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ABSTRACT
A targeted Bayesian network learning (TBNL) method is proposed to account 
for a classification objective during the learning stage of the network model. 
The TBNL approximates the expected conditional probability distribution 
of the class variable. It effectively manages the trade-off between the 
classification accuracy and the model complexity by using a discriminative 
approach, constrained by information theory measurements. The proposed 
approach also provides a mechanism for maximizing the accuracy via a 
Pareto frontier over a complexity–accuracy plane, in cases of missing data 
in the data-sets. A comparative study over a set of classification problems 
shows the competitiveness of the TBNL mainly with respect to other 
graphical classifiers.

1. Introduction

Bayesian belief networks (BNs) constitute a family of graphical probabilistic models, aiming to effi-
ciently encode the joint probability distribution of some domain (Pearl, 1988). A BN model qualitatively 
and quantitatively represents the relations among random variables in a fairly intuitive manner, and 
at the same time provides a compact mathematical representation of the joint probability distribution 
(Ben-Gal, 2007; Heckerman, Geiger, and Chickering, 1995). Due to this generality, BNs have been used 
for various data analytics tasks, including prediction, anomaly detection, clustering, decision-making 
and classification. They have been applied to various systems and areas, such as retail, e-commerce, 
agriculture, homeland security, industry, meteorology, education, surveillance and more (Ben-Gal, 
2007; Bouchaffra, 2012; Heckerman et al., 1995; Pourret, Naïm, & Marcot, 2008).

In many of these applications, the final underlying objective is to optimize some system output 
against operational, environmental and economic considerations. With the growing demand to model 
and analyze such systems directly from real data, automated BN learning approaches are essential and 
can be beneficial (Bouchaffra, 2012; Gruber & Ben-Gal, 2012; Gruber, Yanovski, & Ben-Gal, 2013; 
Zhu, Liu, & Jiang, 2016). We follow this direction and propose an engineering approach for learning a 
BN classifier that controls the accuracy–complexity trade-off during the learning stage, and provides a 
useful descriptive model for classification purposes. Unlike the latter two works that focus on specific 
reliability and maintenance applications, this work presents the use of a targeted Bayesian network 
learning (TBNL) method for a general classification purpose and benchmarks it with respect to other 
generalized graphic classifiers.
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2   A. GRUBER AND I. BEN-GAL

Learning a BN, and particularly its structure, is an NP-hard problem (Chickering, Geiger, & 
Heckerman, 1994). In the realm of BN classifiers, one can consider two main approaches for structure 
learning: a canonical approach and a target-oriented approach.

The canonical approach first applies a general Bayesian network (GBN) learning to depict the 
dependencies among the domain’s variables, without focusing on any particular variable. Having 
learnt the GBN, the canonical approach then uses the variables in the networks as attributes of the 
class variable to carry out the classification. Thus, the learning phase of the network is conducted 
independently of the final classification task.

The target-oriented approach, in a different manner, sets the class variable a priori and constructs 
around it a model of the attributes. For example, the simple and well-known naïve-Bayes (NB) model 
(Duda, Hart, & Stork, 1973; Ng & Jordan, 2002) and the tree augmented network (TAN) (Friedman, 
Geiger, & Goldszmidt, 1997), are two cornerstone methods in the realm of target-oriented Bayesian 
classifiers. Following such an approach, the BN is initially constructed toward the classification task 
(Kelner & Lerner, 2012), focusing the modeling efforts around the class variable. Accordingly, the 
structural complexity of these classifiers is often fixed a priori, since there is very little ‘room’ for a 
BN structure search, and the trade-off between the classification accuracy and the model complexity 
is not fully managed.

The proposed TBNL method exploits advantages of the above two approaches. Following the 
canonical approach, it controls the model complexity during the learning stage by using informa-
tion-theoretic measurements. On the other hand, similar to the target-oriented approach, it focuses 
on the class variable modeling. Thus, the TBNL manages the accuracy–complexity trade-off with 
respect to the expected conditional probability distributions of the class variable in the domain. It is 
shown that the accuracy–complexity trade-off is efficiently manageable by using measurements of 
Information Theory (Cover & Thomas, 2012), following the principles suggested by the adding-arrows 
method (Williamson, 2000).

The TBNL is compared with several directed graphical classifiers, such as the NB, the C4.5, the 
BNC algorithm and the TAN, in which the relations among random variables are represented graph-
ically. Although the focus of this paper is on graphical classifiers, the benchmark study also includes 
the support vector machine (SVM) classifier as a popular non-graphical model in the considered 
industry. The paper focuses on graphical models since, unlike several ‘black-box’ classifiers (e.g. 
neural networks and deep-learning models), graphical models such as the BN and the proposed 
TBNL classifiers yield descriptive and interpretable networks. These networks can support better 
understanding and intuition to domain experts on the selected features and their interactions. For 
example, two specific use cases in which the TBNL provided insights to domain-experts by rely-
ing on its graphical interface, are suspects identification in cellular networks and condition-based 
maintenance (CBM) in production processes.

As seen in Section 4, the TBNL was compared against the above-mentioned classifiers over several 
known data-sets (taken from publicly available sources, such as Frank & Asuncion, 2010; Kohavi & 
John, 1997). Over the 25 tested data-sets, the TBNL dominated all the compared classifiers in 8/25 
cases, while in 14/25 of the cases both the TBNL and the TAN were found to obtain the best clas-
sification results. These models were further compared to each other and benchmarked against the 
popular NB model. The results reflect the TBNL usability. First, in general it is well known that there 
is not one classifier that outperforms all the other classifiers over all data-sets. The literature recog-
nizes that each classifier can have its own contribution and properties. Second, the TBNL graph has 
a convenient descriptive structure, which enables a more intuitive understanding of the explanatory 
variables and their interactions. This is the reason we focus mainly on graphical classifiers. The visual 
advantage of graphical models is unquestioned and is emphasized by other types of graphical models 
as in Wang, Xie, Liu, and Yu (2012) for example. Third, unlike generative Bayesian classifiers, such as 
NB and TAN, the TBNL draws these interactions in a form that might imply causality, which is one 
of the profound properties of Bayesian networks (Pearl, 2003). Although causality is not unique for 
Bayesian networks (Wang & Chan, 2012), it goes very well with the graphical representation of the 
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QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT   3

network. Modeling these interactions, along with the control of the accuracy–complexity trade-off, 
enables the TBNL to handle missing data effectively, as shown in Section 4.

The rest of this paper is organized as follows. Section 2 discusses the BN learning approaches. It 
gives an overview of some learning methods for classification, both of canonical and target-oriented 
approaches. Section 3 defines the problem of constrained BN learning and formulates the proposed 
TBNL approach and discusses some of its properties. Section 4 provides a numerical study comparing 
the TBNL against other BN methods and decision trees. Section 5 concludes the paper.

2. Learning BN classifiers

BN learning often comprises two main phases: structure learning in the form of a directed acyclic 
graph (DAG), and parameters learning, normally in a form of conditional probability tables (CPTs). 
Most of the challenge of BN learning lies in the structure learning. A BN learning method, of which 
the objective is to encode the domain’s joint probability distribution, is referred to as a GBN learning 
(Cheng & Greiner, 1999). A comprehensive collection of works in this field can be found in Koller 
and Friedman (2009) and Spirtes, Glymour, and Scheines (2000).

Theoretically, if the true joint probability distribution is known, it is said to be consistent with 
any complete BN (Friedman, Mosenzon, Slonim, & Tishby, 2001; Tishby, Pereira, & Bialek, 2000). In 
practical situations, when the true distribution is unknown, and only observed data points are given, 
a complete BN model may result in overfitting the data and an increased prediction error.

Over the years, several approaches which are not limited to BN learning were suggested for tack-
ling overfitting and the accuracy–complexity trade-off. One well-known approach is the Minimum 
Description Length (MDL) (Rissanen, 1978). The MDL uses the Kullback–Leibler (KL) divergence 
that is also used in this work. The KL divergence provides a measure of fit between two distributions, 
often one is considered as the true unknown distribution, while the second is its estimated distribu-
tion. The KL divergence, denoted here by dKL

(
p||q

)
, can be thought of as a penalty term (measured in 

bits of code length), for relying on the distribution q, while the true distribution is in fact p. As such, 
a model that minimizes the KL divergence also minimizes the description length. For example, the 
C4.5 algorithm that applies the MDL principle on decision trees attempts to maximize the information 
about the class variable (Quinlan & Rivest, 1989). Also, in unsupervised tasks it is used for clustering 
and dimension reduction (Xia, Zong, Hu, & Cambria, 2013; Zhao et al., 2015).

A general problem formulation of such scoring functions and modeling was proposed by de Campos 
(2006) as:

 

where B represents any candidate model (a GBN in our case), D is the observed data, m is the num-
ber of instances in D, LLD(B) is the corresponding log-likelihood given the candidate model, C(B) 
is the complexity measure of the candidate model and f is the information criteria. For example, if 
f = 0, the scoring function becomes a maximum likelihood which results in a complete BN. If f = 1, 
the score is based on Akaike’s information criteria (Akaike, 1974), and if f = 0.5log(m), the score is 
based on Bayesian information criteria (Schwarz, 1978), which coincides with the MDL score (de 
Campos, 2006). The information criteria penalize the scoring function, while aiming at maximizing 
the log-likelihood term.

Equation (1) sets a goal for GBN learning and is being used in the first step of the canonical classi-
fication. The second step is applying classification on the basis of the learned GBN (Cheng & Greiner, 
1999; Chickering, 2002; Cooper & Herskovits, 1992; Heckerman et al., 1995; Spirtes et al., 2000; Wang 
& Chan, 2012; Williamson, 2000). Such an approach that we follow here appears in Williamson (2000). 
The author proposed the adding-arrows algorithm, which learns a GBN by attempting to maximize 
the total information weight, or equivalently the multi-information (Friedman et al., 2001), of the 
learned BN, subject to some arbitrary structural constraints. The adding-arrows method uses Equation 
(1) implicitly by maximizing the multi-information of the BN, which is identical to maximizing the 

(1)g(B,D) = LLD(B) − C(B)f (m),

D
ow

nl
oa

de
d 

by
 [

T
el

 A
vi

v 
U

ni
ve

rs
ity

] 
at

 2
2:

47
 0

2 
Ja

nu
ar

y 
20

18
 



4   A. GRUBER AND I. BEN-GAL

log-likelihood measure (Buntine, 1996; Friedman et al., 1997). The adding-arrows can be adapted to 
Equation (1), by conditioning f = 0 as long as the constraints are satisfied, and f = ∞ if they are not. 
Williamson (2000) generalized the arguments of Chow and Liu (1968) from a Bayesian tree to a BN. 
In general, maximizing the log-likelihood is equivalent to maximizing the total mutual information 
(MI) of the learned BN. Similarly, maximizing the conditional log-likelihood of the class variable is 
equivalent to minimizing the KL divergence between the true conditional distribution (of the class 
variable) and the modeled one (Friedman et al., 1997).

While GBN learning methods attempt to best approximate the joint probability distribution, they 
address the trade-off between the BN complexity versus the prediction accuracy of the learned BN. 
Unlike GBN learning methods, the target-oriented methods form the structure learning specifically 
for classification. The NB model, for instance, does not require any structure learning. Instead, the 
structure is fixed a priori, where the node representing the class variable is predetermined as the 
common parent of all nodes that represent the rest of the variables (attributes).

Friedman et al. (1997) presented the TAN model, as well as the Bayesian augmented Bayesian 
network classifier (BAN), each of which poses an improvement upon the NB model in classification. 
The TAN can be considered as a combination of the NB classifier and an internal spanning tree, based 
on Chow & Liu algorithm (CLA). Thus, the TAN produces a BN in which every attribute has another 
parent in addition to the class node. The structure that the TAN suggests is predetermined to the extent 
of the class variable, while the scoring function can take the form of the log-likelihood, for example, 
to learn the tree structure among the attributes. Such a target-oriented model (including models that 
are based on it, e.g. Keogh & Pazzani, 1999), leaves the complexity component in Equation (1) with 
very little influence, as with the trade-off considerations.

Grossman and Domingos (2004) proposed the BNC, which substitutes in Equation (1) the con-
ditional log-likelihood of the class variable as the primary objective function. The BNC offers two 
versions for cutting down the BN’s complexity, either by bounding the maximum number of parents 
(referred to as BNC-NP, where N stands for the maximum number of parents of each node) or by 
applying the MDL principle. The authors claim that for realistic data-sets of medium or large sizes, 
discriminative classifiers (that model directly the conditional probability distribution of the class vari-
able) are often preferable over generative models (that are learned by maximizing the log-likelihood of 
the data being generated by the model). This issue has been discussed in other works as well (Kelner & 
Lerner, 2012; Madden, 2009; Ng & Jordan, 2002; Roos, Wettig, Grünwald, Myllymäki, & Tirri, 2005). 
In our benchmark study, we focus on graphical models including popular generative models such as 
the NB and the TAN, yet we also consider the SVM model as a predominant discriminative classifier 
(Cortes & Vapnik, 1995; Ghanty, Paul, & Pal, 2009). The proposed TBNL classifier is discriminative, 
while the applied parameter learning scheme is generative, as proposed by Grossman and Domingos 
(2004), for each of the considered Bayesian network classifiers.

An important feature of the TBNL that is associated with Bayesian networks in general is the han-
dling of missing data values. In general, there are several approaches for dealing with missing values. 
García-Laencina, Sancho-Gómez, and Figueiras-Vidal (2010) associate each method for handling 
missing data to one of four types of approaches: case deletion, imputation, model-based procedures and 
machine learning methods. Most of these approaches consider missing data values during the training 
time. Saar-Tsechansky and Provost (2007) state that the literature is quite poor when dealing with 
missing values at prediction time (i.e. during the testing phase), as we do here. Moreover, considering 
these approaches, the paper indicates that ‘there are almost no comparisons of existing approaches nor 
analyses or discussions of the conditions under which the different approaches perform well or poorly’.

In this work, we propose the TBNL classifier that effectively manages the trade-off between the 
classification accuracy and the model complexity by using a discriminative approach, constrained 
by information theory measurements. The proposed model provides a mechanism for maximizing 
classification accuracy via a Pareto frontier over a complexity–accuracy plane, in cases of missing data 
in the tested data-sets, as shown in later sections.
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QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT   5

3. Targeted Bayesian network learning

In this section, we present the used BN notation, discuss the problem formulation and introduce the 
TBNL method.

3.1. Bayesian network notation

Denote by B(,�), a Bayesian network that represents the joint probability distribution of a vector of 
random variables � =

(
X1,… ,XN

)
. The structure (�,�) is a DAG composed of a set of nodes � and a 

set of directed edges �, connecting the nodes. An edge Eji = Xj → Xi manifests dependence between the 
variables Xj and Xi. A directed edge Eji connects a parent node Xj to its child node Xi (Heckerman et al., 

1995). We denote by �i =
{
X1
i ,… ,X

Li

i

}
 the set of parents of Xi in (�,�) where Li =

||�i
|| is the size of 

�i and �i ⊂ �. The set of parameters � holds the local CPTs over �, where p
(
xi|�i

)
 is the conditional 

probability of xi given �i (a conjunction of states x1i ∩… ∩ x
Li

i
) of �i.

3.2. Problem definition

Denote a given target or class variable by Xt ∈ � and the rest of the domain’s variables ��{Xt} by �̄�t. 
p
(
Xt

)
 can be expressed by E[p(Xt|�̄�t)], the expected conditional probability distribution of Xt over the 

rest of the domain’s variables, thus, p(Xt) =
∑

�̄�t∈�̄�t
p(Xt�𝐱t)p(�̄�t) where �̄�t denotes the atomic states of 

�̄�t. Ideally, p(Xt) could be obtained by expectation over the joint probability distribution p(�) using 
a full BN. When using a constrained BN following Equation (1), p(Xt) can be approximated by q(Xt), 
where q(Xt) =

∑
�̄�t∈�̄�t

p(Xt�𝐳t)p(�̄�t) and �t denote a state of 𝐙t ⊆ �̄�t (the parents of Xt).
The problem definition stems from the general BN construction approach that is generally given by 

Equation (1). Yet, we use alternative expressions for both the log-likelihood and the complexity terms by 
means of information theory measurements (Bouckaert, 1995; Chow & Liu, 1968; Williamson, 2000).

For the first term in Equation (1), we follow Williamson (2000) and Chow and Liu (1968) and 
instead of maximizing the log-likelihood, we aim at minimizing the KL divergence between the true 
unknown probability distribution of the variables and the modeled (approximated) distribution by 
the BN. The KL divergence between the true joint probability distribution p(�) and the modeled 
distribution q(�) is given by:

 

When using the BN factorization to express q, one obtains 
dKL

�
p(�)��q(�)

�
= −H(�) −

∑
iI(Xi;�i) +

∑
i H(Xi), where H(Xi) is the entropy ascribed to the dis-

tribution of Xi, H(�) is the joint entropy ascribed to the joint distribution of �, and I
(
Xi;�i

)
 is the 

MI between the variable Xi and its conditioning variables, namely its parents in the network (see 
Williamson, 2000). Since the two entropy terms are independent of the BN model, the only term 
that could minimize the above KL divergence is the negative sum of the MI weights. This leads to the 
observation that maximizing the total MI weight results in a BN that best approximates p(�), where 
edges pointing from parents to a node in the network are weighted by the information gain (IG) in the 
parents about the corresponding random variable. Based on these observations, Williamson (2000) 
proposed the adding-arrows algorithm, which is a straightforward generalization of the work presented 
by Chow and Liu (1968) for Bayesian trees (see also Gruber & Ben-Gal, 2012). The MI between a 
variable and its parents is given in Equation (3):

 

(2)dKL
(
p||q

)
=

∑

x1,…,xN∈X

p
(
x1,… , xN

)
log

p
(
x1,… , xN

)

q
(
x1,… , xN

) .

(3)I
(
Xi;�i

)
=

∑

xi∈Xi ,�i∈�i

p
(
xi, �i

)
log

p
(
xi, �i

)

p
(
xi
)
p
(
�i

) .
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6   A. GRUBER AND I. BEN-GAL

The term for the total MI weight in a complete BN can then be expressed by using the chain rule of 
information, such that I

(
Xi;�i

)
 for all i = 1, …, N can be decomposed to a sum of IG components, thus:

 

where 
(
Xj−1,… ,Xi+1

)
= � if j = i + 1.

Note that each of the IG components in the above summation corresponds to an edge in the net-
work. When the BN is unconstrained, the total MI weight, expressed by Equation (4), reaches the 
global maximum. Since there exist N! different complete BN structures, each of which encodes the 
same probability distribution by a unique corresponding structure (also known as an I-Map of the 
distribution), the total MI weight can be decomposed to as many terms as the different ordering of 
the IG components in Equation (4). This observation is also known as the score equivalence (Koller 
& Friedman, 2009), implying that for a complete BN, the direction of the DAG does not change the 
probabilistic model, or its likelihood, given a data-set. A BN in which edges are not drawn for com-
ponents that contribute zero IG is a minimal I-Map of the distribution.

The second term in Equation (1), which refers to the complexity of a BN, can also be expressed in 
terms of information theory measurements (Cover & Thomas, 2012). In particular, we propose a set of 
upper bounds on the MI about each node in the network, and use them to constrain the learned BN. 
Explicitly, we define 

{
�t , �r

}
, such that I

(
Xt ;�t

)
≤ �t and I

(
Xr ;�r

)
≤ �r, where the subscript r denotes 

a non-target variable (of the ‘rest’ of the variables), Xr ∈ �̄�t. In addition, similar to other works, one 
can also constrain the number of free parameters in the learned model (de Campos, 2006; Williamson, 
2000). Thus, an explicit measure of the complexity can be given by the parameter:

 

where N is the number of random variables, ||Xi
|| is the number of values that Xi can take and |||X

j

i

||| are 
all possible values that the parent variable Xj

i
 in �i can take (Xi has Li parents). Other approaches to 

complexity measurements could be easily integrated in the model (e.g. see Lam & Bacchus, 1994).
The general problem definition that was given in Equation (1) can now be expressed in terms of 

information measurements as follows.
Given Xt ∈ �, find the BN B(,�) (namely find the set 

{
�i

}N

i=1
) which minimizes dKL

(
p
(
Xt

)
||q

(
Xt

))
,  

subject to an upper bound ηt on I(Xt ;�t) and an upper bound ηr on each of the elements in 
{
I(Xr ;�r)

}
 

where Xr ∈ �̄�t.
Note that a differential consideration between the target variable and the rest of the variables can 

result in a different trade-off between accuracy and complexity in information theoretic terms. This 
is implemented in the proposed TBNL method which is discussed next.

3.3. The proposed TBNL method

The TBNL aims at maximizing the MI weights in the BN model, while constraining the learned BN 
by applying conditions on information-related measurements. Instead of modeling explicitly the joint 
probability distribution over all the variables, the TBNL models the expected conditional probability 
distribution of the target (class) variable over the ‘rest’ of the variables of the domain. During the 
modeling stage, constraints are imposed on each node, in the form of information bounds, yielding 
an efficient trade-off between the model accuracy and the model complexity, as given in Equation 
(5). The TBNL aims at representing the true and unknown distribution p(Xt) =

∑
�̄�t∈�̄�t

p(Xt�𝐱t)p(�̄�t),  
by a BN-based distribution q

�
Xt

�
=
∑

�t∈�t
p
�
Xt��t

�
p(�t), where �t denotes a state of the parents of 

Xt, 𝐙t ⊆ �̄�t ⊂ 𝐗.

(4)
N∑

i=1

I
(
Xi;�i

)
=

N−1∑

i=1

N∑

j=i+1

I
(
Xi;Xj|Xj−1,… ,Xi+1

)
,

(5)k =

N∑

i=1

(||Xi
|| − 1

) Li∏

j=1

|||X
j

i

|||,
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QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT   7

The TBNL method forms a unique dependence structure among related variables. It restricts Xt 
to have no children, while restricting its parents’ set to �t. Accordingly, �t can be roughly considered 
as a ‘diluted’ Markov blanket of Xt (containing its parents and their children). Other examples of BN 
classifiers that have ‘degenerated’ Markov blanket structures are the NB, the TAN and the BAN. In 
general, a BN classifier depends only on the Markov blanket of the class node (Koller & Friedman, 
2009), hence, learning the interactions among the parents of Xt is redundant. However, since the TBNL 
evaluates the corresponding probabilities p(�t), for each �t ∈ �t, the method is found to efficiently 
handle classification tasks in cases of missing data. Numerical experiments that support this statement 
are discussed in Section 4.

Next, we present the main procedure of the TBNL algorithm. The procedure extends Williamson’s 
(2000) observation to account for the expected conditional distribution of the class variable in a BN.

The TBNL algorithm uses a recursive procedure that can be applied on any node that represents a 
variable. The procedure, called the AddParents (described below), adds edges from candidate nodes to 
the node to which the procedure is currently applied – each time it adds the edge from the node with 
the highest IG. Essentially, the AddParents is a greedy, forward feature-selection (see also Friedman, 
Nachman, & Peér, [1999] that adds ‘candidate parents’ iteratively), which is similar to the feature 
selection scheme in the adding-arrows (Williamson, 2000). The main difference is that the TBNL 
algorithm starts with the class variable and then proceeds recursively to the selected parent nodes. 
In particular, the TBNL algorithm starts by applying the AddParents procedure to the target node to 
select its parents. The AddParents is then applied to each parent to select its own parents from the set 
of the target’s parents. Thus, any node in the network is a parent of the target node (i.e. corresponding 
to a limited form of a Markov blanket), while maintaining the DAG structure.

Note that although the AddParents can be viewed as a modification of the feature-selection pro-
cedure in the adding-arrows, the TBNL algorithm results in a totally different network model. A pos-
sible explanation is that the adding-arrows follows the canonical approach, while the AddParents is a 
target-based procedure. Thus, despite the similarity of the procedures, the resulting networks of the 
two methods are profoundly different by structure, parameters and performance. This contribution is 
consistent with other algorithms in the literature that were somewhat modified to yield conceptually 
different networks. For example, Grossman and Domingos (2004) used HGC’s hill climbing procedure 
from Heckerman et al., (1995), with the CLL in place of the LL, leading to the BNC classifier. Another 
example is the adding-arrows itself, that modified the CLA by using IG measurements of higher orders.

The input parameters of the AddParents are: Xi representing the current node; �i representing 
the set of the candidate parents of Xi; � representing the set of arbitrary constraints on the network, 
such as the number of permitted parameters; ηi representing a constraint of the maximum allowed 
MI about Xi; �i representing the minimum IG ‘step size’ upon adding a parent to Xi in the network.

The output of the AddParents procedure, once applied to node Xi, is the set of parent nodes �i if one 
of the following conditions is fulfilled: (1) any of the � constraints is not met; (2) I

(
Xi;�

�
i|�i

)
∕H

(
Xi

)
<i

; (3) the set of candidate parents �i is empty. The AddParents is presented in Figure 1.
Carefully looking at the procedure, the penultimate line implies that it is a quasi-recursive pro-

cedure. Namely, the TBNL algorithm actually calls AddParents only once. Having obtained �i, it 
iteratively calls �j = AddParents(Xj,�i,�, �j,j ) for each Xj ∈ �i. Note that the order of the iterations 
is well defined – the output parents from each iteration affect directly the input of the next step. Such 
a procedure generates different outputs to those obtained, had the algorithm iterated the procedure 
only after obtaining the full set of parents. Thus, the TBNL calls �t = AddParents(Xt ,�t ,�, �t , �t), 
which ultimately results in a DAG  =

{
�1,�2,… ,�N

}
.

In the comparative section, the advantage of controlling the complexity–accuracy trade-off is illus-
trated, where the differential complexity parameters β and η are used for such a control. Note, however, 
that such a control requires further computation time. As long as there are no missing data, modeling 
the dependencies among the attributes may be irrelevant for the classification task. However, in case 
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8   A. GRUBER AND I. BEN-GAL

of missing data at the testing phase, the classification accuracy often decreases and the attributes’ 
dependencies can then be used to improve the approximation of the missing values and (partially) 
compensate for the reduced accuracy.

4. Experimental results

In this section, the TBNL is compared with known classifiers and its accuracy–complexity trade-off is 
discussed. The numerical comparison is focused on graphical classifiers such as BNs and a Decision 
Tree following Grossman and Domingos (2004) and Friedman et al. (1997). For completeness we also 
show the classification results of the SVM which is known as a dominant and popular non-graphical 
classifier.

Figure 1. the addParents procedure.
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QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT   9

4.1. Data and setup

Twenty-five data-sets taken from the UCI Repository (Frank & Asuncion, 2010; Kohavi & John, 
1997) were used for the comparison. These data-sets are detailed in Table 1, including the numbers of 
variables, classes and instances. We followed previous studies (Friedman et al., 1997; Wang & Chan, 
2012) in implementing the used testing method, i.e. either a holdout of a fixed number of instances 
(listed as ‘Holdout’) or five stratified folds with cross validation (listed as ‘CV5’). The comparison is 
based on the results reported in Friedman et al. (1997), Keogh and Pazzani (1999), Grossman and 
Domingos (2004) and Ben-Gal, Dana, Shkolnik, and Singer (2014) with the most competent results 
of each classifier being included in the study. These studies considered generative parameter learning, 
which we follow in this paper.

The TBNL algorithm was implemented in Matlab including procedures from the Bayes Net Toolbox 
(Mallows, 1973; ‘MATLAB’, 2010, Murphy, 2001). Continuous variables were discretized using the 
supervised method proposed by Ching, Wong, and Chan (1995). Although discretization is directly 
applied using off-the-shelf methods, it is a critical aspect for the classification task and should be 
considered in accordance with the applied classifier (Ching et al., 1995). Essentially, the used dis-
cretization method joins the values of each attribute, such that it maximizes the normalized (with 
respect to their joint entropy) MI about the target variable. The discretization was applied each time 
exclusively to the training set, while transforming continuous values on the corresponding testing set 
(each test was applied directly to the original values in the testing set). The TBNL parameters were 
tuned manually (with a default value � = {0.02, 0.05} and � = {1, 1}). Note that a small �t value can 
add more parents to the target node, whereas a large �t value can stop the algorithm too early (before 
obtaining a significant IG). This setting normally yields a different network structure for each training 
set, with a variable number of parents to each node.

The TBNL was compared against the following graphical benchmark models: BNC-2P (recall that 
‘2P’ implies up to two parents per each node); NB; C4.5; TAN; HGC (as a canonical benchmark model 
while relying on the original BN search algorithm of Heckerman et al., 1995); and the SVM which is 
a non-graphical yet a popular model in the industry.

Table 1. list of used uci repository data-sets, including properties and test procedure.

  Data-set #attributes #classes #instances (training) Test methodology
1 australian 14 2 690 cv5
2 breast 10 2 683 cv5
3 chess 36 2 3196 holdout
4 cleave 13 2 296 cv5
5 corral 6 2 128 cv5
6 crx 15 2 653 cv5
7 diabetes 8 2 768 cv5
8 flare 10 2 1066 cv5
9 german 20 2 1000 cv5
10 glass 9 7 214 cv5
11 glass2 9 2 163 cv5
12 heart 13 2 270 cv5
13 hepatitis 19 2 80 cv5
14 iris 4 3 150 cv5
15 letter 16 26 20,000 holdout
16 lymphography 18 4 148 cv5
17 mofn-3-7-10 10 2 1324 holdout
18 pima 8 2 768 cv5
19 satimage 36 6 6435 holdout
20 segment 19 7 2310 holdout
21 shuttle-small 9 7 5800 holdout
22 soybean-large 35 19 562 cv5
23 vehicle 18 4 846 cv5
24 vote 16 2 435 cv5
25 waveform-21 21 3 5000 holdout
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10   A. GRUBER AND I. BEN-GAL

4.2. Comparable results

The figures shown in Table 2 display the classification accuracy (in percent) of the corresponding 
method listed in the column header. For each data-set, the most accurate and the least accurate results 
are marked in bold or italic letters, respectively. The same marking was applied to the results that are 
within 5% difference from the above, following the convention.

As seen, the TBNL obtained the best accuracy in 8/25 (32%) of these data-sets, while the second-best 
classifier, the TAN, obtained the highest accuracy in 4/25 (16%) of the cases. In 9/25 (36%), the TBNL 
obtained a bold mark, as it was found to be within the 5% range off the most accurate classifier in 
‘shuttle-small’.

The SVM results imply that in these cases the performance of the graphical classifiers is competent. 
In fact, it is found that in 14 out of 24 data-sets, the SVM results in lower classification accuracy with 
respect to the leading graphical classifier (i.e. below 5% of the best classification results). Figure 2 
depicts six pairwise comparisons of classification accuracy between two competing models over all 25 
data-sets. In each comparison, a Wilcoxon signed-rank test is used, as recommended by Demšar (2006) 
for a comparison between two classifiers over different data-sets. The following p-values designate the 
significance of the comparisons (the lower the p-value is, the more significant is the outperforming 
classifier). In Figure 2(a), the TBNL outperforms the BNC-2P in 14/25 of the cases (56%, p < 0.4376), 
in Figure 2(b), the TBNL outperforms the NB in 16/25 of the cases (64%, p < 0.0263), in Figure 2(c), 
the TBNL outperforms the TAN in 11/25 of the cases (44%, p < 0.4772), in Figure 2(d), the TBNL 
outperforms the C4.5 in 17/25 of the cases (68%, p < 0.059), and in Figure 2(e), the TBNL outper-
forms HGC in 19/25 of the cases (76%, p < 0.001). For the forthcoming discussion, a comparison 
between the BNC-2P and the TAN is also depicted in Figure 2(f), where the BNC-2P outperforms 
the TAN in 11/25 of the cases (44%, p < 0.666). Thus, for a critical significance level of 0.05–0.06, the 
above pairwise p-values indicate a significant dominance of the TBNL relative to the NB, the HGC 
and closely the C4.5, but not relative to the BNC-2P and the TAN. These three predominant classifi-
ers (the TBNL, the BNC-2P and the TAN) do not significantly dominate one another, implying that 
model selection should be undertaken for each case exclusively, especially in real-world scenarios. 

Table 2. accuracy comparison of the tBnl with selected graphical or discriminative classifiers.

Data-set TBNL BNC-2P NB TAN C4.5 HGC SVM
australian 85.7 87.0 86.5 86.1 84.9 85.6 55.5
breast 95.9 95.8 97.6 96.5 93.9 97.6 96.5
chess 96.9 95.8 87.3 92.4 99.5 95.3 93.8
cleave 81.4 80.0 82.1 78.4 79.4 78.7 54.7
corral 100.0 98.8 87.2 98.6 98.5 100 96.9
crx 86.4 84.2 85.0 83.7 86.1 86.9 65.7
diabetes 77.1 73.3 74.3 76.2 74.1 74.3 65.1
flare 82.0 82.0 79.8 82.2 82.7 82.2 82.3
german 73.2 73.6 75.4 73.9 72.9 72.5 70.0
glass 60.0 58.3 55.9 54.2 59.3 31.2 69.2
glass2 83.4 73.1 77.6 77.5 76.1 53.0 76.7
heart 80.0 81.3 84.5 81.5 78.2 85.2 55.9
hepatitis 88.8 83.8 80.7 87.0 82.5 81.2 83.6
iris 97.0 95.8 93.0 92.4 96.0 95.7 96.7
letter 72.2 81.7 69.3 82.5 87.8 69.1 na
lymphography 81.8 83.7 83.4 82.2 78.4 63.8 80.0
mofn-3-7-10 100.0 91.4 86.7 91.5 84.0 86.7 100
pima 72.9 73.3 74.3 76.2 74.1 74.3 65.1
satimage 82.9 82.6 80.9 86.1 82.3 72.9 84.2
segment 91.4 94.3 87.8 93.3 91.8 88.7 63.9
shuttle-small 99.1 99.5 98.6 99.1 99.4 86.5 89.4
soybean-large 84.3 92.5 91.5 93.6 91.1 35.3 87.2
vehicle 64.0 70.8 61.1 72.8 68.3 49.2 30.5
vote 96.8 95.8 90.1 94.9 94.7 95.4 95.4
waveform-21 64.6 73.3 78.6 74.7 65.1 56.6 86.1
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QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT   11

Accordingly, we claim that the contribution of the TBNL should be evaluated in a manner which is 
similar to the unique contribution of the BNC despite the fact that the latter does not outperform the 
TAN on the average, or in the number of tests. Finally, in Section 4, we further show that the TBNL 
flexibility plays an important role when dealing with missing data values.

In each sub-figure of Figure 2, a linear curve y = ax + b is fitted in order to indicate the tendency of 
the corresponding comparison. Except for Figure 2(e), in all comparisons, a < 1, which implies that 
the TBNL tends to underperform in cases of low accuracy and to outperform as the accuracy increases 
(to the extent of the value of b). This explication should not be surprising, since high accuracy is asso-
ciated in many cases with unbalanced classes, for which the entropy is small. Thus, since the TBNL 
is a discriminative classifier on a basis of an entropy measure, this rough tendency does make sense. 
It can be seen in Figure 2(a) where a = 0.863, and (d) where a = 0.846, that the BNC-2P and the C4.5 
accuracies are close to that of the TBNL, while Figure 2(f), where a = 0.945, implies that the BNC-2P 
and the TAN are very close to each other. The slopes for the comparison of the TBNL to generative 
classifiers (Figure 2(b) and (c)) are a = 0.781 and a = 0.823, respectively. In Figure 2(e), a = 1.258 is 
counterintuitive since it is expected that a canonical classifier will perform better in balanced cases, 
rather than in unbalanced cases. Note, however, that in this case the intercept is b = −29.98, which 
implies that the curve does not cross the y = x line below 100% accuracy.

4.3. Accuracy–complexity trade-off

Consider now a robust indicator that measures the number of data-sets in which a classifier’s accuracy 
is among the top two results. The TBNL and the TAN are found to be among the two leading classifiers 
in 12/25 (48%) of the cases, i.e. for nearly half of the cases. The TBNL algorithm addresses the trade-off 
between the classification accuracy and the model complexity by using two sets of information-re-
lated parameters, � =

{
t ,r
}

 and � =
{
�t , �r

}
. The first coordinate of each parameter set controls the 

complexity that is associated with the class node (designated by subscript t). The second coordinate of 

Figure 2. Pairwise comparisons of classification accuracy between two competing models over 25 tested data-sets. the solid line 
represents equality between the two compared classifiers, while the dashed line represents the tendency of the comparison between 
them as the accuracy increases.
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12   A. GRUBER AND I. BEN-GAL

each parameter set controls the complexity associated with each of the rest of the nodes (designated 
by subscript r). Thereby, one can draw a line of the accuracy versus the complexity of the resulting 
BN. Figure 3 illustrates three cases from the data-sets ‘corral’, ‘mofn-3-7-10’ and ‘vote’, respectively, 
in which the TBNL is compared with the NB and the TAN. These three examples were selected for 
illustrating the advantage of the TBNL in the complexity management through the parameters β and η, 
compared to the TAN and the NB as classic target-oriented Bayesian network classifiers. Note that the 
computation time at each learning cycle of these models took up to a few minutes with a conventional 
8-cores server. In that sense, the proposed TBNL is competent with respect to the other compared 
methods. Evidently, the fact that the differential complexity parameters β and η can be used to control 
the complexity–accuracy trade-off implies a larger computation time that depends on the number of 
the different models that are constructed.

The accuracy of each learned BN is drawn as a function of its relative complexity (normalized with 
respect to the complete BN), for the corresponding data-set. The relative complexity in the horizontal 
axis is displayed in percent using a logarithmic scale. A common consistent pattern of the three fig-
ures is that the NBs’ accuracy is reflected by a single point – representing a single fixed BN structure. 
An example of NB Bayesian network, based on ‘corral’ data-set (Kohavi & John, 1997), is shown in 
Figure 4. Note again that the NB model is popular due to its simplicity, but it bears crude conditional 
independence assumptions.

The TAN’s accuracy is reflected by a vertical line – representing a number of potential structures, 
as obtained by the TAN algorithm. For example, six TAN classifiers that were learned from the ‘corral’ 
data-set and have the same complexity are shown in Figure 5. Note that there are six TAN models in 
this particular example, as in this data-set there are six attributes, each of which can be set as a root 
node to build the augmented dependence tree. Typically, each TAN model has a different accuracy 
due to different log-likelihood measurements, yet the complexity of these models is equal.

The TBNL’s accuracy is reflected by a curve representing the flexibility of the user to adjust the 
information-complexity parameters differentially on the class variable, as well as on the attributes. An 
example of a possible outcome of the TBNL, by fixing β and η to specific values, is shown in Figure 
6 for the ‘corral’ data-set.

It can be observed from Figure 3 that the NB network has a relatively low accuracy with a relatively 
low complexity. Compared to the NB, the TAN has an accuracy range for each data-set, with a fixed 
complexity. Since the complexity of the TAN is constant, a trade-off study cannot be conducted, and 
it is appealing to select the model with the highest accuracy as a preferred one. In other words, the 
TAN’s accuracy can be maximized by finding the root attribute that maximizes the log-likelihood of 
the model. Compared to the NB and the TAN, the TBNL obtains a clear accuracy–complexity Pareto 
frontier. The parameters β and η enable regulating the ‘flow’ of information, and controlling the accu-
racy–complexity trade-off. For the purpose of analysis, η was set between 0 and 100% in intervals 
of 5% for each coordinate independently. This produced a 21 × 21 grid of networks drawing a two 
dimensional accuracy vs. complexity space. Then for each complexity level, the highest accuracy was 
selected and displayed in Figure 3 in ascending order of the corresponding complexity. Figure 3(a), 
‘corral’ data-set, shows that the NB and the TAN achieve higher accuracy levels for a given complexity 
level, compared with the TBNL. This observation is also found in Figure 3(c), ‘mofn-3-7-10’ data-set, 
while for Figure 3(b), ‘vote’ data-set the TBNL is found to dominate the NB and the TAN altogether 
for different complexity levels. However, by adjusting the β and η parameters, the TBNL’s complexity 
can be controlled differentially to achieve a higher accuracy when possible.

The differential complexity property of the TBNL can play an important role in cases of missing 
or unreliable data, where outliers appear and are needed to be re-estimated. Additional experiments 
were conducted for scenarios of missing data, following the arguments stated in Section 3.3 regarding 
missing-data handling. The method implemented in the present work follows the missing at complete 
randomness type. Description of missing-data mechanisms can be found in García-Laencina et al. 
(2010). For each data-set, three scenarios of (controlled) missing data were tested: 10, 30 and 60% 
of the records were omitted from one, two or three of the most important attributes, as shown in 
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QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT   13

(a) TBNL Pareto front of the ‘corral’ dataset  
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Relative Complexity

Corral

TAN
TBNL Pareto Front
Naïve Bayes

(b) TBNL Pareto front of the ‘vote’ dataset 

(c) TBNL Pareto front of the ‘mofn-3-7-10’ dataset 

Figure 3. (a) tBnl Pareto front of the ‘corral’ data-set. (b) tBnl Pareto front of the ‘vote’ data-set. (c) tBnl Pareto front of the ‘mofn-
3-7-10’ data-set.
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14   A. GRUBER AND I. BEN-GAL

Batista and Monard (2003). After dividing the data-set into training and testing sets (following either 
a holdout or cross validation protocol, as detailed in Table 1), for each of the three most influential 
attributes, every instance was omitted independently with probability parameter fm. If nm represents 
the number of attributes from which missing data are omitted, the probability for a record to have any 
missing value over its sampled features is expressed by P

�
fm, nm

�
=
∑nm−1

j=1
fm
�
1 − fm

�j−1 (or identically 
by P

(
fm, nm

)
= 1 −

(
1 − fm

)nm−1). In this example, nm = 3, and the values of fm that derive {10%, 30%, 
60%} missing rates are fm = {0.0345, 0.112, 0.263}, respectively.

Figure 7 shows the result obtained for ‘corral’, ‘mofn-3-7-10’ and ‘vote’ data-sets, in which the 
accuracies of the TBNL, the TAN and the NB were evaluated as a function of the missing-data rate 
from 0 to 60%.

In the above illustrative cases, the TBNL maintains the highest accuracy in accordance with the 
results presented in Table 2, while the TAN and the NB models follow, respectively. Note that the 
TBNL is consistent with the rate growth, namely, its accuracy is monotonically non-increasing in the 
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Figure 4. naïve-Bayes Bayesian classifier for the ‘corral’ data-set.
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Figure 5. tree augmented network classifiers for the ‘corral’ data-set.
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QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT   15

missing-data rate. Counter-intuitively, both the TAN and the NB do not reflect the same consistent 
behavior.

One possible explanation to this observation is that the TBNL algorithm selects the most informa-
tive attributes, due to its flexibility, whereas the TAN and the NB that rely on all the attributes – some 
of which might become noisy and non-informative in case of missing data. Then, in certain cases of 
missing data, the noise is reduced, resulting in a higher accuracy of the TAN and the NB. Another 
possible explanation is that the TBNL exploits the available information efficiently, as it searches for 
the best structure using the differential complexity approach. Naturally, such efficiency is obtained 
by investing more computational efforts in learning the structure compared to the TAN or the NB. 
The latter approaches, on the other hand, have limited structure flexibility, and therefore are more 
sensitive to the particular available data-set.

Figure 6. the tBnl classifier for the ‘corral’ data-set.

Figure 7. the accuracy of the tBnl, the tan and the nB models in three data-sets with missing data.
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16   A. GRUBER AND I. BEN-GAL

4.5. The case of missing data values

A Pareto frontier of the ‘corral’ data-set is given in Figure 8. Similar to Figure 3, it illustrates the clas-
sification accuracy vs. the relative complexity of the TBNL, TAN and NB classifiers, but in addition, 
this comparison considers variable missing-data rates.

For the full data case (0% missing-data rate), the TBNL has two complexity points where it reaches 
100% accuracy in a 5-fold cross validation test. In such case, it is preferable to choose the model with 
the lower complexity for 100% accuracy. In the 10% missing-data rate, the TBNL has still two points 
with 100% accuracy. But, the lower complexity point in the 10% missing-data rate has a larger com-
plexity vs. the lower complexity point in the 0% missing-data rate. Note that even for the cases of 10, 
30 and 60% missing-data rates, there are points for which the TBNL still outperforms the NB and the 
TAN in their 0% missing-data rate.

Note that generally for any given scenario and any given classifier the greater the rate of missing 
data, the less accurate the model is. Yet, in many cases the TBNL has a flexibility that can tackle this 
accuracy loss more effectively, as the control of the model complexity enables to select a different 
structure that potentially preserves a higher accuracy level. The TBNL, as a discriminative BN classi-
fier, offers its straight-forward imputation method, which can be seen as a collection of local expected 
conditional probability distributions for each attribute, winding up with the class variable as a leaf. 
This is in accordance with the observation of Saar-Tsechansky and Provost (2007), who emphasize 
that the dominance of one form of imputation versus another depends on the statistical dependencies 
(and lack thereof) between the features.

Finally, let us note that the TBNL is scalable to larger and realistic data-sets. Two real-world use-
cases of a specific implementation of TBNL approach have been conducted and are not included in this 
paper due to lack of space. The first application considers a CBM framework for a European operator of 
a freight rail fleet, as presented by Gruber et al. (2013). In this study, the TBNL models the interactions 
between the mechanical components of a freight rail wagon, along with maintenance-related variables 
(e.g. cumulated mileage and maintenance policy), and their effects on failure prediction. The second 
application of the TBNL is related to further sensitivity analyses of CBM policies that are based on 
system simulations (Gruber et al., 2013). In particular, simulations were used to explore the robustness 
of various CBM policies under different service scenarios. The Bayesian network, which was learned 
from the simulation data, was then used as an explanatory compact metamodel for failure predictions.

Figure 8. tBnl Pareto front of the ‘corral’ data-set, with missing values.
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QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT   17

These preliminary applications of the TBNL approach materialized the TBNL method that is pro-
posed in this paper.

5. Conclusion

The motivation to develop the TBNL arises from the growing demand to model real-world data-driven 
systems. Such systems are often related to an underlying objective that can often be formulated as the 
target variable in the model. In this study, we particularly focused on classification as the model target, 
since there is a firm ground for comparisons versus other graphical classifiers. The TBNL method 
reflects an engineering approach of target-oriented BN learning, as it puts together a discriminative 
model with information-related constraints to control the model complexity. Unlike canonical methods 
that manage the accuracy–complexity trade-off in the learned GBN, the proposed approach differen-
tiates the constraints related to the target variable from those treated to the attributes. Consequently, 
the TBNL effectively manages the accuracy–complexity trade-off for the classification task. Using a 
Pareto frontier, it was illustrated how a better classification accuracy can be obtained for a given model 
complexity. This approach is in contrast to other methods in which the model complexity is fixed or 
with little flexibility. This flexibility was used to emphasize the ability of the TBNL to handle missing 
data in the testing phase.

A numerical study over 25 standard data-sets showed that the TBNL obtained the highest accuracy 
in 8/25 (32%) of these data-sets, while each of the other classifiers obtained the highest accuracy in 
4/25 (16%) at most. Moreover, the TBNL was among the two leading classifiers in 12/25 (48%) of the 
cases. Note that these results should not be surprising since by providing additional degrees of freedom 
to the model construction, a better accuracy could be extracted from a given data-set.

An important property of the TBNL is the target-oriented graphical representation. Unlike gen-
erative BN classifiers, the TBNL literally depicts the most influential attributes on the class variable, 
as well as their interactions. In many practical situations such a presentation is essential for domain 
experts, helping them to understand the nature of the interactions and possible hidden patterns in 
the data (Pearl, 1988).
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