L
be the language and L∗ be the generated text. Additionally, let X be a piece of text obtained
from either L or L∗. Let y = h(X ) such that y = 1 if X ∈ L and y = 0 if X ∈ L∗, where h is
the hypothesis function (a classifier like AdaBoost, SVM, etc). If P[y = h(x )] is found to be
sufficiently high, X is very similar to L.

In our study, we score generated diaries on a range between diaries of random sequences
and diaries from the original data. In particular, we create a dataset of fake diaries that are as-
signed random locations in sequences and then tagged as “fake“ and original diaries that are
tagged as “real“. A fully connected neural network with embedding layers for each location
in a diary is trained on this dataset. After the neural network is fully trained, it evaluates the
generated diaries from the synthetic data. Each diary is then scored between 0 (false) and 1
(real). The higher the score is, the more the model “believes” that the diary belongs to the
original data. The total score for this evaluation measure is the average of all diary scores.

This measure differs from the log likelihood and the time-based BLEU measure by looking
at the diary as a whole in contrast to looking at sequences from the diary. The time-based
BLEU measure will give a good score to a synthetic diary as long as every sequence in that
diary was in some other diary from the original diary, even if the resulting synthetic diary
does not resemble any plausible original diary. For example, if we see a diary that shows a
user starting the day at location “1”, going to work at location “2”, and finishing the day at
location “3”, the time-based BLEU score will be high if there is a user that lives in location
“1” and works at location “2” and another user that works at location “2” and lives in location
“3”. This means that the two described sequences can be found in two diaries of two original
users; however, the synthetic diary itself does not show any actual patterns that users follow.

3.4.4 Diversity. Synthetic data also need to have diversity, and the generated diaries should
have the same variety of diaries as the original diaries. For example, a common issue with genera-
tive models is that the models enter a state of “mode collapse” and generate the same sample over
and over again. This might not be detected in the per-instance similarity if the repeated diary is
nearly identical to an original diary, nor will it be detected in the statistical similarity if it copies
the statistics of the original diaries. For example, if the statistic we are measuring with statistical
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similarity is the average working hours, we can create a dataset with one repeated diary that has a
user with the exact same working hours as the average working hours of the original data. Should
that diary be an exact diary from the original dataset, it would also receive a high score in the
per-instance similarity measure. We want our diversity measure to indicate if such issues arise.

—Wasserstein Likelihood (WS)—This measure quantifies if the dataset has the same dis-
tribution of likelihood scores (described in terms of per-instance similarity) as the original
data. We use the Wasserstein distance to calculate the similarity between the distributions
of scores, as shown by Del Barrio et al. [15]. The Wasserstein distance is defined as

Wp (μ,ν ) = (in f E[d (X ,Y )p])1/p , (12)

where p > 1 denotes the moment, E[Z ] denotes the expected value of a random variable
Z , and the infimum is taken over all joint distributions d of random variables X and Y with
marginals μ and ν , respectively. A successfully generated dataset would have a likelihood
WS score that is as low as possible.

—Reverse BLEU—To test diversity, we want to measure how many of the unique n-grams of
the original data appear in the synthetic data. The reason behind this is that we want the
synthetic data to have as many different patterns as in the original data. If the synthetic data
are not diverse, they will have very few patterns that match the original data patterns. Similar
to the time-based BLEU measure in the discussion on per-instance similarity performance
measures, the location n-grams are given corresponding timestamps. The reverse BLEU is
defined as

RevBLEUN =

∑T
t=0 Matched (N , t )∑T

t=0 O (N , t )
, (13)

where Matched (N , t ) is the number of matched n-grams in the original data and synthetic
data at time t and O (N , t ) is the number of n-grams in the original data at time t.

—Wasserstein Discriminator (WS)—We want to measure if the synthetic data have the same
discriminator scores (based on the per-instance similarity discriminator measure) as those
of the original data. To calculate the distance between the synthetic discriminator scores and
the original discriminator scores, the Wasserstein distance is used to calculate the distance
between these distributions. This measure is calculated using the same Wasserstein distance
as that defined in Equation (12).

4 EXPERIMENTS

In this section, we apply the method discussed above to a real example dataset to evaluate the
quality of the generation models. The data we use are anonymous cellular data. We show examples
of diaries and the generated diaries from the different models trained on these data. Finally, we go
over the proposed measures and evaluate the performances of the different models.

4.1 Data

This study uses anonymized data from a cellular service provider covering a central city and its
surrounding area as its raw data. This data consists of 1.8 Million cellular phone users in the De-
cember 2012 – January 2013 time period. The data are anonymous: users’ International Mobile

Subscriber Identifiers (IMSIs) have been removed and replaced with randomly assigned IDs.
The raw cellular data are a compound of five features that the cellular operator saves and analyzes,
as used in previous studies [8].

Generally, the collection of location data occurs during any type of data transfer, such as phone
calls, streaming, interactive media, background, and registration signals (correspondence between
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the device and the cellular network) or other network signals. The data available per user, in most
cases, are not continuous, and there are many blank time slots in users’ data. Blank time slots are
time frames in which no cellular signal was available, resulting in no location data being available
during the specific days/hours/minutes. This could happen when the user leaves an area covered
by the Radio Network Controller (RNC), turns off his/her cellular device or enters an area
with no reception. Thus, there is no geographical continuity per user, even in the central city and
surrounding area. For that, We remove users that do not have enough data. Days with less than
10 hours are removed reducing data from 1.8 M users to only 400 K users, afterward, users with
less than four active days were removed reducing the total number of users further to 300 K users.
The remaining data goes through the proposed processing method (shown in Section 3.1) results
in a 7-day diary of size 7 × 18, and an example of such a diary is shown in Figure 3 in Section 3.

To train the LSTM models successfully, we need to apply one more data preprocessing step.
When looking at different diaries, we can see that most people stay at a location for more than an
hour. This means that when looking at the last k locations, the best guess for most hours is that
a user will stay at the same location as the last location he/she has been at. Training the LSTM
models on the original diaries, as described in Section 3.1, will give problematic results since the
data will teach them to use only the last location to predict the next location. Therefore, we use
an undersampling of 50% for all the subsequences where the label is the same as that of the last
location.

4.2 Results

A good data generation model creates synthetic data that are fairly similar to the original data while
preserving a higher level of privacy. Therefore, we want the synthetic data to perform sufficiently
well in all performance measures. In this section, we evaluate all of the performance measures as
described above, looking at each one individually and all of them as a whole.

4.2.1 Privacy. We first look at the privacy measures, as shown in Figure 6. We use the original
subsample as a baseline to see if the different models preserve privacy better than the original data.
It is expected that the original subsample will have a relatively bad privacy score since it does not
preserve any privacy by definition. (A bad score means that the adversary can easily identify users
from the data.) Models with better scores can be considered privacy-preserving models.

The Markov-based models (the MC and VMM) achieve approximately the same reidentification
probability scores as that of the original subsample. We can see by the proportion of identical di-
aries that the Markov-based models reflect some of the original data and hence are able to achieve
a reidentification score similar to that of the original subsample. According to the privacy perfor-
mance measures, the Markov-based models do not offer any advantages over using the original
data for privacy-preserving purposes. The LSTM embedding model also obtains similar scores as
those of the original subsample in terms of the reidentification probability and a similar score to
the Markov-based models in terms of the proportion of identical diaries measure. This can happen
if the model produces very realistic diaries that are too similar to the original data or if the model
is overfitted and hence simply memorizes the original data. The privacy scores of the PWM model
are nearly a constant 0 (the best possible privacy score), because the diaries generated by the PWM
model are not similar at all to the original diaries, hence preserving maximum privacy. The next
best model after the PWM model, is the Location2Vector LSTM (LSTM Loc2Vec). The LSTM
Loc2Vec score for the proportion of identical diaries is close to 0, and the reidentification probabil-
ity scores are consistently 10% better than those of the rest of the models. Additionally, only 0.3%
of the diaries are identical to any original diary, meaning that identifying users is a much harder
task with this model compared to the other models, where 3.3% of the diaries are identical. Taking
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Fig. 6. The left graph shows the reidentification probability measure of each model and the number of known

locations. The PWM model is not shown since the results are almost 0 for every number of known locations,

and this would distort the graphs. The right graph shows the proportion of identical diaries measured by

each model. The original subsample results are not shown in this graph since they are a constant 1 - all of

the diaries in the original subsample exist in the original diaries.

all the above factors into consideration, it can be concluded that LSTM Loc2Vec shows the most
potential as a generation model for privacy protection.

4.2.2 Statistical Similarity. The first statistic we look at is the statistical area distribution.
When comparing the models using this statistic, the PWM and Markov-based models (the MC and
VMM) obtain the best results, as shown in Table 1. The statistical area distribution scores of the
Markov-based models are only 7% higher than those of the original subsample, while those of the
LSTM-based models are 50%–80% higher than those of the original subsample.

The second statistic we look at is the transition matrix, which details the hourly transitions
between statistical areas. Looking at Figure 7, all models except for the PWM have generally similar
transition matrices to that of the original subsample. The PWM transition matrix looks like random
noise, and accordingly, its score is also the worst. The MC and VMM obtain the closest scores to
that of the original subsample, while the LSTM models have slightly worse results (2%–5% higher
than the original subsample).

The last statistic is the task hours distribution; for our research, we choose to focus on the
task of going to work. To calculate the working hours distribution, users are first divided into three
categories: working users, nonworking users, and travelers (users that travel between locations
most of the time). Nonworking users and travelers are assigned zero work hours. For working
users, we find the work location of each user by finding the second most prominent location in
the user’s location sequence (assuming their home is the most prominent location). Using the
work location of each user, we count the number of working hours and average it by dividing
by the working days. This measure helps understand users’ daily routines and how many users
actually work, which is very important for government agencies, for example. To calculate the
distribution traveling hours, we count the number of hours traveled per day. This statistic helps
understand how much time people spend on the road and helps with traffic and transportation
planning. As seen for the other statistics, the Markov-based models have the closest values to those
of the original subsample. If we look at the LSTM-based models, LSTM Loc2Vec has better results
than the LSTM embedding model for the working hour distribution. However, for the traveling
hour distribution, the LSTM embedding model has better results. This shows that the models learn
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Fig. 7. The transition matrix at 8:00 on Sunday for the original data and the models’ synthetic data. The

y-axis shows the location IDs from which the users departed, and the x-axis shows the locations at which

the users arrive.

Table 1. The Table Shows the Statistical Similarity Measures Obtained by Each Model as a Deviation

Percentage from the Original Subsample

Measure
Original

subsample
PWM MC VMM

LSTM
Loc2Vec

LSTM
embeddings

Statistical areas distribution 0% 7.4% 7.4% 3.7% 81.4% 59.2%
Home hours distribution 0% inf 37% 37% 66% 80%
Work hours distribution 0% inf 37% 37% 66% 80%
Traveling hour distribution 0% inf 60% 59% 74% 53%

Each row represent a different statistical similarity measure, and each column represent a different model. All

measures and models are tested by a T-test with the original subsample and are found to be statistically significant

with a confidence level of 90%. This means they are all significantly different from the original data, which is not

what we desire.

different patterns: the LSTM Loc2Vec model better learns how to create realistic working days,
while the LSTM embedding model better learns how to create traveling hours.

When looking at all the statistical similarity results in Table 1, we observe that the MC model and
VMM achieve the best statistical similarity scores. This tends to happen since the Markov model
consumes a large amount of data for training the model and refining the transition probabilities,
and then in the generation stage, it generates patterns that are often very realistic and actually
repeat real patterns in the dataset. This is consistent with the results from the privacy performance
measure. Therefore, while Markov-based diaries are statistically similar to the original data, they
are of low quality in terms of privacy.

4.2.3 Per-Instance Similarity. When looking at the per-instance similarity scores in Table 2, the
Markov-based models have the closest scores to those of the original subsample. This is expected

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 6, Article 118. Publication date: July 2022.



118:18 M. Benarous et al.

Table 2. The Table Shows the Per-Instance Similarity Measure Achieved by Each Model

as a Deviation Percentage from the Original Subsample

Measure
Original

subsample
PWM MC VMM

LSTM
Loc2Vec

LSTM
embeddings

Log Likelihood 0% −inf −13.9% −14.2% −31.6% 6.9%
Time based BLEU 4 0% −100.0% −1.3% −1.3% −10.5% 2.6%
Discriminator 0% −99.9% −0.4% −0.3% −1.2% −0.7%

Each row represents a different statistical similarity measure, and each column represents a different model. All

measures and models are tested by a T-test with the original subsample and are found to be statistically

significant with a confidence level of 90%. This means they are all significantly different from the original data,

which is not what we desire.

Table 3. The Table Shows the Diversity Measures of Each Model as a Deviation Percentage

from the Original Subsample

Measure
Original

subsample
PWM

Markov
Chain

VMM
LSTM

Loc2Vec
LSTM

embeddings

WS Likelihood 0% 9.5% 8.1% 8.2% 9.2% 4.1%
Reverse BLEU 4 0% 15.2% −0.1% 0.0% 0.8% 0.7%
WS Discriminator 0% inf% 16% 10% 68% 23%

Each row represents a different statistical similarity measure, and each column represents a different

model. All measures and models are tested by a T-test with the original subsample and are found to be

statistically significant with a confidence level of 90%. This means they are all significantly different from

the original data, which is not what we desire.

since they are very similar to the original data. The LSTM embedding model also consistently
achieves good results, 2.6% different than the original subsample in terms of the time-based BLEU
measure, and only 0.7% different in terms of the discriminator measure. This shows that using
embedding layers in the neural network helps the model tackle the problem effectively. It can
further be seen that the LSTM Loc2Vec model scores only 1.2% lower than the original subsample
in terms of the discriminator measure. This shows that the discriminator model believes that its
synthetic data could very well be from the original dataset. The PWM model achieves very different
scores than those the original subsample in terms of all of the per-instance similarity measures,
further strengthening our understanding that this model simply generates noise, specifically when
we look for longer patterns and not only at the distribution over the different areas.

4.2.4 Diversity. The Markov models have the best scores when looking at the diversity mea-
sures (Table 3). This is consistent with the fact that we know that the Markov-based models gen-
erate very similar data to the original data. Therefore, not only is each diary in the data similar to
a diary in the original data, but also the distribution of the diaries is similar to the original data
distribution. The PWM model has the worst diversity, confirming the suspicion that the model
creates unrealistic diaries. The LSTM embedding model has better diversity scores than the LSTM
Loc2Vec model, showing again that the embedding layers give the model an edge over using static
embeddings.

4.2.5 Pareto Analysis. Assuming that the objective of an application is to share data with other
parties, the most important performance measure would be the privacy conservation of the data
while still producing realistic diaries. Figure 8 shows the Pareto analysis of the measures that could
be the most important ones for this objective. When comparing privacy to per-instance similarity
and statistical similarity (the top graphs in Figure 8), it is apparent that the LSTM Loc2Vec model
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Fig. 8. Pareto analysis of different performance measures. In graphs (a) and (b), we compare privacy (mea-

sured by the reidentification probability) with per-instance similarity (measured with the discriminator) and

statistical similarity (measured by the transition matrix), respectively. In graphs (b) and (c), we compare per-

instance similarity (measured by the discriminator) with statistical similarity (measured by the transition

score) and diversity (measured by the WS discriminator), respectively.

preserves more privacy, while the Markov-based models’ diaries are more similar to the original
data. We use a weighted average of

0.8×Privacy+0.1×PerInstanceSimilarity+0.05×StatisticalSimilarity+0.05×Diversity, (14)

where privacy is measured using the reidentification measure, per-instance similarity is mea-
sured by the discriminator measure, statistical similarity is measured by the transition matrix, and
diversity is measured by the WS discriminator. In the top row of Table 4, we can see the results
of the models using this weighted score, and we see that the best model is the PWM. Taking the
fact that all similarity measures show that this model does not produce usable diaries into account,
the next best model is LSTM Loc2Vec. This shows that it is important to look at each measure
individually before aggregating the measure into one score. If the objective of an application is to
create data for mobility analysis, the most important performance measures would be the similar-
ity measures. When comparing both statistical similarity and diversity to per-instance similarity
(the bottom graphs in Figure 8), the VMM model seems to dominate the other models in terms of
all performance measures. For this objective, we use a weighted average of

0.2× Privacy + 0.3× PerInstanceSimilarity + 0.3× StatisticalSimilarity + 0.2×Diversity, (15)

where privacy is measured using the reidentification measure, per-instance similarity is mea-
sured by the discriminator measure, statistical similarity is measured by the transition matrix, and
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Table 4. The Table Shows the Weighted Average Scores for Each Model based

on Different Objectives

Measure PWM MC VMM
LSTM

Loc2Vec
LSTM

embeddings

Sharing data Equation (14) 0.8 0.19 0.2 0.21 0.14
Mobility pattern analysis Equation (15) 0.2 0.79 0.8 0.72 0.56

Each row represents a different task, and each column represents a different model.

diversity is measured by the WS discriminator. In the bottom row of Table 4, we can see that the
VMM model is considered the best for this objective.

5 DISCUSSION

Finding the balance between similarity and privacy is the ultimate goal when building a model
for generating synthetic data. The PWM model generates data that preserve privacy by creating
unrealistic diaries. The Markov-based models create almost identical datasets to the original data,
resulting in high similarity scores (8% better than the LSTM Loc2Vec model and 1% better than
the LSTM embedding model) and low privacy scores. The LSTM Loc2Vec model might not have
the best results in any performance measures. Still, when examining its overall performance, it is
clear that it preserves the most privacy, 10% better than the other models while generating credible
diaries. The Markov-based models are not relevant for general public use, as they are major privacy
liabilities. However, we could use them for many other applications, such as the analysis of user
behaviors or for artificially enlarging datasets. The LSTM Loc2Vec model could potentially be
used to generate data that can be utilized by researchers, application developers, and government
agencies to reduce privacy risks.

In contrast to other articles in this field that trajectories as their data format, we generate loca-
tion sequences, which are used extensively in lifestyle studies, from improving city functionality
(e.g., transportation and construction) [48, 50, 52] to real estate pricing evaluations [34]. This fur-
ther drives us to create a framework for using location sequence data as inputs for our tested mod-
els. The main difference between using location sequences versus trajectories is that the times
between locations are known in location sequences, while in trajectories, the generation model
needs to predict the next location and the time at which it occurs. This increases the complexity
of the generation model. This drives us to explore LSTM models and different MC-based models
for generating synthetic diaries. These models are very appropriate for temporal data and hence
are widely used in the field of NLP.

Our work offers a road map for developing policies for synthetic data generation processes. We
define the framework of building generation models and evaluate various models to find the best
models for different purposes. First, it is essential to determine the objective of the given generation
model, and this indicates which performance measure to focus on. The data type also influences
the process: is the data trajectory-based or location sequence-based, and what is the period of
the data? After training the models and using different measures to quantify the performance
measures of each model, we can make an educated decision as to which model would best suit the
defined objective using both a Pareto analysis and a weighted average that gives a definitive score
for each model. Both the Pareto analysis and the weighted average are essential for understanding
the final result since looking at just one evaluation measure can hide the crucial deficiencies of
some models.

Our work highlights the importance of diverse evaluation measures for synthetic data. Existing
works used a maximum of two performance measures (see Section 5), but ignoring any one of
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these performance measures could lead to irrelevant synthetic data. If diversity is ignored, it could
lead to a dataset comprised one repeated diary, while ignoring privacy could lead to copying the
original data identically. Observing all performance measures gives a proper understanding of the
synthetic data’s quality and helps match the best model to the synthetic data’s problem.

To understand which data generation model is best suited for a specific application, we compare
five models using two performance measures: similarity and privacy. These performance measures
have an inherent tradeoff; the more similar the synthetic data are to the original data, the more
privacy leakage they present. Another contribution our study offers is comparing models using
an efficient Pareto frontier for analyzing both privacy and quality together; in this way, a person
can select a model that best fits the given application’s requirements. In our results, the PWM
obtains good scores in some statistical similarity measures, but receives the worst scores for all
other quality measurements. The Markov-based models (MC and VMM) have very high similarity
scores (statistical similarity and per-instance similarity) and diversity scores while achieving low
privacy scores. These models partially replicate the original data, meaning that when releasing
datasets for public use, these models risk users’ information. However, the models’ parameters
can be saved instead of the original data itself to reduce memory usage, thereby saving much
storage space. Furthermore, the LSTM models present good similarity scores, though slightly less
than those of the Markov-based models, while presenting the best privacy scores, far better than
those of any of the other models. This shows that LSTM models can actually represent the original
data while producing nonidentical synthetic data. These results demonstrate how important it is
to evaluate synthetic datasets using different performance measures to understand their overall
quality fully.

Given more data types, such as the user’s activity or his environment, the considered process
could be converted to a multidimensional one. In such a case, each model would need to predict not
only the next location but also the other considered data types. While the Markov-based models
could be used also in the new process, given that the Markovian states could be redefined to include
the additional data types, the LSTM model would need to rely on a new architecture. In particular,
depending on the type of data added, embedding or dense layers would need to be added as well
as the output layer would need to be changed. As for the evaluation measures, with a few changes,
they could also be used to evaluate the new generated data types. In most cases, we could just
change the evaluation measures to consider the extra data types, for example, in the Log Likelihood
or the reidentification probability. In the statistical measures, we would need to add statistical
measures for the extra data types, for example, activity distribution or environment distribution.
For the discriminator, the model used for this measure would need to be modified to include the
extra data types (similarly to the LSTM model). It is important to mention that adding information
on the users would increase the challenge of keeping their privacy. More information means that
even with less data it would be easier for an adversary to get information on users. Of course,
adding additional data types can help achieve more interesting conclusions on user behavior.

It is also important to highlight some of the limitations of our work. First, we convert the location
coordinates to a list of places between which the users move, using statistical areas as the basis for
analysis. This is a decision made in many studies [17, 28, 33], but it also means that our results may
not be suitable for more precise locations. For some purposes, the coordinates themselves, which
our models do not generate, are needed. Also, we use DBSCAN for location clustering, which may
have some implications about the way locations selected. However, as we use multiple locations
and statistical areas for identifying diary slots, we believe that the impact on the outcomes of
the generators is minimal. Another limitation is the period. We work for one week and generate
location sequences for one week. The models suggested here will need to be further explored to use
the same method for a longer period (e.g., one month). However, the evaluation methods suggested

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 6, Article 118. Publication date: July 2022.



118:22 M. Benarous et al.

in this study should be applicable for any period. Another limitation is that the evaluation process
depends on the application and is not independent of it. This means that comparing models without
an application in mind is problematic.

6 CONCLUSIONS

Working with human location data is increasingly challenging because of the potential privacy
leakage it can inflict. In this article, we develop synthesis methods for longitudinal location se-
quences and evaluate for utility and privacy. Our experiments show that different models are
compatible with various applications. On one hand, Markov-based models achieve the highest
similarity scores relative to the original data, but they do not preserve any privacy, meaning they
are best for applications such as lifestyle analysis and memory power reduction. On the other hand,
the LSTM models preserve the most privacy while having good similarity scores, meaning they
are most useful for releasing data for public or research uses.

Further work can investigate the difference between generating location sequences and trajec-
tories. We argue that LSTM models are best suited for working with location sequences, but other
articles have used LSTM models with trajectories. We want to test different generation models on
trajectories and location sequences to evaluate the best results for a specific problem. Another vali-
dation needed is to compare the LSTM models to GAN models, which many studies use. Moreover,
since the importance of evaluating performance measures is proven in this study, we suggest that
future work further explore more sophisticated measures of performing synthetic data evaluations.

APPENDICES

A COMPARISON OF LOCATION DATA SYNTHESIS

Table 5. Previous Studies on Synthetic Mobility Data

Reference Data Data type Model Stat Insta Divers Privacy Vis
Song [46] Dartmouth College

students Wi-Fi data
Location changes MC

Geyik [22] cab data San Francisco, CA Short-term Probabilistic
context-free grammars

V

Bapierre [5] Received Signal Strength
(RSS) information

Short-term VMM

Gambs [20] Geolife dataset Location changes MC
Bindschaedler [9] Nokia mobile dataset Long-term Aggregate model V V
Zheng [53] Tracking data from

professional basketball
games

Short-term Hierarchical networks V

Kulkarni [30] Nokia Mobile Dataset Short-term RNN V
Kulkarni [31] Nokia mobile dataset Short-term GAN V V V
Huang [26] navigation GPS Short-term Auto encoders V V
Song [45] N/A Short-term GAN V
Rao [42] Foursquare weekly

trajectory New York City
(NYC)

Long-term GAN V V

The first four columns describe the data the articles used and the generation models. The last five columns represent

the five performance measures (statistical similarity, per-instance similarity, diversity, privacy, and visual test),

where the measure https://www.overleaf.com/project/60b23aaa5d2bc6a3481f7c7ba given article used is marked.
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B ORIGINAL DIARIES EXAMPLES

This appendix presents examples of various original diaries post processing (as described in
Section 3) are shown in Figure 9.

Fig. 9. Examples of original diaries. The columns represent the day of the week (1 - Sunday, . . . , 7 - Saturday)

and rows represent the hour of the day (5:00–22:00). The location number is the statistical area ID and the

cells marked in blue represents home, green represents work, and pink represents traveling.
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C GENERATED DIARIES EXAMPLES

This appendix presents examples of generated diaries from the generation models described in
Section 3. In every figure, the columns represent the day of the week (1 - Sunday, . . . , 7 - Saturday)
and rows represent the hour of the day (5:00–22:00). The location number is the statistical area
ID and the cells marked in blue represents home, green represents work, and pink represents
traveling. For the PWM model diaries (as shown in Figure 10), only one gray color was used due
to the amount of different statistical area IDs.

Fig. 10. Examples of generated diaries from the PWM model.

Diaries generated from the MC model:

Fig. 11. Examples of generated diaries from the MC model.

Diaries generated from the VMM model:

Fig. 12. Examples of generated diaries from the VMM model.
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Diaries generated from the LSTM Loc2Vec model:

Fig. 13. Examples of generated diaries from the LSTM Loc2Vec model.

Diaries generated from the LSTM Embeddings model:

Fig. 14. Examples of generated diaries from the LSTM Embeddings model.
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